1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#ifdef IS_MPI |
42 |
#include <mpi.h> |
43 |
#endif |
44 |
|
45 |
#include <cmath> |
46 |
#include <sstream> |
47 |
#include <string> |
48 |
|
49 |
#include "rnemd/RNEMD.hpp" |
50 |
#include "math/Vector3.hpp" |
51 |
#include "math/Vector.hpp" |
52 |
#include "math/SquareMatrix3.hpp" |
53 |
#include "math/Polynomial.hpp" |
54 |
#include "primitives/Molecule.hpp" |
55 |
#include "primitives/StuntDouble.hpp" |
56 |
#include "utils/PhysicalConstants.hpp" |
57 |
#include "utils/Tuple.hpp" |
58 |
#include "brains/Thermo.hpp" |
59 |
#include "math/ConvexHull.hpp" |
60 |
|
61 |
#ifdef _MSC_VER |
62 |
#define isnan(x) _isnan((x)) |
63 |
#define isinf(x) (!_finite(x) && !_isnan(x)) |
64 |
#endif |
65 |
|
66 |
#define HONKING_LARGE_VALUE 1.0e10 |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD { |
70 |
|
71 |
RNEMD::RNEMD(SimInfo* info) : info_(info), |
72 |
evaluator_(info_), seleMan_(info_), |
73 |
evaluatorA_(info_), seleManA_(info_), |
74 |
evaluatorB_(info_), seleManB_(info_), |
75 |
commonA_(info_), commonB_(info_), |
76 |
usePeriodicBoundaryConditions_(info_->getSimParams()->getUsePeriodicBoundaryConditions()), |
77 |
hasDividingArea_(false), |
78 |
hasData_(false) { |
79 |
|
80 |
trialCount_ = 0; |
81 |
failTrialCount_ = 0; |
82 |
failRootCount_ = 0; |
83 |
|
84 |
Globals* simParams = info->getSimParams(); |
85 |
RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
86 |
|
87 |
doRNEMD_ = rnemdParams->getUseRNEMD(); |
88 |
if (!doRNEMD_) return; |
89 |
|
90 |
stringToMethod_["Swap"] = rnemdSwap; |
91 |
stringToMethod_["NIVS"] = rnemdNIVS; |
92 |
stringToMethod_["VSS"] = rnemdVSS; |
93 |
|
94 |
stringToFluxType_["KE"] = rnemdKE; |
95 |
stringToFluxType_["Px"] = rnemdPx; |
96 |
stringToFluxType_["Py"] = rnemdPy; |
97 |
stringToFluxType_["Pz"] = rnemdPz; |
98 |
stringToFluxType_["Pvector"] = rnemdPvector; |
99 |
stringToFluxType_["Lx"] = rnemdLx; |
100 |
stringToFluxType_["Ly"] = rnemdLy; |
101 |
stringToFluxType_["Lz"] = rnemdLz; |
102 |
stringToFluxType_["Lvector"] = rnemdLvector; |
103 |
stringToFluxType_["KE+Px"] = rnemdKePx; |
104 |
stringToFluxType_["KE+Py"] = rnemdKePy; |
105 |
stringToFluxType_["KE+Pvector"] = rnemdKePvector; |
106 |
stringToFluxType_["KE+Lx"] = rnemdKeLx; |
107 |
stringToFluxType_["KE+Ly"] = rnemdKeLy; |
108 |
stringToFluxType_["KE+Lz"] = rnemdKeLz; |
109 |
stringToFluxType_["KE+Lvector"] = rnemdKeLvector; |
110 |
|
111 |
runTime_ = simParams->getRunTime(); |
112 |
statusTime_ = simParams->getStatusTime(); |
113 |
|
114 |
const string methStr = rnemdParams->getMethod(); |
115 |
bool hasFluxType = rnemdParams->haveFluxType(); |
116 |
|
117 |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
118 |
|
119 |
string fluxStr; |
120 |
if (hasFluxType) { |
121 |
fluxStr = rnemdParams->getFluxType(); |
122 |
} else { |
123 |
sprintf(painCave.errMsg, |
124 |
"RNEMD: No fluxType was set in the md file. This parameter,\n" |
125 |
"\twhich must be one of the following values:\n" |
126 |
"\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" |
127 |
"\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" |
128 |
"\tmust be set to use RNEMD\n"); |
129 |
painCave.isFatal = 1; |
130 |
painCave.severity = OPENMD_ERROR; |
131 |
simError(); |
132 |
} |
133 |
|
134 |
bool hasKineticFlux = rnemdParams->haveKineticFlux(); |
135 |
bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); |
136 |
bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); |
137 |
bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); |
138 |
bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); |
139 |
hasSelectionA_ = rnemdParams->haveSelectionA(); |
140 |
hasSelectionB_ = rnemdParams->haveSelectionB(); |
141 |
bool hasSlabWidth = rnemdParams->haveSlabWidth(); |
142 |
bool hasSlabACenter = rnemdParams->haveSlabACenter(); |
143 |
bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); |
144 |
bool hasSphereARadius = rnemdParams->haveSphereARadius(); |
145 |
hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); |
146 |
bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); |
147 |
bool hasOutputFileName = rnemdParams->haveOutputFileName(); |
148 |
bool hasOutputFields = rnemdParams->haveOutputFields(); |
149 |
|
150 |
map<string, RNEMDMethod>::iterator i; |
151 |
i = stringToMethod_.find(methStr); |
152 |
if (i != stringToMethod_.end()) |
153 |
rnemdMethod_ = i->second; |
154 |
else { |
155 |
sprintf(painCave.errMsg, |
156 |
"RNEMD: The current method,\n" |
157 |
"\t\t%s is not one of the recognized\n" |
158 |
"\texchange methods: Swap, NIVS, or VSS\n", |
159 |
methStr.c_str()); |
160 |
painCave.isFatal = 1; |
161 |
painCave.severity = OPENMD_ERROR; |
162 |
simError(); |
163 |
} |
164 |
|
165 |
map<string, RNEMDFluxType>::iterator j; |
166 |
j = stringToFluxType_.find(fluxStr); |
167 |
if (j != stringToFluxType_.end()) |
168 |
rnemdFluxType_ = j->second; |
169 |
else { |
170 |
sprintf(painCave.errMsg, |
171 |
"RNEMD: The current fluxType,\n" |
172 |
"\t\t%s\n" |
173 |
"\tis not one of the recognized flux types.\n", |
174 |
fluxStr.c_str()); |
175 |
painCave.isFatal = 1; |
176 |
painCave.severity = OPENMD_ERROR; |
177 |
simError(); |
178 |
} |
179 |
|
180 |
bool methodFluxMismatch = false; |
181 |
bool hasCorrectFlux = false; |
182 |
switch(rnemdMethod_) { |
183 |
case rnemdSwap: |
184 |
switch (rnemdFluxType_) { |
185 |
case rnemdKE: |
186 |
hasCorrectFlux = hasKineticFlux; |
187 |
break; |
188 |
case rnemdPx: |
189 |
case rnemdPy: |
190 |
case rnemdPz: |
191 |
hasCorrectFlux = hasMomentumFlux; |
192 |
break; |
193 |
default : |
194 |
methodFluxMismatch = true; |
195 |
break; |
196 |
} |
197 |
break; |
198 |
case rnemdNIVS: |
199 |
switch (rnemdFluxType_) { |
200 |
case rnemdKE: |
201 |
case rnemdRotKE: |
202 |
case rnemdFullKE: |
203 |
hasCorrectFlux = hasKineticFlux; |
204 |
break; |
205 |
case rnemdPx: |
206 |
case rnemdPy: |
207 |
case rnemdPz: |
208 |
hasCorrectFlux = hasMomentumFlux; |
209 |
break; |
210 |
case rnemdKePx: |
211 |
case rnemdKePy: |
212 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
213 |
break; |
214 |
default: |
215 |
methodFluxMismatch = true; |
216 |
break; |
217 |
} |
218 |
break; |
219 |
case rnemdVSS: |
220 |
switch (rnemdFluxType_) { |
221 |
case rnemdKE: |
222 |
case rnemdRotKE: |
223 |
case rnemdFullKE: |
224 |
hasCorrectFlux = hasKineticFlux; |
225 |
break; |
226 |
case rnemdPx: |
227 |
case rnemdPy: |
228 |
case rnemdPz: |
229 |
hasCorrectFlux = hasMomentumFlux; |
230 |
break; |
231 |
case rnemdLx: |
232 |
case rnemdLy: |
233 |
case rnemdLz: |
234 |
hasCorrectFlux = hasAngularMomentumFlux; |
235 |
break; |
236 |
case rnemdPvector: |
237 |
hasCorrectFlux = hasMomentumFluxVector; |
238 |
break; |
239 |
case rnemdLvector: |
240 |
hasCorrectFlux = hasAngularMomentumFluxVector; |
241 |
break; |
242 |
case rnemdKePx: |
243 |
case rnemdKePy: |
244 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
245 |
break; |
246 |
case rnemdKeLx: |
247 |
case rnemdKeLy: |
248 |
case rnemdKeLz: |
249 |
hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; |
250 |
break; |
251 |
case rnemdKePvector: |
252 |
hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; |
253 |
break; |
254 |
case rnemdKeLvector: |
255 |
hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; |
256 |
break; |
257 |
default: |
258 |
methodFluxMismatch = true; |
259 |
break; |
260 |
} |
261 |
default: |
262 |
break; |
263 |
} |
264 |
|
265 |
if (methodFluxMismatch) { |
266 |
sprintf(painCave.errMsg, |
267 |
"RNEMD: The current method,\n" |
268 |
"\t\t%s\n" |
269 |
"\tcannot be used with the current flux type, %s\n", |
270 |
methStr.c_str(), fluxStr.c_str()); |
271 |
painCave.isFatal = 1; |
272 |
painCave.severity = OPENMD_ERROR; |
273 |
simError(); |
274 |
} |
275 |
if (!hasCorrectFlux) { |
276 |
sprintf(painCave.errMsg, |
277 |
"RNEMD: The current method, %s, and flux type, %s,\n" |
278 |
"\tdid not have the correct flux value specified. Options\n" |
279 |
"\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" |
280 |
"\tmomentumFluxVector, and angularMomentumFluxVector.\n", |
281 |
methStr.c_str(), fluxStr.c_str()); |
282 |
painCave.isFatal = 1; |
283 |
painCave.severity = OPENMD_ERROR; |
284 |
simError(); |
285 |
} |
286 |
|
287 |
if (hasKineticFlux) { |
288 |
// convert the kcal / mol / Angstroms^2 / fs values in the md file |
289 |
// into amu / fs^3: |
290 |
kineticFlux_ = rnemdParams->getKineticFlux() |
291 |
* PhysicalConstants::energyConvert; |
292 |
} else { |
293 |
kineticFlux_ = 0.0; |
294 |
} |
295 |
if (hasMomentumFluxVector) { |
296 |
std::vector<RealType> mf = rnemdParams->getMomentumFluxVector(); |
297 |
if (mf.size() != 3) { |
298 |
sprintf(painCave.errMsg, |
299 |
"RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n" |
300 |
"\tthere should be 3 parameters, but %lu were specified.\n", |
301 |
mf.size()); |
302 |
painCave.isFatal = 1; |
303 |
simError(); |
304 |
} |
305 |
momentumFluxVector_.x() = mf[0]; |
306 |
momentumFluxVector_.y() = mf[1]; |
307 |
momentumFluxVector_.z() = mf[2]; |
308 |
} else { |
309 |
momentumFluxVector_ = V3Zero; |
310 |
if (hasMomentumFlux) { |
311 |
RealType momentumFlux = rnemdParams->getMomentumFlux(); |
312 |
switch (rnemdFluxType_) { |
313 |
case rnemdPx: |
314 |
momentumFluxVector_.x() = momentumFlux; |
315 |
break; |
316 |
case rnemdPy: |
317 |
momentumFluxVector_.y() = momentumFlux; |
318 |
break; |
319 |
case rnemdPz: |
320 |
momentumFluxVector_.z() = momentumFlux; |
321 |
break; |
322 |
case rnemdKePx: |
323 |
momentumFluxVector_.x() = momentumFlux; |
324 |
break; |
325 |
case rnemdKePy: |
326 |
momentumFluxVector_.y() = momentumFlux; |
327 |
break; |
328 |
default: |
329 |
break; |
330 |
} |
331 |
} |
332 |
} |
333 |
if (hasAngularMomentumFluxVector) { |
334 |
std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector(); |
335 |
if (amf.size() != 3) { |
336 |
sprintf(painCave.errMsg, |
337 |
"RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n" |
338 |
"\tthere should be 3 parameters, but %lu were specified.\n", |
339 |
amf.size()); |
340 |
painCave.isFatal = 1; |
341 |
simError(); |
342 |
} |
343 |
angularMomentumFluxVector_.x() = amf[0]; |
344 |
angularMomentumFluxVector_.y() = amf[1]; |
345 |
angularMomentumFluxVector_.z() = amf[2]; |
346 |
} else { |
347 |
angularMomentumFluxVector_ = V3Zero; |
348 |
if (hasAngularMomentumFlux) { |
349 |
RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); |
350 |
switch (rnemdFluxType_) { |
351 |
case rnemdLx: |
352 |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
353 |
break; |
354 |
case rnemdLy: |
355 |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
356 |
break; |
357 |
case rnemdLz: |
358 |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
359 |
break; |
360 |
case rnemdKeLx: |
361 |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
362 |
break; |
363 |
case rnemdKeLy: |
364 |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
365 |
break; |
366 |
case rnemdKeLz: |
367 |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
368 |
break; |
369 |
default: |
370 |
break; |
371 |
} |
372 |
} |
373 |
} |
374 |
|
375 |
if (hasCoordinateOrigin) { |
376 |
std::vector<RealType> co = rnemdParams->getCoordinateOrigin(); |
377 |
if (co.size() != 3) { |
378 |
sprintf(painCave.errMsg, |
379 |
"RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n" |
380 |
"\tthere should be 3 parameters, but %lu were specified.\n", |
381 |
co.size()); |
382 |
painCave.isFatal = 1; |
383 |
simError(); |
384 |
} |
385 |
coordinateOrigin_.x() = co[0]; |
386 |
coordinateOrigin_.y() = co[1]; |
387 |
coordinateOrigin_.z() = co[2]; |
388 |
} else { |
389 |
coordinateOrigin_ = V3Zero; |
390 |
} |
391 |
|
392 |
// do some sanity checking |
393 |
|
394 |
int selectionCount = seleMan_.getSelectionCount(); |
395 |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
396 |
if (selectionCount > nIntegrable) { |
397 |
sprintf(painCave.errMsg, |
398 |
"RNEMD: The current objectSelection,\n" |
399 |
"\t\t%s\n" |
400 |
"\thas resulted in %d selected objects. However,\n" |
401 |
"\tthe total number of integrable objects in the system\n" |
402 |
"\tis only %d. This is almost certainly not what you want\n" |
403 |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
404 |
"\tselector in the selection script!\n", |
405 |
rnemdObjectSelection_.c_str(), |
406 |
selectionCount, nIntegrable); |
407 |
painCave.isFatal = 0; |
408 |
painCave.severity = OPENMD_WARNING; |
409 |
simError(); |
410 |
} |
411 |
|
412 |
areaAccumulator_ = new Accumulator(); |
413 |
|
414 |
nBins_ = rnemdParams->getOutputBins(); |
415 |
binWidth_ = rnemdParams->getOutputBinWidth(); |
416 |
|
417 |
data_.resize(RNEMD::ENDINDEX); |
418 |
OutputData z; |
419 |
z.units = "Angstroms"; |
420 |
z.title = "Z"; |
421 |
z.dataType = "RealType"; |
422 |
z.accumulator.reserve(nBins_); |
423 |
for (int i = 0; i < nBins_; i++) |
424 |
z.accumulator.push_back( new Accumulator() ); |
425 |
data_[Z] = z; |
426 |
outputMap_["Z"] = Z; |
427 |
|
428 |
OutputData r; |
429 |
r.units = "Angstroms"; |
430 |
r.title = "R"; |
431 |
r.dataType = "RealType"; |
432 |
r.accumulator.reserve(nBins_); |
433 |
for (int i = 0; i < nBins_; i++) |
434 |
r.accumulator.push_back( new Accumulator() ); |
435 |
data_[R] = r; |
436 |
outputMap_["R"] = R; |
437 |
|
438 |
OutputData temperature; |
439 |
temperature.units = "K"; |
440 |
temperature.title = "Temperature"; |
441 |
temperature.dataType = "RealType"; |
442 |
temperature.accumulator.reserve(nBins_); |
443 |
for (int i = 0; i < nBins_; i++) |
444 |
temperature.accumulator.push_back( new Accumulator() ); |
445 |
data_[TEMPERATURE] = temperature; |
446 |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
447 |
|
448 |
OutputData velocity; |
449 |
velocity.units = "angstroms/fs"; |
450 |
velocity.title = "Velocity"; |
451 |
velocity.dataType = "Vector3d"; |
452 |
velocity.accumulator.reserve(nBins_); |
453 |
for (int i = 0; i < nBins_; i++) |
454 |
velocity.accumulator.push_back( new VectorAccumulator() ); |
455 |
data_[VELOCITY] = velocity; |
456 |
outputMap_["VELOCITY"] = VELOCITY; |
457 |
|
458 |
OutputData angularVelocity; |
459 |
angularVelocity.units = "angstroms^2/fs"; |
460 |
angularVelocity.title = "AngularVelocity"; |
461 |
angularVelocity.dataType = "Vector3d"; |
462 |
angularVelocity.accumulator.reserve(nBins_); |
463 |
for (int i = 0; i < nBins_; i++) |
464 |
angularVelocity.accumulator.push_back( new VectorAccumulator() ); |
465 |
data_[ANGULARVELOCITY] = angularVelocity; |
466 |
outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; |
467 |
|
468 |
OutputData density; |
469 |
density.units = "g cm^-3"; |
470 |
density.title = "Density"; |
471 |
density.dataType = "RealType"; |
472 |
density.accumulator.reserve(nBins_); |
473 |
for (int i = 0; i < nBins_; i++) |
474 |
density.accumulator.push_back( new Accumulator() ); |
475 |
data_[DENSITY] = density; |
476 |
outputMap_["DENSITY"] = DENSITY; |
477 |
|
478 |
if (hasOutputFields) { |
479 |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
480 |
} else { |
481 |
if (usePeriodicBoundaryConditions_) |
482 |
outputMask_.set(Z); |
483 |
else |
484 |
outputMask_.set(R); |
485 |
switch (rnemdFluxType_) { |
486 |
case rnemdKE: |
487 |
case rnemdRotKE: |
488 |
case rnemdFullKE: |
489 |
outputMask_.set(TEMPERATURE); |
490 |
break; |
491 |
case rnemdPx: |
492 |
case rnemdPy: |
493 |
outputMask_.set(VELOCITY); |
494 |
break; |
495 |
case rnemdPz: |
496 |
case rnemdPvector: |
497 |
outputMask_.set(VELOCITY); |
498 |
outputMask_.set(DENSITY); |
499 |
break; |
500 |
case rnemdLx: |
501 |
case rnemdLy: |
502 |
case rnemdLz: |
503 |
case rnemdLvector: |
504 |
outputMask_.set(ANGULARVELOCITY); |
505 |
break; |
506 |
case rnemdKeLx: |
507 |
case rnemdKeLy: |
508 |
case rnemdKeLz: |
509 |
case rnemdKeLvector: |
510 |
outputMask_.set(TEMPERATURE); |
511 |
outputMask_.set(ANGULARVELOCITY); |
512 |
break; |
513 |
case rnemdKePx: |
514 |
case rnemdKePy: |
515 |
outputMask_.set(TEMPERATURE); |
516 |
outputMask_.set(VELOCITY); |
517 |
break; |
518 |
case rnemdKePvector: |
519 |
outputMask_.set(TEMPERATURE); |
520 |
outputMask_.set(VELOCITY); |
521 |
outputMask_.set(DENSITY); |
522 |
break; |
523 |
default: |
524 |
break; |
525 |
} |
526 |
} |
527 |
|
528 |
if (hasOutputFileName) { |
529 |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
530 |
} else { |
531 |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
532 |
} |
533 |
|
534 |
exchangeTime_ = rnemdParams->getExchangeTime(); |
535 |
|
536 |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
537 |
// total exchange sums are zeroed out at the beginning: |
538 |
|
539 |
kineticExchange_ = 0.0; |
540 |
momentumExchange_ = V3Zero; |
541 |
angularMomentumExchange_ = V3Zero; |
542 |
|
543 |
std::ostringstream selectionAstream; |
544 |
std::ostringstream selectionBstream; |
545 |
|
546 |
if (hasSelectionA_) { |
547 |
selectionA_ = rnemdParams->getSelectionA(); |
548 |
} else { |
549 |
if (usePeriodicBoundaryConditions_) { |
550 |
Mat3x3d hmat = currentSnap_->getHmat(); |
551 |
|
552 |
if (hasSlabWidth) |
553 |
slabWidth_ = rnemdParams->getSlabWidth(); |
554 |
else |
555 |
slabWidth_ = hmat(2,2) / 10.0; |
556 |
|
557 |
if (hasSlabACenter) |
558 |
slabACenter_ = rnemdParams->getSlabACenter(); |
559 |
else |
560 |
slabACenter_ = 0.0; |
561 |
|
562 |
selectionAstream << "select wrappedz > " |
563 |
<< slabACenter_ - 0.5*slabWidth_ |
564 |
<< " && wrappedz < " |
565 |
<< slabACenter_ + 0.5*slabWidth_; |
566 |
selectionA_ = selectionAstream.str(); |
567 |
} else { |
568 |
if (hasSphereARadius) |
569 |
sphereARadius_ = rnemdParams->getSphereARadius(); |
570 |
else { |
571 |
// use an initial guess to the size of the inner slab to be 1/10 the |
572 |
// radius of an approximately spherical hull: |
573 |
Thermo thermo(info); |
574 |
RealType hVol = thermo.getHullVolume(); |
575 |
sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); |
576 |
} |
577 |
selectionAstream << "select r < " << sphereARadius_; |
578 |
selectionA_ = selectionAstream.str(); |
579 |
} |
580 |
} |
581 |
|
582 |
if (hasSelectionB_) { |
583 |
selectionB_ = rnemdParams->getSelectionB(); |
584 |
|
585 |
} else { |
586 |
if (usePeriodicBoundaryConditions_) { |
587 |
Mat3x3d hmat = currentSnap_->getHmat(); |
588 |
|
589 |
if (hasSlabWidth) |
590 |
slabWidth_ = rnemdParams->getSlabWidth(); |
591 |
else |
592 |
slabWidth_ = hmat(2,2) / 10.0; |
593 |
|
594 |
if (hasSlabBCenter) |
595 |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
596 |
else |
597 |
slabBCenter_ = hmat(2,2) / 2.0; |
598 |
|
599 |
selectionBstream << "select wrappedz > " |
600 |
<< slabBCenter_ - 0.5*slabWidth_ |
601 |
<< " && wrappedz < " |
602 |
<< slabBCenter_ + 0.5*slabWidth_; |
603 |
selectionB_ = selectionBstream.str(); |
604 |
} else { |
605 |
if (hasSphereBRadius_) { |
606 |
sphereBRadius_ = rnemdParams->getSphereBRadius(); |
607 |
selectionBstream << "select r > " << sphereBRadius_; |
608 |
selectionB_ = selectionBstream.str(); |
609 |
} else { |
610 |
selectionB_ = "select hull"; |
611 |
BisHull_ = true; |
612 |
hasSelectionB_ = true; |
613 |
} |
614 |
} |
615 |
} |
616 |
|
617 |
|
618 |
// object evaluator: |
619 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
620 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
621 |
evaluatorA_.loadScriptString(selectionA_); |
622 |
evaluatorB_.loadScriptString(selectionB_); |
623 |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
624 |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
625 |
commonA_ = seleManA_ & seleMan_; |
626 |
commonB_ = seleManB_ & seleMan_; |
627 |
} |
628 |
|
629 |
|
630 |
RNEMD::~RNEMD() { |
631 |
if (!doRNEMD_) return; |
632 |
#ifdef IS_MPI |
633 |
if (worldRank == 0) { |
634 |
#endif |
635 |
|
636 |
writeOutputFile(); |
637 |
|
638 |
rnemdFile_.close(); |
639 |
|
640 |
#ifdef IS_MPI |
641 |
} |
642 |
#endif |
643 |
|
644 |
// delete all of the objects we created: |
645 |
delete areaAccumulator_; |
646 |
data_.clear(); |
647 |
} |
648 |
|
649 |
void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
650 |
if (!doRNEMD_) return; |
651 |
int selei; |
652 |
int selej; |
653 |
|
654 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
655 |
Mat3x3d hmat = currentSnap_->getHmat(); |
656 |
|
657 |
StuntDouble* sd; |
658 |
|
659 |
RealType min_val(0.0); |
660 |
int min_found = 0; |
661 |
StuntDouble* min_sd = NULL; |
662 |
|
663 |
RealType max_val(0.0); |
664 |
int max_found = 0; |
665 |
StuntDouble* max_sd = NULL; |
666 |
|
667 |
for (sd = seleManA_.beginSelected(selei); sd != NULL; |
668 |
sd = seleManA_.nextSelected(selei)) { |
669 |
|
670 |
Vector3d pos = sd->getPos(); |
671 |
|
672 |
// wrap the stuntdouble's position back into the box: |
673 |
|
674 |
if (usePeriodicBoundaryConditions_) |
675 |
currentSnap_->wrapVector(pos); |
676 |
|
677 |
RealType mass = sd->getMass(); |
678 |
Vector3d vel = sd->getVel(); |
679 |
RealType value(0.0); |
680 |
|
681 |
switch(rnemdFluxType_) { |
682 |
case rnemdKE : |
683 |
|
684 |
value = mass * vel.lengthSquare(); |
685 |
|
686 |
if (sd->isDirectional()) { |
687 |
Vector3d angMom = sd->getJ(); |
688 |
Mat3x3d I = sd->getI(); |
689 |
|
690 |
if (sd->isLinear()) { |
691 |
int i = sd->linearAxis(); |
692 |
int j = (i + 1) % 3; |
693 |
int k = (i + 2) % 3; |
694 |
value += angMom[j] * angMom[j] / I(j, j) + |
695 |
angMom[k] * angMom[k] / I(k, k); |
696 |
} else { |
697 |
value += angMom[0]*angMom[0]/I(0, 0) |
698 |
+ angMom[1]*angMom[1]/I(1, 1) |
699 |
+ angMom[2]*angMom[2]/I(2, 2); |
700 |
} |
701 |
} //angular momenta exchange enabled |
702 |
value *= 0.5; |
703 |
break; |
704 |
case rnemdPx : |
705 |
value = mass * vel[0]; |
706 |
break; |
707 |
case rnemdPy : |
708 |
value = mass * vel[1]; |
709 |
break; |
710 |
case rnemdPz : |
711 |
value = mass * vel[2]; |
712 |
break; |
713 |
default : |
714 |
break; |
715 |
} |
716 |
if (!max_found) { |
717 |
max_val = value; |
718 |
max_sd = sd; |
719 |
max_found = 1; |
720 |
} else { |
721 |
if (max_val < value) { |
722 |
max_val = value; |
723 |
max_sd = sd; |
724 |
} |
725 |
} |
726 |
} |
727 |
|
728 |
for (sd = seleManB_.beginSelected(selej); sd != NULL; |
729 |
sd = seleManB_.nextSelected(selej)) { |
730 |
|
731 |
Vector3d pos = sd->getPos(); |
732 |
|
733 |
// wrap the stuntdouble's position back into the box: |
734 |
|
735 |
if (usePeriodicBoundaryConditions_) |
736 |
currentSnap_->wrapVector(pos); |
737 |
|
738 |
RealType mass = sd->getMass(); |
739 |
Vector3d vel = sd->getVel(); |
740 |
RealType value(0.0); |
741 |
|
742 |
switch(rnemdFluxType_) { |
743 |
case rnemdKE : |
744 |
|
745 |
value = mass * vel.lengthSquare(); |
746 |
|
747 |
if (sd->isDirectional()) { |
748 |
Vector3d angMom = sd->getJ(); |
749 |
Mat3x3d I = sd->getI(); |
750 |
|
751 |
if (sd->isLinear()) { |
752 |
int i = sd->linearAxis(); |
753 |
int j = (i + 1) % 3; |
754 |
int k = (i + 2) % 3; |
755 |
value += angMom[j] * angMom[j] / I(j, j) + |
756 |
angMom[k] * angMom[k] / I(k, k); |
757 |
} else { |
758 |
value += angMom[0]*angMom[0]/I(0, 0) |
759 |
+ angMom[1]*angMom[1]/I(1, 1) |
760 |
+ angMom[2]*angMom[2]/I(2, 2); |
761 |
} |
762 |
} //angular momenta exchange enabled |
763 |
value *= 0.5; |
764 |
break; |
765 |
case rnemdPx : |
766 |
value = mass * vel[0]; |
767 |
break; |
768 |
case rnemdPy : |
769 |
value = mass * vel[1]; |
770 |
break; |
771 |
case rnemdPz : |
772 |
value = mass * vel[2]; |
773 |
break; |
774 |
default : |
775 |
break; |
776 |
} |
777 |
|
778 |
if (!min_found) { |
779 |
min_val = value; |
780 |
min_sd = sd; |
781 |
min_found = 1; |
782 |
} else { |
783 |
if (min_val > value) { |
784 |
min_val = value; |
785 |
min_sd = sd; |
786 |
} |
787 |
} |
788 |
} |
789 |
|
790 |
#ifdef IS_MPI |
791 |
int worldRank; |
792 |
MPI_Comm_rank( MPI_COMM_WORLD, &worldRank); |
793 |
|
794 |
int my_min_found = min_found; |
795 |
int my_max_found = max_found; |
796 |
|
797 |
// Even if we didn't find a minimum, did someone else? |
798 |
MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR, |
799 |
MPI_COMM_WORLD); |
800 |
// Even if we didn't find a maximum, did someone else? |
801 |
MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR, |
802 |
MPI_COMM_WORLD); |
803 |
#endif |
804 |
|
805 |
if (max_found && min_found) { |
806 |
|
807 |
#ifdef IS_MPI |
808 |
struct { |
809 |
RealType val; |
810 |
int rank; |
811 |
} max_vals, min_vals; |
812 |
|
813 |
if (my_min_found) { |
814 |
min_vals.val = min_val; |
815 |
} else { |
816 |
min_vals.val = HONKING_LARGE_VALUE; |
817 |
} |
818 |
min_vals.rank = worldRank; |
819 |
|
820 |
// Who had the minimum? |
821 |
MPI_Allreduce(&min_vals, &min_vals, |
822 |
1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD); |
823 |
min_val = min_vals.val; |
824 |
|
825 |
if (my_max_found) { |
826 |
max_vals.val = max_val; |
827 |
} else { |
828 |
max_vals.val = -HONKING_LARGE_VALUE; |
829 |
} |
830 |
max_vals.rank = worldRank; |
831 |
|
832 |
// Who had the maximum? |
833 |
MPI_Allreduce(&max_vals, &max_vals, |
834 |
1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD); |
835 |
max_val = max_vals.val; |
836 |
#endif |
837 |
|
838 |
if (min_val < max_val) { |
839 |
|
840 |
#ifdef IS_MPI |
841 |
if (max_vals.rank == worldRank && min_vals.rank == worldRank) { |
842 |
// I have both maximum and minimum, so proceed like a single |
843 |
// processor version: |
844 |
#endif |
845 |
|
846 |
Vector3d min_vel = min_sd->getVel(); |
847 |
Vector3d max_vel = max_sd->getVel(); |
848 |
RealType temp_vel; |
849 |
|
850 |
switch(rnemdFluxType_) { |
851 |
case rnemdKE : |
852 |
min_sd->setVel(max_vel); |
853 |
max_sd->setVel(min_vel); |
854 |
if (min_sd->isDirectional() && max_sd->isDirectional()) { |
855 |
Vector3d min_angMom = min_sd->getJ(); |
856 |
Vector3d max_angMom = max_sd->getJ(); |
857 |
min_sd->setJ(max_angMom); |
858 |
max_sd->setJ(min_angMom); |
859 |
}//angular momenta exchange enabled |
860 |
//assumes same rigid body identity |
861 |
break; |
862 |
case rnemdPx : |
863 |
temp_vel = min_vel.x(); |
864 |
min_vel.x() = max_vel.x(); |
865 |
max_vel.x() = temp_vel; |
866 |
min_sd->setVel(min_vel); |
867 |
max_sd->setVel(max_vel); |
868 |
break; |
869 |
case rnemdPy : |
870 |
temp_vel = min_vel.y(); |
871 |
min_vel.y() = max_vel.y(); |
872 |
max_vel.y() = temp_vel; |
873 |
min_sd->setVel(min_vel); |
874 |
max_sd->setVel(max_vel); |
875 |
break; |
876 |
case rnemdPz : |
877 |
temp_vel = min_vel.z(); |
878 |
min_vel.z() = max_vel.z(); |
879 |
max_vel.z() = temp_vel; |
880 |
min_sd->setVel(min_vel); |
881 |
max_sd->setVel(max_vel); |
882 |
break; |
883 |
default : |
884 |
break; |
885 |
} |
886 |
|
887 |
#ifdef IS_MPI |
888 |
// the rest of the cases only apply in parallel simulations: |
889 |
} else if (max_vals.rank == worldRank) { |
890 |
// I had the max, but not the minimum |
891 |
|
892 |
Vector3d min_vel; |
893 |
Vector3d max_vel = max_sd->getVel(); |
894 |
MPI_Status status; |
895 |
|
896 |
// point-to-point swap of the velocity vector |
897 |
MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE, |
898 |
min_vals.rank, 0, |
899 |
min_vel.getArrayPointer(), 3, MPI_REALTYPE, |
900 |
min_vals.rank, 0, MPI_COMM_WORLD, &status); |
901 |
|
902 |
switch(rnemdFluxType_) { |
903 |
case rnemdKE : |
904 |
max_sd->setVel(min_vel); |
905 |
//angular momenta exchange enabled |
906 |
if (max_sd->isDirectional()) { |
907 |
Vector3d min_angMom; |
908 |
Vector3d max_angMom = max_sd->getJ(); |
909 |
|
910 |
// point-to-point swap of the angular momentum vector |
911 |
MPI_Sendrecv(max_angMom.getArrayPointer(), 3, |
912 |
MPI_REALTYPE, min_vals.rank, 1, |
913 |
min_angMom.getArrayPointer(), 3, |
914 |
MPI_REALTYPE, min_vals.rank, 1, |
915 |
MPI_COMM_WORLD, &status); |
916 |
|
917 |
max_sd->setJ(min_angMom); |
918 |
} |
919 |
break; |
920 |
case rnemdPx : |
921 |
max_vel.x() = min_vel.x(); |
922 |
max_sd->setVel(max_vel); |
923 |
break; |
924 |
case rnemdPy : |
925 |
max_vel.y() = min_vel.y(); |
926 |
max_sd->setVel(max_vel); |
927 |
break; |
928 |
case rnemdPz : |
929 |
max_vel.z() = min_vel.z(); |
930 |
max_sd->setVel(max_vel); |
931 |
break; |
932 |
default : |
933 |
break; |
934 |
} |
935 |
} else if (min_vals.rank == worldRank) { |
936 |
// I had the minimum but not the maximum: |
937 |
|
938 |
Vector3d max_vel; |
939 |
Vector3d min_vel = min_sd->getVel(); |
940 |
MPI_Status status; |
941 |
|
942 |
// point-to-point swap of the velocity vector |
943 |
MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE, |
944 |
max_vals.rank, 0, |
945 |
max_vel.getArrayPointer(), 3, MPI_REALTYPE, |
946 |
max_vals.rank, 0, MPI_COMM_WORLD, &status); |
947 |
|
948 |
switch(rnemdFluxType_) { |
949 |
case rnemdKE : |
950 |
min_sd->setVel(max_vel); |
951 |
//angular momenta exchange enabled |
952 |
if (min_sd->isDirectional()) { |
953 |
Vector3d min_angMom = min_sd->getJ(); |
954 |
Vector3d max_angMom; |
955 |
|
956 |
// point-to-point swap of the angular momentum vector |
957 |
MPI_Sendrecv(min_angMom.getArrayPointer(), 3, |
958 |
MPI_REALTYPE, max_vals.rank, 1, |
959 |
max_angMom.getArrayPointer(), 3, |
960 |
MPI_REALTYPE, max_vals.rank, 1, |
961 |
MPI_COMM_WORLD, &status); |
962 |
|
963 |
min_sd->setJ(max_angMom); |
964 |
} |
965 |
break; |
966 |
case rnemdPx : |
967 |
min_vel.x() = max_vel.x(); |
968 |
min_sd->setVel(min_vel); |
969 |
break; |
970 |
case rnemdPy : |
971 |
min_vel.y() = max_vel.y(); |
972 |
min_sd->setVel(min_vel); |
973 |
break; |
974 |
case rnemdPz : |
975 |
min_vel.z() = max_vel.z(); |
976 |
min_sd->setVel(min_vel); |
977 |
break; |
978 |
default : |
979 |
break; |
980 |
} |
981 |
} |
982 |
#endif |
983 |
|
984 |
switch(rnemdFluxType_) { |
985 |
case rnemdKE: |
986 |
kineticExchange_ += max_val - min_val; |
987 |
break; |
988 |
case rnemdPx: |
989 |
momentumExchange_.x() += max_val - min_val; |
990 |
break; |
991 |
case rnemdPy: |
992 |
momentumExchange_.y() += max_val - min_val; |
993 |
break; |
994 |
case rnemdPz: |
995 |
momentumExchange_.z() += max_val - min_val; |
996 |
break; |
997 |
default: |
998 |
break; |
999 |
} |
1000 |
} else { |
1001 |
sprintf(painCave.errMsg, |
1002 |
"RNEMD::doSwap exchange NOT performed because min_val > max_val\n"); |
1003 |
painCave.isFatal = 0; |
1004 |
painCave.severity = OPENMD_INFO; |
1005 |
simError(); |
1006 |
failTrialCount_++; |
1007 |
} |
1008 |
} else { |
1009 |
sprintf(painCave.errMsg, |
1010 |
"RNEMD::doSwap exchange NOT performed because selected object\n" |
1011 |
"\twas not present in at least one of the two slabs.\n"); |
1012 |
painCave.isFatal = 0; |
1013 |
painCave.severity = OPENMD_INFO; |
1014 |
simError(); |
1015 |
failTrialCount_++; |
1016 |
} |
1017 |
} |
1018 |
|
1019 |
void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { |
1020 |
if (!doRNEMD_) return; |
1021 |
int selei; |
1022 |
int selej; |
1023 |
|
1024 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1025 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1026 |
|
1027 |
StuntDouble* sd; |
1028 |
|
1029 |
vector<StuntDouble*> hotBin, coldBin; |
1030 |
|
1031 |
RealType Phx = 0.0; |
1032 |
RealType Phy = 0.0; |
1033 |
RealType Phz = 0.0; |
1034 |
RealType Khx = 0.0; |
1035 |
RealType Khy = 0.0; |
1036 |
RealType Khz = 0.0; |
1037 |
RealType Khw = 0.0; |
1038 |
RealType Pcx = 0.0; |
1039 |
RealType Pcy = 0.0; |
1040 |
RealType Pcz = 0.0; |
1041 |
RealType Kcx = 0.0; |
1042 |
RealType Kcy = 0.0; |
1043 |
RealType Kcz = 0.0; |
1044 |
RealType Kcw = 0.0; |
1045 |
|
1046 |
for (sd = smanA.beginSelected(selei); sd != NULL; |
1047 |
sd = smanA.nextSelected(selei)) { |
1048 |
|
1049 |
Vector3d pos = sd->getPos(); |
1050 |
|
1051 |
// wrap the stuntdouble's position back into the box: |
1052 |
|
1053 |
if (usePeriodicBoundaryConditions_) |
1054 |
currentSnap_->wrapVector(pos); |
1055 |
|
1056 |
|
1057 |
RealType mass = sd->getMass(); |
1058 |
Vector3d vel = sd->getVel(); |
1059 |
|
1060 |
hotBin.push_back(sd); |
1061 |
Phx += mass * vel.x(); |
1062 |
Phy += mass * vel.y(); |
1063 |
Phz += mass * vel.z(); |
1064 |
Khx += mass * vel.x() * vel.x(); |
1065 |
Khy += mass * vel.y() * vel.y(); |
1066 |
Khz += mass * vel.z() * vel.z(); |
1067 |
if (sd->isDirectional()) { |
1068 |
Vector3d angMom = sd->getJ(); |
1069 |
Mat3x3d I = sd->getI(); |
1070 |
if (sd->isLinear()) { |
1071 |
int i = sd->linearAxis(); |
1072 |
int j = (i + 1) % 3; |
1073 |
int k = (i + 2) % 3; |
1074 |
Khw += angMom[j] * angMom[j] / I(j, j) + |
1075 |
angMom[k] * angMom[k] / I(k, k); |
1076 |
} else { |
1077 |
Khw += angMom[0]*angMom[0]/I(0, 0) |
1078 |
+ angMom[1]*angMom[1]/I(1, 1) |
1079 |
+ angMom[2]*angMom[2]/I(2, 2); |
1080 |
} |
1081 |
} |
1082 |
} |
1083 |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1084 |
sd = smanB.nextSelected(selej)) { |
1085 |
Vector3d pos = sd->getPos(); |
1086 |
|
1087 |
// wrap the stuntdouble's position back into the box: |
1088 |
|
1089 |
if (usePeriodicBoundaryConditions_) |
1090 |
currentSnap_->wrapVector(pos); |
1091 |
|
1092 |
RealType mass = sd->getMass(); |
1093 |
Vector3d vel = sd->getVel(); |
1094 |
|
1095 |
coldBin.push_back(sd); |
1096 |
Pcx += mass * vel.x(); |
1097 |
Pcy += mass * vel.y(); |
1098 |
Pcz += mass * vel.z(); |
1099 |
Kcx += mass * vel.x() * vel.x(); |
1100 |
Kcy += mass * vel.y() * vel.y(); |
1101 |
Kcz += mass * vel.z() * vel.z(); |
1102 |
if (sd->isDirectional()) { |
1103 |
Vector3d angMom = sd->getJ(); |
1104 |
Mat3x3d I = sd->getI(); |
1105 |
if (sd->isLinear()) { |
1106 |
int i = sd->linearAxis(); |
1107 |
int j = (i + 1) % 3; |
1108 |
int k = (i + 2) % 3; |
1109 |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
1110 |
angMom[k] * angMom[k] / I(k, k); |
1111 |
} else { |
1112 |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
1113 |
+ angMom[1]*angMom[1]/I(1, 1) |
1114 |
+ angMom[2]*angMom[2]/I(2, 2); |
1115 |
} |
1116 |
} |
1117 |
} |
1118 |
|
1119 |
Khx *= 0.5; |
1120 |
Khy *= 0.5; |
1121 |
Khz *= 0.5; |
1122 |
Khw *= 0.5; |
1123 |
Kcx *= 0.5; |
1124 |
Kcy *= 0.5; |
1125 |
Kcz *= 0.5; |
1126 |
Kcw *= 0.5; |
1127 |
|
1128 |
#ifdef IS_MPI |
1129 |
MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1130 |
MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1131 |
MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1132 |
MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1133 |
MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1134 |
MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1135 |
|
1136 |
MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1137 |
MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1138 |
MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1139 |
MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1140 |
|
1141 |
MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1142 |
MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1143 |
MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1144 |
MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1145 |
#endif |
1146 |
|
1147 |
//solve coldBin coeff's first |
1148 |
RealType px = Pcx / Phx; |
1149 |
RealType py = Pcy / Phy; |
1150 |
RealType pz = Pcz / Phz; |
1151 |
RealType c(0.0), x(0.0), y(0.0), z(0.0); |
1152 |
bool successfulScale = false; |
1153 |
if ((rnemdFluxType_ == rnemdFullKE) || |
1154 |
(rnemdFluxType_ == rnemdRotKE)) { |
1155 |
//may need sanity check Khw & Kcw > 0 |
1156 |
|
1157 |
if (rnemdFluxType_ == rnemdFullKE) { |
1158 |
c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw); |
1159 |
} else { |
1160 |
c = 1.0 - kineticTarget_ / Kcw; |
1161 |
} |
1162 |
|
1163 |
if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients |
1164 |
c = sqrt(c); |
1165 |
|
1166 |
RealType w = 0.0; |
1167 |
if (rnemdFluxType_ == rnemdFullKE) { |
1168 |
x = 1.0 + px * (1.0 - c); |
1169 |
y = 1.0 + py * (1.0 - c); |
1170 |
z = 1.0 + pz * (1.0 - c); |
1171 |
/* more complicated way |
1172 |
w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz |
1173 |
+ Khx * px * px + Khy * py * py + Khz * pz * pz) |
1174 |
- 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) |
1175 |
+ Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) |
1176 |
+ Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1177 |
- Kcx - Kcy - Kcz)) / Khw; the following is simpler |
1178 |
*/ |
1179 |
if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && |
1180 |
(fabs(z - 1.0) < 0.1)) { |
1181 |
w = 1.0 + (kineticTarget_ |
1182 |
+ Khx * (1.0 - x * x) + Khy * (1.0 - y * y) |
1183 |
+ Khz * (1.0 - z * z)) / Khw; |
1184 |
}//no need to calculate w if x, y or z is out of range |
1185 |
} else { |
1186 |
w = 1.0 + kineticTarget_ / Khw; |
1187 |
} |
1188 |
if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients |
1189 |
//if w is in the right range, so should be x, y, z. |
1190 |
vector<StuntDouble*>::iterator sdi; |
1191 |
Vector3d vel; |
1192 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1193 |
if (rnemdFluxType_ == rnemdFullKE) { |
1194 |
vel = (*sdi)->getVel() * c; |
1195 |
(*sdi)->setVel(vel); |
1196 |
} |
1197 |
if ((*sdi)->isDirectional()) { |
1198 |
Vector3d angMom = (*sdi)->getJ() * c; |
1199 |
(*sdi)->setJ(angMom); |
1200 |
} |
1201 |
} |
1202 |
w = sqrt(w); |
1203 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1204 |
if (rnemdFluxType_ == rnemdFullKE) { |
1205 |
vel = (*sdi)->getVel(); |
1206 |
vel.x() *= x; |
1207 |
vel.y() *= y; |
1208 |
vel.z() *= z; |
1209 |
(*sdi)->setVel(vel); |
1210 |
} |
1211 |
if ((*sdi)->isDirectional()) { |
1212 |
Vector3d angMom = (*sdi)->getJ() * w; |
1213 |
(*sdi)->setJ(angMom); |
1214 |
} |
1215 |
} |
1216 |
successfulScale = true; |
1217 |
kineticExchange_ += kineticTarget_; |
1218 |
} |
1219 |
} |
1220 |
} else { |
1221 |
RealType a000(0.0), a110(0.0), c0(0.0); |
1222 |
RealType a001(0.0), a111(0.0), b01(0.0), b11(0.0), c1(0.0); |
1223 |
switch(rnemdFluxType_) { |
1224 |
case rnemdKE : |
1225 |
/* used hotBin coeff's & only scale x & y dimensions |
1226 |
RealType px = Phx / Pcx; |
1227 |
RealType py = Phy / Pcy; |
1228 |
a110 = Khy; |
1229 |
c0 = - Khx - Khy - kineticTarget_; |
1230 |
a000 = Khx; |
1231 |
a111 = Kcy * py * py; |
1232 |
b11 = -2.0 * Kcy * py * (1.0 + py); |
1233 |
c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_; |
1234 |
b01 = -2.0 * Kcx * px * (1.0 + px); |
1235 |
a001 = Kcx * px * px; |
1236 |
*/ |
1237 |
//scale all three dimensions, let c_x = c_y |
1238 |
a000 = Kcx + Kcy; |
1239 |
a110 = Kcz; |
1240 |
c0 = kineticTarget_ - Kcx - Kcy - Kcz; |
1241 |
a001 = Khx * px * px + Khy * py * py; |
1242 |
a111 = Khz * pz * pz; |
1243 |
b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
1244 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1245 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1246 |
+ Khz * pz * (2.0 + pz) - kineticTarget_; |
1247 |
break; |
1248 |
case rnemdPx : |
1249 |
c = 1 - momentumTarget_.x() / Pcx; |
1250 |
a000 = Kcy; |
1251 |
a110 = Kcz; |
1252 |
c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
1253 |
a001 = py * py * Khy; |
1254 |
a111 = pz * pz * Khz; |
1255 |
b01 = -2.0 * Khy * py * (1.0 + py); |
1256 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1257 |
c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1258 |
+ Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
1259 |
break; |
1260 |
case rnemdPy : |
1261 |
c = 1 - momentumTarget_.y() / Pcy; |
1262 |
a000 = Kcx; |
1263 |
a110 = Kcz; |
1264 |
c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
1265 |
a001 = px * px * Khx; |
1266 |
a111 = pz * pz * Khz; |
1267 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1268 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1269 |
c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
1270 |
+ Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
1271 |
break; |
1272 |
case rnemdPz ://we don't really do this, do we? |
1273 |
c = 1 - momentumTarget_.z() / Pcz; |
1274 |
a000 = Kcx; |
1275 |
a110 = Kcy; |
1276 |
c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
1277 |
a001 = px * px * Khx; |
1278 |
a111 = py * py * Khy; |
1279 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1280 |
b11 = -2.0 * Khy * py * (1.0 + py); |
1281 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1282 |
+ Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
1283 |
break; |
1284 |
default : |
1285 |
break; |
1286 |
} |
1287 |
|
1288 |
RealType v1 = a000 * a111 - a001 * a110; |
1289 |
RealType v2 = a000 * b01; |
1290 |
RealType v3 = a000 * b11; |
1291 |
RealType v4 = a000 * c1 - a001 * c0; |
1292 |
RealType v8 = a110 * b01; |
1293 |
RealType v10 = - b01 * c0; |
1294 |
|
1295 |
RealType u0 = v2 * v10 - v4 * v4; |
1296 |
RealType u1 = -2.0 * v3 * v4; |
1297 |
RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
1298 |
RealType u3 = -2.0 * v1 * v3; |
1299 |
RealType u4 = - v1 * v1; |
1300 |
//rescale coefficients |
1301 |
RealType maxAbs = fabs(u0); |
1302 |
if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
1303 |
if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
1304 |
if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
1305 |
if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
1306 |
u0 /= maxAbs; |
1307 |
u1 /= maxAbs; |
1308 |
u2 /= maxAbs; |
1309 |
u3 /= maxAbs; |
1310 |
u4 /= maxAbs; |
1311 |
//max_element(start, end) is also available. |
1312 |
Polynomial<RealType> poly; //same as DoublePolynomial poly; |
1313 |
poly.setCoefficient(4, u4); |
1314 |
poly.setCoefficient(3, u3); |
1315 |
poly.setCoefficient(2, u2); |
1316 |
poly.setCoefficient(1, u1); |
1317 |
poly.setCoefficient(0, u0); |
1318 |
vector<RealType> realRoots = poly.FindRealRoots(); |
1319 |
|
1320 |
vector<RealType>::iterator ri; |
1321 |
RealType r1, r2, alpha0; |
1322 |
vector<pair<RealType,RealType> > rps; |
1323 |
for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) { |
1324 |
r2 = *ri; |
1325 |
// Check to see if FindRealRoots() gave the right answer: |
1326 |
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1327 |
sprintf(painCave.errMsg, |
1328 |
"RNEMD Warning: polynomial solve seems to have an error!"); |
1329 |
painCave.isFatal = 0; |
1330 |
simError(); |
1331 |
failRootCount_++; |
1332 |
} |
1333 |
// Might not be useful w/o rescaling coefficients |
1334 |
alpha0 = -c0 - a110 * r2 * r2; |
1335 |
if (alpha0 >= 0.0) { |
1336 |
r1 = sqrt(alpha0 / a000); |
1337 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1338 |
< 1e-6) |
1339 |
{ rps.push_back(make_pair(r1, r2)); } |
1340 |
if (r1 > 1e-6) { //r1 non-negative |
1341 |
r1 = -r1; |
1342 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1343 |
< 1e-6) |
1344 |
{ rps.push_back(make_pair(r1, r2)); } |
1345 |
} |
1346 |
} |
1347 |
} |
1348 |
// Consider combining together the part for solving for the pair |
1349 |
// w/ the searching for the best solution part so that we don't |
1350 |
// need the pairs vector: |
1351 |
if (!rps.empty()) { |
1352 |
RealType smallestDiff = HONKING_LARGE_VALUE; |
1353 |
RealType diff(0.0); |
1354 |
std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0); |
1355 |
std::vector<std::pair<RealType,RealType> >::iterator rpi; |
1356 |
for (rpi = rps.begin(); rpi != rps.end(); ++rpi) { |
1357 |
r1 = (*rpi).first; |
1358 |
r2 = (*rpi).second; |
1359 |
switch(rnemdFluxType_) { |
1360 |
case rnemdKE : |
1361 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1362 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
1363 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1364 |
break; |
1365 |
case rnemdPx : |
1366 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1367 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1368 |
break; |
1369 |
case rnemdPy : |
1370 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1371 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
1372 |
break; |
1373 |
case rnemdPz : |
1374 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1375 |
+ fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); |
1376 |
default : |
1377 |
break; |
1378 |
} |
1379 |
if (diff < smallestDiff) { |
1380 |
smallestDiff = diff; |
1381 |
bestPair = *rpi; |
1382 |
} |
1383 |
} |
1384 |
#ifdef IS_MPI |
1385 |
if (worldRank == 0) { |
1386 |
#endif |
1387 |
// sprintf(painCave.errMsg, |
1388 |
// "RNEMD: roots r1= %lf\tr2 = %lf\n", |
1389 |
// bestPair.first, bestPair.second); |
1390 |
// painCave.isFatal = 0; |
1391 |
// painCave.severity = OPENMD_INFO; |
1392 |
// simError(); |
1393 |
#ifdef IS_MPI |
1394 |
} |
1395 |
#endif |
1396 |
|
1397 |
switch(rnemdFluxType_) { |
1398 |
case rnemdKE : |
1399 |
x = bestPair.first; |
1400 |
y = bestPair.first; |
1401 |
z = bestPair.second; |
1402 |
break; |
1403 |
case rnemdPx : |
1404 |
x = c; |
1405 |
y = bestPair.first; |
1406 |
z = bestPair.second; |
1407 |
break; |
1408 |
case rnemdPy : |
1409 |
x = bestPair.first; |
1410 |
y = c; |
1411 |
z = bestPair.second; |
1412 |
break; |
1413 |
case rnemdPz : |
1414 |
x = bestPair.first; |
1415 |
y = bestPair.second; |
1416 |
z = c; |
1417 |
break; |
1418 |
default : |
1419 |
break; |
1420 |
} |
1421 |
vector<StuntDouble*>::iterator sdi; |
1422 |
Vector3d vel; |
1423 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1424 |
vel = (*sdi)->getVel(); |
1425 |
vel.x() *= x; |
1426 |
vel.y() *= y; |
1427 |
vel.z() *= z; |
1428 |
(*sdi)->setVel(vel); |
1429 |
} |
1430 |
//convert to hotBin coefficient |
1431 |
x = 1.0 + px * (1.0 - x); |
1432 |
y = 1.0 + py * (1.0 - y); |
1433 |
z = 1.0 + pz * (1.0 - z); |
1434 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1435 |
vel = (*sdi)->getVel(); |
1436 |
vel.x() *= x; |
1437 |
vel.y() *= y; |
1438 |
vel.z() *= z; |
1439 |
(*sdi)->setVel(vel); |
1440 |
} |
1441 |
successfulScale = true; |
1442 |
switch(rnemdFluxType_) { |
1443 |
case rnemdKE : |
1444 |
kineticExchange_ += kineticTarget_; |
1445 |
break; |
1446 |
case rnemdPx : |
1447 |
case rnemdPy : |
1448 |
case rnemdPz : |
1449 |
momentumExchange_ += momentumTarget_; |
1450 |
break; |
1451 |
default : |
1452 |
break; |
1453 |
} |
1454 |
} |
1455 |
} |
1456 |
if (successfulScale != true) { |
1457 |
sprintf(painCave.errMsg, |
1458 |
"RNEMD::doNIVS exchange NOT performed - roots that solve\n" |
1459 |
"\tthe constraint equations may not exist or there may be\n" |
1460 |
"\tno selected objects in one or both slabs.\n"); |
1461 |
painCave.isFatal = 0; |
1462 |
painCave.severity = OPENMD_INFO; |
1463 |
simError(); |
1464 |
failTrialCount_++; |
1465 |
} |
1466 |
} |
1467 |
|
1468 |
void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { |
1469 |
if (!doRNEMD_) return; |
1470 |
int selei; |
1471 |
int selej; |
1472 |
|
1473 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1474 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1475 |
|
1476 |
StuntDouble* sd; |
1477 |
|
1478 |
vector<StuntDouble*> hotBin, coldBin; |
1479 |
|
1480 |
Vector3d Ph(V3Zero); |
1481 |
Vector3d Lh(V3Zero); |
1482 |
RealType Mh = 0.0; |
1483 |
Mat3x3d Ih(0.0); |
1484 |
RealType Kh = 0.0; |
1485 |
Vector3d Pc(V3Zero); |
1486 |
Vector3d Lc(V3Zero); |
1487 |
RealType Mc = 0.0; |
1488 |
Mat3x3d Ic(0.0); |
1489 |
RealType Kc = 0.0; |
1490 |
|
1491 |
// Constraints can be on only the linear or angular momentum, but |
1492 |
// not both. Usually, the user will specify which they want, but |
1493 |
// in case they don't, the use of periodic boundaries should make |
1494 |
// the choice for us. |
1495 |
bool doLinearPart = false; |
1496 |
bool doAngularPart = false; |
1497 |
|
1498 |
switch (rnemdFluxType_) { |
1499 |
case rnemdPx: |
1500 |
case rnemdPy: |
1501 |
case rnemdPz: |
1502 |
case rnemdPvector: |
1503 |
case rnemdKePx: |
1504 |
case rnemdKePy: |
1505 |
case rnemdKePvector: |
1506 |
doLinearPart = true; |
1507 |
break; |
1508 |
case rnemdLx: |
1509 |
case rnemdLy: |
1510 |
case rnemdLz: |
1511 |
case rnemdLvector: |
1512 |
case rnemdKeLx: |
1513 |
case rnemdKeLy: |
1514 |
case rnemdKeLz: |
1515 |
case rnemdKeLvector: |
1516 |
doAngularPart = true; |
1517 |
break; |
1518 |
case rnemdKE: |
1519 |
case rnemdRotKE: |
1520 |
case rnemdFullKE: |
1521 |
default: |
1522 |
if (usePeriodicBoundaryConditions_) |
1523 |
doLinearPart = true; |
1524 |
else |
1525 |
doAngularPart = true; |
1526 |
break; |
1527 |
} |
1528 |
|
1529 |
for (sd = smanA.beginSelected(selei); sd != NULL; |
1530 |
sd = smanA.nextSelected(selei)) { |
1531 |
|
1532 |
Vector3d pos = sd->getPos(); |
1533 |
|
1534 |
// wrap the stuntdouble's position back into the box: |
1535 |
|
1536 |
if (usePeriodicBoundaryConditions_) |
1537 |
currentSnap_->wrapVector(pos); |
1538 |
|
1539 |
RealType mass = sd->getMass(); |
1540 |
Vector3d vel = sd->getVel(); |
1541 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1542 |
RealType r2; |
1543 |
|
1544 |
hotBin.push_back(sd); |
1545 |
Ph += mass * vel; |
1546 |
Mh += mass; |
1547 |
Kh += mass * vel.lengthSquare(); |
1548 |
Lh += mass * cross(rPos, vel); |
1549 |
Ih -= outProduct(rPos, rPos) * mass; |
1550 |
r2 = rPos.lengthSquare(); |
1551 |
Ih(0, 0) += mass * r2; |
1552 |
Ih(1, 1) += mass * r2; |
1553 |
Ih(2, 2) += mass * r2; |
1554 |
|
1555 |
if (rnemdFluxType_ == rnemdFullKE) { |
1556 |
if (sd->isDirectional()) { |
1557 |
Vector3d angMom = sd->getJ(); |
1558 |
Mat3x3d I = sd->getI(); |
1559 |
if (sd->isLinear()) { |
1560 |
int i = sd->linearAxis(); |
1561 |
int j = (i + 1) % 3; |
1562 |
int k = (i + 2) % 3; |
1563 |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1564 |
angMom[k] * angMom[k] / I(k, k); |
1565 |
} else { |
1566 |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1567 |
angMom[1] * angMom[1] / I(1, 1) + |
1568 |
angMom[2] * angMom[2] / I(2, 2); |
1569 |
} |
1570 |
} |
1571 |
} |
1572 |
} |
1573 |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1574 |
sd = smanB.nextSelected(selej)) { |
1575 |
|
1576 |
Vector3d pos = sd->getPos(); |
1577 |
|
1578 |
// wrap the stuntdouble's position back into the box: |
1579 |
|
1580 |
if (usePeriodicBoundaryConditions_) |
1581 |
currentSnap_->wrapVector(pos); |
1582 |
|
1583 |
RealType mass = sd->getMass(); |
1584 |
Vector3d vel = sd->getVel(); |
1585 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1586 |
RealType r2; |
1587 |
|
1588 |
coldBin.push_back(sd); |
1589 |
Pc += mass * vel; |
1590 |
Mc += mass; |
1591 |
Kc += mass * vel.lengthSquare(); |
1592 |
Lc += mass * cross(rPos, vel); |
1593 |
Ic -= outProduct(rPos, rPos) * mass; |
1594 |
r2 = rPos.lengthSquare(); |
1595 |
Ic(0, 0) += mass * r2; |
1596 |
Ic(1, 1) += mass * r2; |
1597 |
Ic(2, 2) += mass * r2; |
1598 |
|
1599 |
if (rnemdFluxType_ == rnemdFullKE) { |
1600 |
if (sd->isDirectional()) { |
1601 |
Vector3d angMom = sd->getJ(); |
1602 |
Mat3x3d I = sd->getI(); |
1603 |
if (sd->isLinear()) { |
1604 |
int i = sd->linearAxis(); |
1605 |
int j = (i + 1) % 3; |
1606 |
int k = (i + 2) % 3; |
1607 |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1608 |
angMom[k] * angMom[k] / I(k, k); |
1609 |
} else { |
1610 |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1611 |
angMom[1] * angMom[1] / I(1, 1) + |
1612 |
angMom[2] * angMom[2] / I(2, 2); |
1613 |
} |
1614 |
} |
1615 |
} |
1616 |
} |
1617 |
|
1618 |
Kh *= 0.5; |
1619 |
Kc *= 0.5; |
1620 |
|
1621 |
#ifdef IS_MPI |
1622 |
MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM, |
1623 |
MPI_COMM_WORLD); |
1624 |
MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM, |
1625 |
MPI_COMM_WORLD); |
1626 |
MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM, |
1627 |
MPI_COMM_WORLD); |
1628 |
MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM, |
1629 |
MPI_COMM_WORLD); |
1630 |
MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1631 |
MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1632 |
MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1633 |
MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1634 |
MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9, |
1635 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1636 |
MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9, |
1637 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1638 |
#endif |
1639 |
|
1640 |
|
1641 |
Vector3d ac, acrec, bc, bcrec; |
1642 |
Vector3d ah, ahrec, bh, bhrec; |
1643 |
|
1644 |
bool successfulExchange = false; |
1645 |
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1646 |
Vector3d vc = Pc / Mc; |
1647 |
ac = -momentumTarget_ / Mc + vc; |
1648 |
acrec = -momentumTarget_ / Mc; |
1649 |
|
1650 |
// We now need the inverse of the inertia tensor to calculate the |
1651 |
// angular velocity of the cold slab; |
1652 |
Mat3x3d Ici = Ic.inverse(); |
1653 |
Vector3d omegac = Ici * Lc; |
1654 |
bc = -(Ici * angularMomentumTarget_) + omegac; |
1655 |
bcrec = bc - omegac; |
1656 |
|
1657 |
RealType cNumerator = Kc - kineticTarget_; |
1658 |
if (doLinearPart) |
1659 |
cNumerator -= 0.5 * Mc * ac.lengthSquare(); |
1660 |
|
1661 |
if (doAngularPart) |
1662 |
cNumerator -= 0.5 * ( dot(bc, Ic * bc)); |
1663 |
|
1664 |
if (cNumerator > 0.0) { |
1665 |
|
1666 |
RealType cDenominator = Kc; |
1667 |
|
1668 |
if (doLinearPart) |
1669 |
cDenominator -= 0.5 * Mc * vc.lengthSquare(); |
1670 |
|
1671 |
if (doAngularPart) |
1672 |
cDenominator -= 0.5*(dot(omegac, Ic * omegac)); |
1673 |
|
1674 |
if (cDenominator > 0.0) { |
1675 |
RealType c = sqrt(cNumerator / cDenominator); |
1676 |
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1677 |
|
1678 |
Vector3d vh = Ph / Mh; |
1679 |
ah = momentumTarget_ / Mh + vh; |
1680 |
ahrec = momentumTarget_ / Mh; |
1681 |
|
1682 |
// We now need the inverse of the inertia tensor to |
1683 |
// calculate the angular velocity of the hot slab; |
1684 |
Mat3x3d Ihi = Ih.inverse(); |
1685 |
Vector3d omegah = Ihi * Lh; |
1686 |
bh = (Ihi * angularMomentumTarget_) + omegah; |
1687 |
bhrec = bh - omegah; |
1688 |
|
1689 |
RealType hNumerator = Kh + kineticTarget_; |
1690 |
if (doLinearPart) |
1691 |
hNumerator -= 0.5 * Mh * ah.lengthSquare(); |
1692 |
|
1693 |
if (doAngularPart) |
1694 |
hNumerator -= 0.5 * ( dot(bh, Ih * bh)); |
1695 |
|
1696 |
if (hNumerator > 0.0) { |
1697 |
|
1698 |
RealType hDenominator = Kh; |
1699 |
if (doLinearPart) |
1700 |
hDenominator -= 0.5 * Mh * vh.lengthSquare(); |
1701 |
if (doAngularPart) |
1702 |
hDenominator -= 0.5*(dot(omegah, Ih * omegah)); |
1703 |
|
1704 |
if (hDenominator > 0.0) { |
1705 |
RealType h = sqrt(hNumerator / hDenominator); |
1706 |
if ((h > 0.9) && (h < 1.1)) { |
1707 |
|
1708 |
vector<StuntDouble*>::iterator sdi; |
1709 |
Vector3d vel; |
1710 |
Vector3d rPos; |
1711 |
|
1712 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1713 |
//vel = (*sdi)->getVel(); |
1714 |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1715 |
if (doLinearPart) |
1716 |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1717 |
if (doAngularPart) |
1718 |
vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); |
1719 |
|
1720 |
(*sdi)->setVel(vel); |
1721 |
if (rnemdFluxType_ == rnemdFullKE) { |
1722 |
if ((*sdi)->isDirectional()) { |
1723 |
Vector3d angMom = (*sdi)->getJ() * c; |
1724 |
(*sdi)->setJ(angMom); |
1725 |
} |
1726 |
} |
1727 |
} |
1728 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1729 |
//vel = (*sdi)->getVel(); |
1730 |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1731 |
if (doLinearPart) |
1732 |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1733 |
if (doAngularPart) |
1734 |
vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); |
1735 |
|
1736 |
(*sdi)->setVel(vel); |
1737 |
if (rnemdFluxType_ == rnemdFullKE) { |
1738 |
if ((*sdi)->isDirectional()) { |
1739 |
Vector3d angMom = (*sdi)->getJ() * h; |
1740 |
(*sdi)->setJ(angMom); |
1741 |
} |
1742 |
} |
1743 |
} |
1744 |
successfulExchange = true; |
1745 |
kineticExchange_ += kineticTarget_; |
1746 |
momentumExchange_ += momentumTarget_; |
1747 |
angularMomentumExchange_ += angularMomentumTarget_; |
1748 |
} |
1749 |
} |
1750 |
} |
1751 |
} |
1752 |
} |
1753 |
} |
1754 |
} |
1755 |
if (successfulExchange != true) { |
1756 |
sprintf(painCave.errMsg, |
1757 |
"RNEMD::doVSS exchange NOT performed - roots that solve\n" |
1758 |
"\tthe constraint equations may not exist or there may be\n" |
1759 |
"\tno selected objects in one or both slabs.\n"); |
1760 |
painCave.isFatal = 0; |
1761 |
painCave.severity = OPENMD_INFO; |
1762 |
simError(); |
1763 |
failTrialCount_++; |
1764 |
} |
1765 |
} |
1766 |
|
1767 |
RealType RNEMD::getDividingArea() { |
1768 |
|
1769 |
if (hasDividingArea_) return dividingArea_; |
1770 |
|
1771 |
RealType areaA, areaB; |
1772 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
1773 |
|
1774 |
if (hasSelectionA_) { |
1775 |
|
1776 |
if (evaluatorA_.hasSurfaceArea()) |
1777 |
areaA = evaluatorA_.getSurfaceArea(); |
1778 |
else { |
1779 |
|
1780 |
int isd; |
1781 |
StuntDouble* sd; |
1782 |
vector<StuntDouble*> aSites; |
1783 |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1784 |
for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1785 |
sd = seleManA_.nextSelected(isd)) { |
1786 |
aSites.push_back(sd); |
1787 |
} |
1788 |
#if defined(HAVE_QHULL) |
1789 |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1790 |
surfaceMeshA->computeHull(aSites); |
1791 |
areaA = surfaceMeshA->getArea(); |
1792 |
delete surfaceMeshA; |
1793 |
#else |
1794 |
sprintf( painCave.errMsg, |
1795 |
"RNEMD::getDividingArea : Hull calculation is not possible\n" |
1796 |
"\twithout libqhull. Please rebuild OpenMD with qhull enabled."); |
1797 |
painCave.severity = OPENMD_ERROR; |
1798 |
painCave.isFatal = 1; |
1799 |
simError(); |
1800 |
#endif |
1801 |
} |
1802 |
|
1803 |
} else { |
1804 |
if (usePeriodicBoundaryConditions_) { |
1805 |
// in periodic boundaries, the surface area is twice the x-y |
1806 |
// area of the current box: |
1807 |
areaA = 2.0 * snap->getXYarea(); |
1808 |
} else { |
1809 |
// in non-periodic simulations, without explicitly setting |
1810 |
// selections, the sphere radius sets the surface area of the |
1811 |
// dividing surface: |
1812 |
areaA = 4.0 * M_PI * pow(sphereARadius_, 2); |
1813 |
} |
1814 |
} |
1815 |
|
1816 |
if (hasSelectionB_) { |
1817 |
if (evaluatorB_.hasSurfaceArea()) { |
1818 |
areaB = evaluatorB_.getSurfaceArea(); |
1819 |
} else { |
1820 |
|
1821 |
int isd; |
1822 |
StuntDouble* sd; |
1823 |
vector<StuntDouble*> bSites; |
1824 |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1825 |
for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1826 |
sd = seleManB_.nextSelected(isd)) { |
1827 |
bSites.push_back(sd); |
1828 |
} |
1829 |
|
1830 |
#if defined(HAVE_QHULL) |
1831 |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1832 |
surfaceMeshB->computeHull(bSites); |
1833 |
areaB = surfaceMeshB->getArea(); |
1834 |
delete surfaceMeshB; |
1835 |
#else |
1836 |
sprintf( painCave.errMsg, |
1837 |
"RNEMD::getDividingArea : Hull calculation is not possible\n" |
1838 |
"\twithout libqhull. Please rebuild OpenMD with qhull enabled."); |
1839 |
painCave.severity = OPENMD_ERROR; |
1840 |
painCave.isFatal = 1; |
1841 |
simError(); |
1842 |
#endif |
1843 |
} |
1844 |
|
1845 |
} else { |
1846 |
if (usePeriodicBoundaryConditions_) { |
1847 |
// in periodic boundaries, the surface area is twice the x-y |
1848 |
// area of the current box: |
1849 |
areaB = 2.0 * snap->getXYarea(); |
1850 |
} else { |
1851 |
// in non-periodic simulations, without explicitly setting |
1852 |
// selections, but if a sphereBradius has been set, just use that: |
1853 |
areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); |
1854 |
} |
1855 |
} |
1856 |
|
1857 |
dividingArea_ = min(areaA, areaB); |
1858 |
hasDividingArea_ = true; |
1859 |
return dividingArea_; |
1860 |
} |
1861 |
|
1862 |
void RNEMD::doRNEMD() { |
1863 |
if (!doRNEMD_) return; |
1864 |
trialCount_++; |
1865 |
|
1866 |
// object evaluator: |
1867 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
1868 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1869 |
|
1870 |
evaluatorA_.loadScriptString(selectionA_); |
1871 |
evaluatorB_.loadScriptString(selectionB_); |
1872 |
|
1873 |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1874 |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1875 |
|
1876 |
commonA_ = seleManA_ & seleMan_; |
1877 |
commonB_ = seleManB_ & seleMan_; |
1878 |
|
1879 |
// Target exchange quantities (in each exchange) = dividingArea * dt * flux |
1880 |
// dt = exchange time interval |
1881 |
// flux = target flux |
1882 |
// dividingArea = smallest dividing surface between the two regions |
1883 |
|
1884 |
hasDividingArea_ = false; |
1885 |
RealType area = getDividingArea(); |
1886 |
|
1887 |
kineticTarget_ = kineticFlux_ * exchangeTime_ * area; |
1888 |
momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; |
1889 |
angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; |
1890 |
|
1891 |
switch(rnemdMethod_) { |
1892 |
case rnemdSwap: |
1893 |
doSwap(commonA_, commonB_); |
1894 |
break; |
1895 |
case rnemdNIVS: |
1896 |
doNIVS(commonA_, commonB_); |
1897 |
break; |
1898 |
case rnemdVSS: |
1899 |
doVSS(commonA_, commonB_); |
1900 |
break; |
1901 |
case rnemdUnkownMethod: |
1902 |
default : |
1903 |
break; |
1904 |
} |
1905 |
} |
1906 |
|
1907 |
void RNEMD::collectData() { |
1908 |
if (!doRNEMD_) return; |
1909 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1910 |
|
1911 |
// collectData can be called more frequently than the doRNEMD, so use the |
1912 |
// computed area from the last exchange time: |
1913 |
RealType area = getDividingArea(); |
1914 |
areaAccumulator_->add(area); |
1915 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1916 |
Vector3d u = angularMomentumFluxVector_; |
1917 |
u.normalize(); |
1918 |
|
1919 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1920 |
|
1921 |
int selei(0); |
1922 |
StuntDouble* sd; |
1923 |
int binNo; |
1924 |
RealType mass; |
1925 |
Vector3d vel; |
1926 |
Vector3d rPos; |
1927 |
RealType KE; |
1928 |
Vector3d L; |
1929 |
Mat3x3d I; |
1930 |
RealType r2; |
1931 |
|
1932 |
vector<RealType> binMass(nBins_, 0.0); |
1933 |
vector<Vector3d> binP(nBins_, V3Zero); |
1934 |
vector<RealType> binOmega(nBins_, 0.0); |
1935 |
vector<Vector3d> binL(nBins_, V3Zero); |
1936 |
vector<Mat3x3d> binI(nBins_); |
1937 |
vector<RealType> binKE(nBins_, 0.0); |
1938 |
vector<int> binDOF(nBins_, 0); |
1939 |
vector<int> binCount(nBins_, 0); |
1940 |
|
1941 |
// alternative approach, track all molecules instead of only those |
1942 |
// selected for scaling/swapping: |
1943 |
/* |
1944 |
SimInfo::MoleculeIterator miter; |
1945 |
vector<StuntDouble*>::iterator iiter; |
1946 |
Molecule* mol; |
1947 |
StuntDouble* sd; |
1948 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1949 |
mol = info_->nextMolecule(miter)) |
1950 |
sd is essentially sd |
1951 |
for (sd = mol->beginIntegrableObject(iiter); |
1952 |
sd != NULL; |
1953 |
sd = mol->nextIntegrableObject(iiter)) |
1954 |
*/ |
1955 |
|
1956 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1957 |
sd = seleMan_.nextSelected(selei)) { |
1958 |
|
1959 |
Vector3d pos = sd->getPos(); |
1960 |
|
1961 |
// wrap the stuntdouble's position back into the box: |
1962 |
|
1963 |
if (usePeriodicBoundaryConditions_) { |
1964 |
currentSnap_->wrapVector(pos); |
1965 |
// which bin is this stuntdouble in? |
1966 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1967 |
// Shift molecules by half a box to have bins start at 0 |
1968 |
// The modulo operator is used to wrap the case when we are |
1969 |
// beyond the end of the bins back to the beginning. |
1970 |
binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1971 |
} else { |
1972 |
Vector3d rPos = pos - coordinateOrigin_; |
1973 |
binNo = int(rPos.length() / binWidth_); |
1974 |
} |
1975 |
|
1976 |
mass = sd->getMass(); |
1977 |
vel = sd->getVel(); |
1978 |
rPos = sd->getPos() - coordinateOrigin_; |
1979 |
KE = 0.5 * mass * vel.lengthSquare(); |
1980 |
L = mass * cross(rPos, vel); |
1981 |
I = outProduct(rPos, rPos) * mass; |
1982 |
r2 = rPos.lengthSquare(); |
1983 |
I(0, 0) += mass * r2; |
1984 |
I(1, 1) += mass * r2; |
1985 |
I(2, 2) += mass * r2; |
1986 |
|
1987 |
// Project the relative position onto a plane perpendicular to |
1988 |
// the angularMomentumFluxVector: |
1989 |
// Vector3d rProj = rPos - dot(rPos, u) * u; |
1990 |
// Project the velocity onto a plane perpendicular to the |
1991 |
// angularMomentumFluxVector: |
1992 |
// Vector3d vProj = vel - dot(vel, u) * u; |
1993 |
// Compute angular velocity vector (should be nearly parallel to |
1994 |
// angularMomentumFluxVector |
1995 |
// Vector3d aVel = cross(rProj, vProj); |
1996 |
|
1997 |
if (binNo >= 0 && binNo < nBins_) { |
1998 |
binCount[binNo]++; |
1999 |
binMass[binNo] += mass; |
2000 |
binP[binNo] += mass*vel; |
2001 |
binKE[binNo] += KE; |
2002 |
binI[binNo] += I; |
2003 |
binL[binNo] += L; |
2004 |
binDOF[binNo] += 3; |
2005 |
|
2006 |
if (sd->isDirectional()) { |
2007 |
Vector3d angMom = sd->getJ(); |
2008 |
Mat3x3d Ia = sd->getI(); |
2009 |
if (sd->isLinear()) { |
2010 |
int i = sd->linearAxis(); |
2011 |
int j = (i + 1) % 3; |
2012 |
int k = (i + 2) % 3; |
2013 |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) + |
2014 |
angMom[k] * angMom[k] / Ia(k, k)); |
2015 |
binDOF[binNo] += 2; |
2016 |
} else { |
2017 |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) + |
2018 |
angMom[1] * angMom[1] / Ia(1, 1) + |
2019 |
angMom[2] * angMom[2] / Ia(2, 2)); |
2020 |
binDOF[binNo] += 3; |
2021 |
} |
2022 |
} |
2023 |
} |
2024 |
} |
2025 |
|
2026 |
#ifdef IS_MPI |
2027 |
|
2028 |
for (int i = 0; i < nBins_; i++) { |
2029 |
|
2030 |
MPI_Allreduce(MPI_IN_PLACE, &binCount[i], |
2031 |
1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
2032 |
MPI_Allreduce(MPI_IN_PLACE, &binMass[i], |
2033 |
1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
2034 |
MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(), |
2035 |
3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
2036 |
MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(), |
2037 |
3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
2038 |
MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(), |
2039 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
2040 |
MPI_Allreduce(MPI_IN_PLACE, &binKE[i], |
2041 |
1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
2042 |
MPI_Allreduce(MPI_IN_PLACE, &binDOF[i], |
2043 |
1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
2044 |
//MPI_Allreduce(MPI_IN_PLACE, &binOmega[i], |
2045 |
// 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
2046 |
} |
2047 |
|
2048 |
#endif |
2049 |
|
2050 |
Vector3d omega; |
2051 |
RealType den; |
2052 |
RealType temp; |
2053 |
RealType z; |
2054 |
RealType r; |
2055 |
for (int i = 0; i < nBins_; i++) { |
2056 |
if (usePeriodicBoundaryConditions_) { |
2057 |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
2058 |
den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
2059 |
/ currentSnap_->getVolume() ; |
2060 |
} else { |
2061 |
r = (((RealType)i + 0.5) * binWidth_); |
2062 |
RealType rinner = (RealType)i * binWidth_; |
2063 |
RealType router = (RealType)(i+1) * binWidth_; |
2064 |
den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
2065 |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
2066 |
} |
2067 |
vel = binP[i] / binMass[i]; |
2068 |
|
2069 |
omega = binI[i].inverse() * binL[i]; |
2070 |
|
2071 |
// omega = binOmega[i] / binCount[i]; |
2072 |
|
2073 |
if (binCount[i] > 0) { |
2074 |
// only add values if there are things to add |
2075 |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
2076 |
PhysicalConstants::energyConvert); |
2077 |
|
2078 |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
2079 |
if(outputMask_[j]) { |
2080 |
switch(j) { |
2081 |
case Z: |
2082 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); |
2083 |
break; |
2084 |
case R: |
2085 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); |
2086 |
break; |
2087 |
case TEMPERATURE: |
2088 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); |
2089 |
break; |
2090 |
case VELOCITY: |
2091 |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
2092 |
break; |
2093 |
case ANGULARVELOCITY: |
2094 |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega); |
2095 |
break; |
2096 |
case DENSITY: |
2097 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); |
2098 |
break; |
2099 |
} |
2100 |
} |
2101 |
} |
2102 |
} |
2103 |
} |
2104 |
hasData_ = true; |
2105 |
} |
2106 |
|
2107 |
void RNEMD::getStarted() { |
2108 |
if (!doRNEMD_) return; |
2109 |
hasDividingArea_ = false; |
2110 |
collectData(); |
2111 |
writeOutputFile(); |
2112 |
} |
2113 |
|
2114 |
void RNEMD::parseOutputFileFormat(const std::string& format) { |
2115 |
if (!doRNEMD_) return; |
2116 |
StringTokenizer tokenizer(format, " ,;|\t\n\r"); |
2117 |
|
2118 |
while(tokenizer.hasMoreTokens()) { |
2119 |
std::string token(tokenizer.nextToken()); |
2120 |
toUpper(token); |
2121 |
OutputMapType::iterator i = outputMap_.find(token); |
2122 |
if (i != outputMap_.end()) { |
2123 |
outputMask_.set(i->second); |
2124 |
} else { |
2125 |
sprintf( painCave.errMsg, |
2126 |
"RNEMD::parseOutputFileFormat: %s is not a recognized\n" |
2127 |
"\toutputFileFormat keyword.\n", token.c_str() ); |
2128 |
painCave.isFatal = 0; |
2129 |
painCave.severity = OPENMD_ERROR; |
2130 |
simError(); |
2131 |
} |
2132 |
} |
2133 |
} |
2134 |
|
2135 |
void RNEMD::writeOutputFile() { |
2136 |
if (!doRNEMD_) return; |
2137 |
if (!hasData_) return; |
2138 |
|
2139 |
#ifdef IS_MPI |
2140 |
// If we're the root node, should we print out the results |
2141 |
int worldRank; |
2142 |
MPI_Comm_rank( MPI_COMM_WORLD, &worldRank); |
2143 |
|
2144 |
if (worldRank == 0) { |
2145 |
#endif |
2146 |
rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc ); |
2147 |
|
2148 |
if( !rnemdFile_ ){ |
2149 |
sprintf( painCave.errMsg, |
2150 |
"Could not open \"%s\" for RNEMD output.\n", |
2151 |
rnemdFileName_.c_str()); |
2152 |
painCave.isFatal = 1; |
2153 |
simError(); |
2154 |
} |
2155 |
|
2156 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
2157 |
|
2158 |
RealType time = currentSnap_->getTime(); |
2159 |
RealType avgArea; |
2160 |
areaAccumulator_->getAverage(avgArea); |
2161 |
|
2162 |
RealType Jz(0.0); |
2163 |
Vector3d JzP(V3Zero); |
2164 |
Vector3d JzL(V3Zero); |
2165 |
if (time >= info_->getSimParams()->getDt()) { |
2166 |
Jz = kineticExchange_ / (time * avgArea) |
2167 |
/ PhysicalConstants::energyConvert; |
2168 |
JzP = momentumExchange_ / (time * avgArea); |
2169 |
JzL = angularMomentumExchange_ / (time * avgArea); |
2170 |
} |
2171 |
|
2172 |
rnemdFile_ << "#######################################################\n"; |
2173 |
rnemdFile_ << "# RNEMD {\n"; |
2174 |
|
2175 |
map<string, RNEMDMethod>::iterator mi; |
2176 |
for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { |
2177 |
if ( (*mi).second == rnemdMethod_) |
2178 |
rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n"; |
2179 |
} |
2180 |
map<string, RNEMDFluxType>::iterator fi; |
2181 |
for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { |
2182 |
if ( (*fi).second == rnemdFluxType_) |
2183 |
rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n"; |
2184 |
} |
2185 |
|
2186 |
rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n"; |
2187 |
|
2188 |
rnemdFile_ << "# objectSelection = \"" |
2189 |
<< rnemdObjectSelection_ << "\";\n"; |
2190 |
rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n"; |
2191 |
rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n"; |
2192 |
rnemdFile_ << "# }\n"; |
2193 |
rnemdFile_ << "#######################################################\n"; |
2194 |
rnemdFile_ << "# RNEMD report:\n"; |
2195 |
rnemdFile_ << "# running time = " << time << " fs\n"; |
2196 |
rnemdFile_ << "# Target flux:\n"; |
2197 |
rnemdFile_ << "# kinetic = " |
2198 |
<< kineticFlux_ / PhysicalConstants::energyConvert |
2199 |
<< " (kcal/mol/A^2/fs)\n"; |
2200 |
rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2201 |
<< " (amu/A/fs^2)\n"; |
2202 |
rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_ |
2203 |
<< " (amu/A^2/fs^2)\n"; |
2204 |
rnemdFile_ << "# Target one-time exchanges:\n"; |
2205 |
rnemdFile_ << "# kinetic = " |
2206 |
<< kineticTarget_ / PhysicalConstants::energyConvert |
2207 |
<< " (kcal/mol)\n"; |
2208 |
rnemdFile_ << "# momentum = " << momentumTarget_ |
2209 |
<< " (amu*A/fs)\n"; |
2210 |
rnemdFile_ << "# angular momentum = " << angularMomentumTarget_ |
2211 |
<< " (amu*A^2/fs)\n"; |
2212 |
rnemdFile_ << "# Actual exchange totals:\n"; |
2213 |
rnemdFile_ << "# kinetic = " |
2214 |
<< kineticExchange_ / PhysicalConstants::energyConvert |
2215 |
<< " (kcal/mol)\n"; |
2216 |
rnemdFile_ << "# momentum = " << momentumExchange_ |
2217 |
<< " (amu*A/fs)\n"; |
2218 |
rnemdFile_ << "# angular momentum = " << angularMomentumExchange_ |
2219 |
<< " (amu*A^2/fs)\n"; |
2220 |
rnemdFile_ << "# Actual flux:\n"; |
2221 |
rnemdFile_ << "# kinetic = " << Jz |
2222 |
<< " (kcal/mol/A^2/fs)\n"; |
2223 |
rnemdFile_ << "# momentum = " << JzP |
2224 |
<< " (amu/A/fs^2)\n"; |
2225 |
rnemdFile_ << "# angular momentum = " << JzL |
2226 |
<< " (amu/A^2/fs^2)\n"; |
2227 |
rnemdFile_ << "# Exchange statistics:\n"; |
2228 |
rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2229 |
rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2230 |
if (rnemdMethod_ == rnemdNIVS) { |
2231 |
rnemdFile_ << "# NIVS root-check errors = " |
2232 |
<< failRootCount_ << "\n"; |
2233 |
} |
2234 |
rnemdFile_ << "#######################################################\n"; |
2235 |
|
2236 |
|
2237 |
|
2238 |
//write title |
2239 |
rnemdFile_ << "#"; |
2240 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2241 |
if (outputMask_[i]) { |
2242 |
rnemdFile_ << "\t" << data_[i].title << |
2243 |
"(" << data_[i].units << ")"; |
2244 |
// add some extra tabs for column alignment |
2245 |
if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t"; |
2246 |
} |
2247 |
} |
2248 |
rnemdFile_ << std::endl; |
2249 |
|
2250 |
rnemdFile_.precision(8); |
2251 |
|
2252 |
for (int j = 0; j < nBins_; j++) { |
2253 |
|
2254 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2255 |
if (outputMask_[i]) { |
2256 |
if (data_[i].dataType == "RealType") |
2257 |
writeReal(i,j); |
2258 |
else if (data_[i].dataType == "Vector3d") |
2259 |
writeVector(i,j); |
2260 |
else { |
2261 |
sprintf( painCave.errMsg, |
2262 |
"RNEMD found an unknown data type for: %s ", |
2263 |
data_[i].title.c_str()); |
2264 |
painCave.isFatal = 1; |
2265 |
simError(); |
2266 |
} |
2267 |
} |
2268 |
} |
2269 |
rnemdFile_ << std::endl; |
2270 |
|
2271 |
} |
2272 |
|
2273 |
rnemdFile_ << "#######################################################\n"; |
2274 |
rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n"; |
2275 |
rnemdFile_ << "#######################################################\n"; |
2276 |
|
2277 |
|
2278 |
for (int j = 0; j < nBins_; j++) { |
2279 |
rnemdFile_ << "#"; |
2280 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2281 |
if (outputMask_[i]) { |
2282 |
if (data_[i].dataType == "RealType") |
2283 |
writeRealErrorBars(i,j); |
2284 |
else if (data_[i].dataType == "Vector3d") |
2285 |
writeVectorErrorBars(i,j); |
2286 |
else { |
2287 |
sprintf( painCave.errMsg, |
2288 |
"RNEMD found an unknown data type for: %s ", |
2289 |
data_[i].title.c_str()); |
2290 |
painCave.isFatal = 1; |
2291 |
simError(); |
2292 |
} |
2293 |
} |
2294 |
} |
2295 |
rnemdFile_ << std::endl; |
2296 |
|
2297 |
} |
2298 |
|
2299 |
rnemdFile_.flush(); |
2300 |
rnemdFile_.close(); |
2301 |
|
2302 |
#ifdef IS_MPI |
2303 |
} |
2304 |
#endif |
2305 |
|
2306 |
} |
2307 |
|
2308 |
void RNEMD::writeReal(int index, unsigned int bin) { |
2309 |
if (!doRNEMD_) return; |
2310 |
assert(index >=0 && index < ENDINDEX); |
2311 |
assert(int(bin) < nBins_); |
2312 |
RealType s; |
2313 |
int count; |
2314 |
|
2315 |
count = data_[index].accumulator[bin]->count(); |
2316 |
if (count == 0) return; |
2317 |
|
2318 |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); |
2319 |
|
2320 |
if (! isinf(s) && ! isnan(s)) { |
2321 |
rnemdFile_ << "\t" << s; |
2322 |
} else{ |
2323 |
sprintf( painCave.errMsg, |
2324 |
"RNEMD detected a numerical error writing: %s for bin %u", |
2325 |
data_[index].title.c_str(), bin); |
2326 |
painCave.isFatal = 1; |
2327 |
simError(); |
2328 |
} |
2329 |
} |
2330 |
|
2331 |
void RNEMD::writeVector(int index, unsigned int bin) { |
2332 |
if (!doRNEMD_) return; |
2333 |
assert(index >=0 && index < ENDINDEX); |
2334 |
assert(int(bin) < nBins_); |
2335 |
Vector3d s; |
2336 |
int count; |
2337 |
|
2338 |
count = data_[index].accumulator[bin]->count(); |
2339 |
|
2340 |
if (count == 0) return; |
2341 |
|
2342 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
2343 |
if (isinf(s[0]) || isnan(s[0]) || |
2344 |
isinf(s[1]) || isnan(s[1]) || |
2345 |
isinf(s[2]) || isnan(s[2]) ) { |
2346 |
sprintf( painCave.errMsg, |
2347 |
"RNEMD detected a numerical error writing: %s for bin %u", |
2348 |
data_[index].title.c_str(), bin); |
2349 |
painCave.isFatal = 1; |
2350 |
simError(); |
2351 |
} else { |
2352 |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2353 |
} |
2354 |
} |
2355 |
|
2356 |
void RNEMD::writeRealErrorBars(int index, unsigned int bin) { |
2357 |
if (!doRNEMD_) return; |
2358 |
assert(index >=0 && index < ENDINDEX); |
2359 |
assert(int(bin) < nBins_); |
2360 |
RealType s; |
2361 |
int count; |
2362 |
|
2363 |
count = data_[index].accumulator[bin]->count(); |
2364 |
if (count == 0) return; |
2365 |
|
2366 |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s); |
2367 |
|
2368 |
if (! isinf(s) && ! isnan(s)) { |
2369 |
rnemdFile_ << "\t" << s; |
2370 |
} else{ |
2371 |
sprintf( painCave.errMsg, |
2372 |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2373 |
data_[index].title.c_str(), bin); |
2374 |
painCave.isFatal = 1; |
2375 |
simError(); |
2376 |
} |
2377 |
} |
2378 |
|
2379 |
void RNEMD::writeVectorErrorBars(int index, unsigned int bin) { |
2380 |
if (!doRNEMD_) return; |
2381 |
assert(index >=0 && index < ENDINDEX); |
2382 |
assert(int(bin) < nBins_); |
2383 |
Vector3d s; |
2384 |
int count; |
2385 |
|
2386 |
count = data_[index].accumulator[bin]->count(); |
2387 |
if (count == 0) return; |
2388 |
|
2389 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s); |
2390 |
if (isinf(s[0]) || isnan(s[0]) || |
2391 |
isinf(s[1]) || isnan(s[1]) || |
2392 |
isinf(s[2]) || isnan(s[2]) ) { |
2393 |
sprintf( painCave.errMsg, |
2394 |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2395 |
data_[index].title.c_str(), bin); |
2396 |
painCave.isFatal = 1; |
2397 |
simError(); |
2398 |
} else { |
2399 |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2400 |
} |
2401 |
} |
2402 |
} |
2403 |
|