ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #ifdef IS_MPI
42 + #include <mpi.h>
43 + #endif
44  
45   #include <cmath>
46 + #include <sstream>
47 + #include <string>
48 +
49   #include "rnemd/RNEMD.hpp"
50   #include "math/Vector3.hpp"
51   #include "math/Vector.hpp"
# Line 49 | Line 55
55   #include "primitives/StuntDouble.hpp"
56   #include "utils/PhysicalConstants.hpp"
57   #include "utils/Tuple.hpp"
58 < #ifdef IS_MPI
59 < #include <mpi.h>
58 > #include "brains/Thermo.hpp"
59 > #include "math/ConvexHull.hpp"
60 >
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
# Line 58 | Line 68 | namespace OpenMD {
68   using namespace std;
69   namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 <                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info),
72 >                                evaluator_(info_), seleMan_(info_),
73 >                                evaluatorA_(info_), seleManA_(info_),
74 >                                evaluatorB_(info_), seleManB_(info_),
75 >                                commonA_(info_), commonB_(info_),
76 >                                usePeriodicBoundaryConditions_(info_->getSimParams()->getUsePeriodicBoundaryConditions()),
77 >                                hasDividingArea_(false),
78 >                                hasData_(false) {
79  
80      trialCount_ = 0;
81      failTrialCount_ = 0;
82      failRootCount_ = 0;
83  
84 <    int seedValue;
69 <    Globals * simParams = info->getSimParams();
84 >    Globals* simParams = info->getSimParams();
85      RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
86  
87 +    doRNEMD_ = rnemdParams->getUseRNEMD();
88 +    if (!doRNEMD_) return;
89 +
90      stringToMethod_["Swap"]  = rnemdSwap;
91      stringToMethod_["NIVS"]  = rnemdNIVS;
92      stringToMethod_["VSS"]   = rnemdVSS;
# Line 77 | Line 95 | namespace OpenMD {
95      stringToFluxType_["Px"]  = rnemdPx;
96      stringToFluxType_["Py"]  = rnemdPy;
97      stringToFluxType_["Pz"]  = rnemdPz;
98 +    stringToFluxType_["Pvector"]  = rnemdPvector;
99 +    stringToFluxType_["Lx"]  = rnemdLx;
100 +    stringToFluxType_["Ly"]  = rnemdLy;
101 +    stringToFluxType_["Lz"]  = rnemdLz;
102 +    stringToFluxType_["Lvector"]  = rnemdLvector;
103      stringToFluxType_["KE+Px"]  = rnemdKePx;
104      stringToFluxType_["KE+Py"]  = rnemdKePy;
105      stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
106 +    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
107 +    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
108 +    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
109 +    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
110  
111      runTime_ = simParams->getRunTime();
112      statusTime_ = simParams->getStatusTime();
113  
87    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88    evaluator_.loadScriptString(rnemdObjectSelection_);
89    seleMan_.setSelectionSet(evaluator_.evaluate());
90
114      const string methStr = rnemdParams->getMethod();
115      bool hasFluxType = rnemdParams->haveFluxType();
116  
117 +    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
118 +
119      string fluxStr;
120      if (hasFluxType) {
121        fluxStr = rnemdParams->getFluxType();
# Line 98 | Line 123 | namespace OpenMD {
123        sprintf(painCave.errMsg,
124                "RNEMD: No fluxType was set in the md file.  This parameter,\n"
125                "\twhich must be one of the following values:\n"
126 <              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
127 <              "\tuse RNEMD\n");
126 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
127 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
128 >              "\tmust be set to use RNEMD\n");
129        painCave.isFatal = 1;
130        painCave.severity = OPENMD_ERROR;
131        simError();
# Line 108 | Line 134 | namespace OpenMD {
134      bool hasKineticFlux = rnemdParams->haveKineticFlux();
135      bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
136      bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
137 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
138 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
139 +    hasSelectionA_ = rnemdParams->haveSelectionA();
140 +    hasSelectionB_ = rnemdParams->haveSelectionB();
141      bool hasSlabWidth = rnemdParams->haveSlabWidth();
142      bool hasSlabACenter = rnemdParams->haveSlabACenter();
143      bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
144 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
145 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
146 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
147      bool hasOutputFileName = rnemdParams->haveOutputFileName();
148      bool hasOutputFields = rnemdParams->haveOutputFields();
149      
# Line 194 | Line 227 | namespace OpenMD {
227        case rnemdPy:
228        case rnemdPz:
229          hasCorrectFlux = hasMomentumFlux;
230 +        break;
231 +      case rnemdLx:
232 +      case rnemdLy:
233 +      case rnemdLz:
234 +        hasCorrectFlux = hasAngularMomentumFlux;
235          break;
236        case rnemdPvector:
237          hasCorrectFlux = hasMomentumFluxVector;
238 +        break;
239 +      case rnemdLvector:
240 +        hasCorrectFlux = hasAngularMomentumFluxVector;
241 +        break;
242        case rnemdKePx:
243        case rnemdKePy:
244          hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
245          break;
246 +      case rnemdKeLx:
247 +      case rnemdKeLy:
248 +      case rnemdKeLz:
249 +        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
250 +        break;
251        case rnemdKePvector:
252          hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
253          break;
254 +      case rnemdKeLvector:
255 +        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
256 +        break;
257        default:
258          methodFluxMismatch = true;
259          break;
# Line 224 | Line 274 | namespace OpenMD {
274      }
275      if (!hasCorrectFlux) {
276        sprintf(painCave.errMsg,
277 <              "RNEMD: The current method,\n"
228 <              "\t%s, and flux type %s\n"
277 >              "RNEMD: The current method, %s, and flux type, %s,\n"
278                "\tdid not have the correct flux value specified. Options\n"
279 <              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
279 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
280 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
281                methStr.c_str(), fluxStr.c_str());
282        painCave.isFatal = 1;
283        painCave.severity = OPENMD_ERROR;
# Line 235 | Line 285 | namespace OpenMD {
285      }
286  
287      if (hasKineticFlux) {
288 <      kineticFlux_ = rnemdParams->getKineticFlux();
288 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
289 >      // into  amu / fs^3:
290 >      kineticFlux_ = rnemdParams->getKineticFlux()
291 >        * PhysicalConstants::energyConvert;
292      } else {
293        kineticFlux_ = 0.0;
294      }
295      if (hasMomentumFluxVector) {
296 <      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
296 >      std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
297 >      if (mf.size() != 3) {
298 >          sprintf(painCave.errMsg,
299 >                  "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
300 >                  "\tthere should be 3 parameters, but %lu were specified.\n",
301 >                  mf.size());
302 >          painCave.isFatal = 1;
303 >          simError();      
304 >      }
305 >      momentumFluxVector_.x() = mf[0];
306 >      momentumFluxVector_.y() = mf[1];
307 >      momentumFluxVector_.z() = mf[2];
308      } else {
309        momentumFluxVector_ = V3Zero;
310        if (hasMomentumFlux) {
# Line 264 | Line 328 | namespace OpenMD {
328          default:
329            break;
330          }
331 <      }    
331 >      }
332 >    }
333 >    if (hasAngularMomentumFluxVector) {
334 >      std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
335 >      if (amf.size() != 3) {
336 >        sprintf(painCave.errMsg,
337 >                "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
338 >                "\tthere should be 3 parameters, but %lu were specified.\n",
339 >                amf.size());
340 >        painCave.isFatal = 1;
341 >        simError();      
342 >      }
343 >      angularMomentumFluxVector_.x() = amf[0];
344 >      angularMomentumFluxVector_.y() = amf[1];
345 >      angularMomentumFluxVector_.z() = amf[2];
346 >    } else {
347 >      angularMomentumFluxVector_ = V3Zero;
348 >      if (hasAngularMomentumFlux) {
349 >        RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
350 >        switch (rnemdFluxType_) {
351 >        case rnemdLx:
352 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
353 >          break;
354 >        case rnemdLy:
355 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
356 >          break;
357 >        case rnemdLz:
358 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
359 >          break;
360 >        case rnemdKeLx:
361 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
362 >          break;
363 >        case rnemdKeLy:
364 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
365 >          break;
366 >        case rnemdKeLz:
367 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
368 >          break;
369 >        default:
370 >          break;
371 >        }
372 >      }        
373      }
374  
375 +    if (hasCoordinateOrigin) {
376 +      std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
377 +      if (co.size() != 3) {
378 +        sprintf(painCave.errMsg,
379 +                "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
380 +                "\tthere should be 3 parameters, but %lu were specified.\n",
381 +                co.size());
382 +        painCave.isFatal = 1;
383 +        simError();      
384 +      }
385 +      coordinateOrigin_.x() = co[0];
386 +      coordinateOrigin_.y() = co[1];
387 +      coordinateOrigin_.z() = co[2];
388 +    } else {
389 +      coordinateOrigin_ = V3Zero;
390 +    }
391 +    
392      // do some sanity checking
393 <
394 <    int selectionCount = seleMan_.getSelectionCount();
393 >    
394 >    int selectionCount = seleMan_.getSelectionCount();    
395      int nIntegrable = info->getNGlobalIntegrableObjects();
274
396      if (selectionCount > nIntegrable) {
397        sprintf(painCave.errMsg,
398                "RNEMD: The current objectSelection,\n"
# Line 287 | Line 408 | namespace OpenMD {
408        painCave.severity = OPENMD_WARNING;
409        simError();
410      }
411 <
411 >    
412 >    areaAccumulator_ = new Accumulator();
413 >    
414      nBins_ = rnemdParams->getOutputBins();
415 <
415 >    binWidth_ = rnemdParams->getOutputBinWidth();
416 >    
417      data_.resize(RNEMD::ENDINDEX);
418      OutputData z;
419      z.units =  "Angstroms";
420      z.title =  "Z";
421      z.dataType = "RealType";
422      z.accumulator.reserve(nBins_);
423 <    for (unsigned int i = 0; i < nBins_; i++)
423 >    for (int i = 0; i < nBins_; i++)
424        z.accumulator.push_back( new Accumulator() );
425      data_[Z] = z;
426      outputMap_["Z"] =  Z;
427 <
427 >    
428 >    OutputData r;
429 >    r.units =  "Angstroms";
430 >    r.title =  "R";
431 >    r.dataType = "RealType";
432 >    r.accumulator.reserve(nBins_);
433 >    for (int i = 0; i < nBins_; i++)
434 >      r.accumulator.push_back( new Accumulator() );
435 >    data_[R] = r;
436 >    outputMap_["R"] =  R;
437 >    
438      OutputData temperature;
439      temperature.units =  "K";
440      temperature.title =  "Temperature";
441      temperature.dataType = "RealType";
442      temperature.accumulator.reserve(nBins_);
443 <    for (unsigned int i = 0; i < nBins_; i++)
443 >    for (int i = 0; i < nBins_; i++)
444        temperature.accumulator.push_back( new Accumulator() );
445      data_[TEMPERATURE] = temperature;
446      outputMap_["TEMPERATURE"] =  TEMPERATURE;
447 <
447 >    
448      OutputData velocity;
449 <    velocity.units = "amu/fs";
449 >    velocity.units = "angstroms/fs";
450      velocity.title =  "Velocity";  
451      velocity.dataType = "Vector3d";
452      velocity.accumulator.reserve(nBins_);
453 <    for (unsigned int i = 0; i < nBins_; i++)
453 >    for (int i = 0; i < nBins_; i++)
454        velocity.accumulator.push_back( new VectorAccumulator() );
455      data_[VELOCITY] = velocity;
456      outputMap_["VELOCITY"] = VELOCITY;
457 <
457 >    
458 >    OutputData angularVelocity;
459 >    angularVelocity.units = "angstroms^2/fs";
460 >    angularVelocity.title =  "AngularVelocity";  
461 >    angularVelocity.dataType = "Vector3d";
462 >    angularVelocity.accumulator.reserve(nBins_);
463 >    for (int i = 0; i < nBins_; i++)
464 >      angularVelocity.accumulator.push_back( new VectorAccumulator() );
465 >    data_[ANGULARVELOCITY] = angularVelocity;
466 >    outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
467 >    
468      OutputData density;
469      density.units =  "g cm^-3";
470      density.title =  "Density";
471      density.dataType = "RealType";
472      density.accumulator.reserve(nBins_);
473 <    for (unsigned int i = 0; i < nBins_; i++)
473 >    for (int i = 0; i < nBins_; i++)
474        density.accumulator.push_back( new Accumulator() );
475      data_[DENSITY] = density;
476      outputMap_["DENSITY"] =  DENSITY;
477 <
477 >    
478      if (hasOutputFields) {
479        parseOutputFileFormat(rnemdParams->getOutputFields());
480      } else {
481 <      outputMask_.set(Z);
481 >      if (usePeriodicBoundaryConditions_)
482 >        outputMask_.set(Z);
483 >      else
484 >        outputMask_.set(R);
485        switch (rnemdFluxType_) {
486        case rnemdKE:
487        case rnemdRotKE:
# Line 350 | Line 497 | namespace OpenMD {
497          outputMask_.set(VELOCITY);
498          outputMask_.set(DENSITY);
499          break;
500 +      case rnemdLx:
501 +      case rnemdLy:
502 +      case rnemdLz:
503 +      case rnemdLvector:
504 +        outputMask_.set(ANGULARVELOCITY);
505 +        break;
506 +      case rnemdKeLx:
507 +      case rnemdKeLy:
508 +      case rnemdKeLz:
509 +      case rnemdKeLvector:
510 +        outputMask_.set(TEMPERATURE);
511 +        outputMask_.set(ANGULARVELOCITY);
512 +        break;
513        case rnemdKePx:
514        case rnemdKePy:
515          outputMask_.set(TEMPERATURE);
# Line 364 | Line 524 | namespace OpenMD {
524          break;
525        }
526      }
527 <      
527 >    
528      if (hasOutputFileName) {
529        rnemdFileName_ = rnemdParams->getOutputFileName();
530      } else {
531        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
532      }          
533 <
533 >    
534      exchangeTime_ = rnemdParams->getExchangeTime();
535 <
535 >    
536      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
377    Mat3x3d hmat = currentSnap_->getHmat();
378  
379    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
380    // Lx, Ly = box dimensions in x & y
381    // dt = exchange time interval
382    // flux = target flux
383
384    kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1);
385    momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1);
386
537      // total exchange sums are zeroed out at the beginning:
538 <
538 >    
539      kineticExchange_ = 0.0;
540      momentumExchange_ = V3Zero;
541 <
392 <    if (hasSlabWidth)
393 <      slabWidth_ = rnemdParams->getSlabWidth();
394 <    else
395 <      slabWidth_ = hmat(2,2) / 10.0;
396 <  
397 <    if (hasSlabACenter)
398 <      slabACenter_ = rnemdParams->getSlabACenter();
399 <    else
400 <      slabACenter_ = 0.0;
541 >    angularMomentumExchange_ = V3Zero;
542      
543 <    if (hasSlabBCenter)
544 <      slabBCenter_ = rnemdParams->getSlabBCenter();
404 <    else
405 <      slabBCenter_ = hmat(2,2) / 2.0;
543 >    std::ostringstream selectionAstream;
544 >    std::ostringstream selectionBstream;
545      
546 +    if (hasSelectionA_) {
547 +      selectionA_ = rnemdParams->getSelectionA();
548 +    } else {
549 +      if (usePeriodicBoundaryConditions_) {    
550 +        Mat3x3d hmat = currentSnap_->getHmat();
551 +        
552 +        if (hasSlabWidth)
553 +          slabWidth_ = rnemdParams->getSlabWidth();
554 +        else
555 +          slabWidth_ = hmat(2,2) / 10.0;
556 +        
557 +        if (hasSlabACenter)
558 +          slabACenter_ = rnemdParams->getSlabACenter();
559 +        else
560 +          slabACenter_ = 0.0;
561 +        
562 +        selectionAstream << "select wrappedz > "
563 +                         << slabACenter_ - 0.5*slabWidth_
564 +                         <<  " && wrappedz < "
565 +                         << slabACenter_ + 0.5*slabWidth_;
566 +        selectionA_ = selectionAstream.str();
567 +      } else {
568 +        if (hasSphereARadius)
569 +          sphereARadius_ = rnemdParams->getSphereARadius();
570 +        else {
571 +          // use an initial guess to the size of the inner slab to be 1/10 the
572 +          // radius of an approximately spherical hull:
573 +          Thermo thermo(info);
574 +          RealType hVol = thermo.getHullVolume();
575 +          sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
576 +        }
577 +        selectionAstream << "select r < " << sphereARadius_;
578 +        selectionA_ = selectionAstream.str();
579 +      }
580 +    }
581 +    
582 +    if (hasSelectionB_) {
583 +      selectionB_ = rnemdParams->getSelectionB();
584 +      
585 +    } else {
586 +      if (usePeriodicBoundaryConditions_) {    
587 +        Mat3x3d hmat = currentSnap_->getHmat();
588 +        
589 +        if (hasSlabWidth)
590 +          slabWidth_ = rnemdParams->getSlabWidth();
591 +        else
592 +          slabWidth_ = hmat(2,2) / 10.0;
593 +        
594 +        if (hasSlabBCenter)
595 +          slabBCenter_ = rnemdParams->getSlabBCenter();
596 +        else
597 +          slabBCenter_ = hmat(2,2) / 2.0;
598 +        
599 +        selectionBstream << "select wrappedz > "
600 +                         << slabBCenter_ - 0.5*slabWidth_
601 +                         <<  " && wrappedz < "
602 +                         << slabBCenter_ + 0.5*slabWidth_;
603 +        selectionB_ = selectionBstream.str();
604 +      } else {
605 +        if (hasSphereBRadius_) {
606 +          sphereBRadius_ = rnemdParams->getSphereBRadius();
607 +          selectionBstream << "select r > " << sphereBRadius_;
608 +          selectionB_ = selectionBstream.str();
609 +        } else {
610 +          selectionB_ = "select hull";
611 +          BisHull_ = true;
612 +          hasSelectionB_ = true;
613 +        }
614 +      }
615 +    }
616 +  
617 +  
618 +    // object evaluator:
619 +    evaluator_.loadScriptString(rnemdObjectSelection_);
620 +    seleMan_.setSelectionSet(evaluator_.evaluate());
621 +    evaluatorA_.loadScriptString(selectionA_);
622 +    evaluatorB_.loadScriptString(selectionB_);
623 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
624 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
625 +    commonA_ = seleManA_ & seleMan_;
626 +    commonB_ = seleManB_ & seleMan_;  
627    }
628 <  
409 <  RNEMD::~RNEMD() {
628 >  
629      
630 +  RNEMD::~RNEMD() {
631 +    if (!doRNEMD_) return;
632   #ifdef IS_MPI
633      if (worldRank == 0) {
634   #endif
# Line 419 | Line 640 | namespace OpenMD {
640   #ifdef IS_MPI
641      }
642   #endif
643 +
644 +    // delete all of the objects we created:
645 +    delete areaAccumulator_;    
646 +    data_.clear();
647    }
648    
649 <  bool RNEMD::inSlabA(Vector3d pos) {
650 <    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
651 <  }
652 <  bool RNEMD::inSlabB(Vector3d pos) {
428 <    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
429 <  }
649 >  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
650 >    if (!doRNEMD_) return;
651 >    int selei;
652 >    int selej;
653  
431  void RNEMD::doSwap() {
432
654      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
655      Mat3x3d hmat = currentSnap_->getHmat();
656  
436    seleMan_.setSelectionSet(evaluator_.evaluate());
437
438    int selei;
657      StuntDouble* sd;
440    int idx;
658  
659 <    RealType min_val;
660 <    bool min_found = false;  
661 <    StuntDouble* min_sd;
659 >    RealType min_val(0.0);
660 >    int min_found = 0;  
661 >    StuntDouble* min_sd = NULL;
662  
663 <    RealType max_val;
664 <    bool max_found = false;
665 <    StuntDouble* max_sd;
663 >    RealType max_val(0.0);
664 >    int max_found = 0;
665 >    StuntDouble* max_sd = NULL;
666  
667 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
668 <         sd = seleMan_.nextSelected(selei)) {
667 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
668 >         sd = seleManA_.nextSelected(selei)) {
669  
453      idx = sd->getLocalIndex();
454
670        Vector3d pos = sd->getPos();
671 <
671 >      
672        // wrap the stuntdouble's position back into the box:
673 <
673 >      
674        if (usePeriodicBoundaryConditions_)
675          currentSnap_->wrapVector(pos);
676 <      bool inA = inSlabA(pos);
677 <      bool inB = inSlabB(pos);
678 <
679 <      if (inA || inB) {
676 >      
677 >      RealType mass = sd->getMass();
678 >      Vector3d vel = sd->getVel();
679 >      RealType value(0.0);
680 >      
681 >      switch(rnemdFluxType_) {
682 >      case rnemdKE :
683          
684 <        RealType mass = sd->getMass();
685 <        Vector3d vel = sd->getVel();
686 <        RealType value;
687 <        
688 <        switch(rnemdFluxType_) {
689 <        case rnemdKE :
690 <          
691 <          value = mass * vel.lengthSquare();
692 <          
693 <          if (sd->isDirectional()) {
694 <            Vector3d angMom = sd->getJ();
695 <            Mat3x3d I = sd->getI();
696 <            
697 <            if (sd->isLinear()) {
698 <              int i = sd->linearAxis();
699 <              int j = (i + 1) % 3;
700 <              int k = (i + 2) % 3;
701 <              value += angMom[j] * angMom[j] / I(j, j) +
702 <                angMom[k] * angMom[k] / I(k, k);
703 <            } else {                        
704 <              value += angMom[0]*angMom[0]/I(0, 0)
705 <                + angMom[1]*angMom[1]/I(1, 1)
706 <                + angMom[2]*angMom[2]/I(2, 2);
707 <            }
708 <          } //angular momenta exchange enabled
709 <          //energyConvert temporarily disabled
710 <          //make kineticExchange_ comparable between swap & scale
711 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
712 <          value *= 0.5;
713 <          break;
714 <        case rnemdPx :
715 <          value = mass * vel[0];
716 <          break;
717 <        case rnemdPy :
718 <          value = mass * vel[1];
719 <          break;
720 <        case rnemdPz :
721 <          value = mass * vel[2];
722 <          break;
723 <        default :
506 <          break;
684 >        value = mass * vel.lengthSquare();
685 >        
686 >        if (sd->isDirectional()) {
687 >          Vector3d angMom = sd->getJ();
688 >          Mat3x3d I = sd->getI();
689 >          
690 >          if (sd->isLinear()) {
691 >            int i = sd->linearAxis();
692 >            int j = (i + 1) % 3;
693 >            int k = (i + 2) % 3;
694 >            value += angMom[j] * angMom[j] / I(j, j) +
695 >              angMom[k] * angMom[k] / I(k, k);
696 >          } else {                        
697 >            value += angMom[0]*angMom[0]/I(0, 0)
698 >              + angMom[1]*angMom[1]/I(1, 1)
699 >              + angMom[2]*angMom[2]/I(2, 2);
700 >          }
701 >        } //angular momenta exchange enabled
702 >        value *= 0.5;
703 >        break;
704 >      case rnemdPx :
705 >        value = mass * vel[0];
706 >        break;
707 >      case rnemdPy :
708 >        value = mass * vel[1];
709 >        break;
710 >      case rnemdPz :
711 >        value = mass * vel[2];
712 >        break;
713 >      default :
714 >        break;
715 >      }
716 >      if (!max_found) {
717 >        max_val = value;
718 >        max_sd = sd;
719 >        max_found = 1;
720 >      } else {
721 >        if (max_val < value) {
722 >          max_val = value;
723 >          max_sd = sd;
724          }
725 +      }  
726 +    }
727          
728 <        if (inA == 0) {
729 <          if (!min_found) {
730 <            min_val = value;
731 <            min_sd = sd;
732 <            min_found = true;
733 <          } else {
734 <            if (min_val > value) {
735 <              min_val = value;
736 <              min_sd = sd;
737 <            }
738 <          }
739 <        } else {
740 <          if (!max_found) {
741 <            max_val = value;
742 <            max_sd = sd;
743 <            max_found = true;
744 <          } else {
745 <            if (max_val < value) {
746 <              max_val = value;
747 <              max_sd = sd;
748 <            }
749 <          }      
750 <        }
728 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
729 >         sd = seleManB_.nextSelected(selej)) {
730 >
731 >      Vector3d pos = sd->getPos();
732 >      
733 >      // wrap the stuntdouble's position back into the box:
734 >      
735 >      if (usePeriodicBoundaryConditions_)
736 >        currentSnap_->wrapVector(pos);
737 >      
738 >      RealType mass = sd->getMass();
739 >      Vector3d vel = sd->getVel();
740 >      RealType value(0.0);
741 >      
742 >      switch(rnemdFluxType_) {
743 >      case rnemdKE :
744 >        
745 >        value = mass * vel.lengthSquare();
746 >        
747 >        if (sd->isDirectional()) {
748 >          Vector3d angMom = sd->getJ();
749 >          Mat3x3d I = sd->getI();
750 >          
751 >          if (sd->isLinear()) {
752 >            int i = sd->linearAxis();
753 >            int j = (i + 1) % 3;
754 >            int k = (i + 2) % 3;
755 >            value += angMom[j] * angMom[j] / I(j, j) +
756 >              angMom[k] * angMom[k] / I(k, k);
757 >          } else {                        
758 >            value += angMom[0]*angMom[0]/I(0, 0)
759 >              + angMom[1]*angMom[1]/I(1, 1)
760 >              + angMom[2]*angMom[2]/I(2, 2);
761 >          }
762 >        } //angular momenta exchange enabled
763 >        value *= 0.5;
764 >        break;
765 >      case rnemdPx :
766 >        value = mass * vel[0];
767 >        break;
768 >      case rnemdPy :
769 >        value = mass * vel[1];
770 >        break;
771 >      case rnemdPz :
772 >        value = mass * vel[2];
773 >        break;
774 >      default :
775 >        break;
776        }
777 +      
778 +      if (!min_found) {
779 +        min_val = value;
780 +        min_sd = sd;
781 +        min_found = 1;
782 +      } else {
783 +        if (min_val > value) {
784 +          min_val = value;
785 +          min_sd = sd;
786 +        }
787 +      }
788      }
789      
790 < #ifdef IS_MPI
791 <    int nProc, worldRank;
792 <    
793 <    nProc = MPI::COMM_WORLD.Get_size();
794 <    worldRank = MPI::COMM_WORLD.Get_rank();
790 > #ifdef IS_MPI    
791 >    int worldRank;
792 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
793 >        
794 >    int my_min_found = min_found;
795 >    int my_max_found = max_found;
796  
541    bool my_min_found = min_found;
542    bool my_max_found = max_found;
543
797      // Even if we didn't find a minimum, did someone else?
798 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
798 >    MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
799 >                  MPI_COMM_WORLD);
800      // Even if we didn't find a maximum, did someone else?
801 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
801 >    MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
802 >                  MPI_COMM_WORLD);
803   #endif
804  
805      if (max_found && min_found) {
# Line 563 | Line 818 | namespace OpenMD {
818        min_vals.rank = worldRank;    
819        
820        // Who had the minimum?
821 <      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
822 <                                1, MPI::REALTYPE_INT, MPI::MINLOC);
821 >      MPI_Allreduce(&min_vals, &min_vals,
822 >                    1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
823        min_val = min_vals.val;
824        
825        if (my_max_found) {
# Line 575 | Line 830 | namespace OpenMD {
830        max_vals.rank = worldRank;    
831        
832        // Who had the maximum?
833 <      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
834 <                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
833 >      MPI_Allreduce(&max_vals, &max_vals,
834 >                    1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
835        max_val = max_vals.val;
836   #endif
837        
# Line 636 | Line 891 | namespace OpenMD {
891            
892            Vector3d min_vel;
893            Vector3d max_vel = max_sd->getVel();
894 <          MPI::Status status;
894 >          MPI_Status status;
895  
896            // point-to-point swap of the velocity vector
897 <          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
898 <                                   min_vals.rank, 0,
899 <                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
900 <                                   min_vals.rank, 0, status);
897 >          MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
898 >                       min_vals.rank, 0,
899 >                       min_vel.getArrayPointer(), 3, MPI_REALTYPE,
900 >                       min_vals.rank, 0, MPI_COMM_WORLD, &status);
901            
902            switch(rnemdFluxType_) {
903            case rnemdKE :
# Line 653 | Line 908 | namespace OpenMD {
908                Vector3d max_angMom = max_sd->getJ();
909                
910                // point-to-point swap of the angular momentum vector
911 <              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
912 <                                       MPI::REALTYPE, min_vals.rank, 1,
913 <                                       min_angMom.getArrayPointer(), 3,
914 <                                       MPI::REALTYPE, min_vals.rank, 1,
915 <                                       status);
911 >              MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
912 >                           MPI_REALTYPE, min_vals.rank, 1,
913 >                           min_angMom.getArrayPointer(), 3,
914 >                           MPI_REALTYPE, min_vals.rank, 1,
915 >                           MPI_COMM_WORLD, &status);
916                
917                max_sd->setJ(min_angMom);
918              }
# Line 682 | Line 937 | namespace OpenMD {
937            
938            Vector3d max_vel;
939            Vector3d min_vel = min_sd->getVel();
940 <          MPI::Status status;
940 >          MPI_Status status;
941            
942            // point-to-point swap of the velocity vector
943 <          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
944 <                                   max_vals.rank, 0,
945 <                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
946 <                                   max_vals.rank, 0, status);
943 >          MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
944 >                       max_vals.rank, 0,
945 >                       max_vel.getArrayPointer(), 3, MPI_REALTYPE,
946 >                       max_vals.rank, 0, MPI_COMM_WORLD, &status);
947            
948            switch(rnemdFluxType_) {
949            case rnemdKE :
# Line 699 | Line 954 | namespace OpenMD {
954                Vector3d max_angMom;
955                
956                // point-to-point swap of the angular momentum vector
957 <              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
958 <                                       MPI::REALTYPE, max_vals.rank, 1,
959 <                                       max_angMom.getArrayPointer(), 3,
960 <                                       MPI::REALTYPE, max_vals.rank, 1,
961 <                                       status);
957 >              MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
958 >                           MPI_REALTYPE, max_vals.rank, 1,
959 >                           max_angMom.getArrayPointer(), 3,
960 >                           MPI_REALTYPE, max_vals.rank, 1,
961 >                           MPI_COMM_WORLD, &status);
962                
963                min_sd->setJ(max_angMom);
964              }
# Line 728 | Line 983 | namespace OpenMD {
983          
984          switch(rnemdFluxType_) {
985          case rnemdKE:
731          cerr << "KE\n";
986            kineticExchange_ += max_val - min_val;
987            break;
988          case rnemdPx:
# Line 741 | Line 995 | namespace OpenMD {
995            momentumExchange_.z() += max_val - min_val;
996            break;
997          default:
744          cerr << "default\n";
998            break;
999          }
1000        } else {        
# Line 763 | Line 1016 | namespace OpenMD {
1016      }    
1017    }
1018    
1019 <  void RNEMD::doNIVS() {
1019 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1020 >    if (!doRNEMD_) return;
1021 >    int selei;
1022 >    int selej;
1023  
1024      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1025      Mat3x3d hmat = currentSnap_->getHmat();
1026  
771    seleMan_.setSelectionSet(evaluator_.evaluate());
772
773    int selei;
1027      StuntDouble* sd;
775    int idx;
1028  
1029      vector<StuntDouble*> hotBin, coldBin;
1030  
# Line 791 | Line 1043 | namespace OpenMD {
1043      RealType Kcz = 0.0;
1044      RealType Kcw = 0.0;
1045  
1046 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1047 <         sd = seleMan_.nextSelected(selei)) {
1046 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1047 >         sd = smanA.nextSelected(selei)) {
1048  
797      idx = sd->getLocalIndex();
798
1049        Vector3d pos = sd->getPos();
1050 <
1050 >      
1051        // wrap the stuntdouble's position back into the box:
1052 <
1052 >      
1053        if (usePeriodicBoundaryConditions_)
1054          currentSnap_->wrapVector(pos);
1055 <
1056 <      // which bin is this stuntdouble in?
1057 <      bool inA = inSlabA(pos);
1058 <      bool inB = inSlabB(pos);
1055 >      
1056 >      
1057 >      RealType mass = sd->getMass();
1058 >      Vector3d vel = sd->getVel();
1059 >      
1060 >      hotBin.push_back(sd);
1061 >      Phx += mass * vel.x();
1062 >      Phy += mass * vel.y();
1063 >      Phz += mass * vel.z();
1064 >      Khx += mass * vel.x() * vel.x();
1065 >      Khy += mass * vel.y() * vel.y();
1066 >      Khz += mass * vel.z() * vel.z();
1067 >      if (sd->isDirectional()) {
1068 >        Vector3d angMom = sd->getJ();
1069 >        Mat3x3d I = sd->getI();
1070 >        if (sd->isLinear()) {
1071 >          int i = sd->linearAxis();
1072 >          int j = (i + 1) % 3;
1073 >          int k = (i + 2) % 3;
1074 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1075 >            angMom[k] * angMom[k] / I(k, k);
1076 >        } else {
1077 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1078 >            + angMom[1]*angMom[1]/I(1, 1)
1079 >            + angMom[2]*angMom[2]/I(2, 2);
1080 >        }
1081 >      }
1082 >    }
1083 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1084 >         sd = smanB.nextSelected(selej)) {
1085 >      Vector3d pos = sd->getPos();
1086 >      
1087 >      // wrap the stuntdouble's position back into the box:
1088 >      
1089 >      if (usePeriodicBoundaryConditions_)
1090 >        currentSnap_->wrapVector(pos);
1091 >            
1092 >      RealType mass = sd->getMass();
1093 >      Vector3d vel = sd->getVel();
1094  
1095 <      if (inA || inB) {
1096 <              
1097 <        RealType mass = sd->getMass();
1098 <        Vector3d vel = sd->getVel();
1099 <      
1100 <        if (inA) {
1101 <          hotBin.push_back(sd);
1102 <          Phx += mass * vel.x();
1103 <          Phy += mass * vel.y();
1104 <          Phz += mass * vel.z();
1105 <          Khx += mass * vel.x() * vel.x();
1106 <          Khy += mass * vel.y() * vel.y();
1107 <          Khz += mass * vel.z() * vel.z();
1108 <          if (sd->isDirectional()) {
1109 <            Vector3d angMom = sd->getJ();
1110 <            Mat3x3d I = sd->getI();
1111 <            if (sd->isLinear()) {
1112 <              int i = sd->linearAxis();
1113 <              int j = (i + 1) % 3;
1114 <              int k = (i + 2) % 3;
1115 <              Khw += angMom[j] * angMom[j] / I(j, j) +
831 <                angMom[k] * angMom[k] / I(k, k);
832 <            } else {
833 <              Khw += angMom[0]*angMom[0]/I(0, 0)
834 <                + angMom[1]*angMom[1]/I(1, 1)
835 <                + angMom[2]*angMom[2]/I(2, 2);
836 <            }
837 <          }
838 <        } else {
839 <          coldBin.push_back(sd);
840 <          Pcx += mass * vel.x();
841 <          Pcy += mass * vel.y();
842 <          Pcz += mass * vel.z();
843 <          Kcx += mass * vel.x() * vel.x();
844 <          Kcy += mass * vel.y() * vel.y();
845 <          Kcz += mass * vel.z() * vel.z();
846 <          if (sd->isDirectional()) {
847 <            Vector3d angMom = sd->getJ();
848 <            Mat3x3d I = sd->getI();
849 <            if (sd->isLinear()) {
850 <              int i = sd->linearAxis();
851 <              int j = (i + 1) % 3;
852 <              int k = (i + 2) % 3;
853 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
854 <                angMom[k] * angMom[k] / I(k, k);
855 <            } else {
856 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
857 <                + angMom[1]*angMom[1]/I(1, 1)
858 <                + angMom[2]*angMom[2]/I(2, 2);
859 <            }
860 <          }
861 <        }
1095 >      coldBin.push_back(sd);
1096 >      Pcx += mass * vel.x();
1097 >      Pcy += mass * vel.y();
1098 >      Pcz += mass * vel.z();
1099 >      Kcx += mass * vel.x() * vel.x();
1100 >      Kcy += mass * vel.y() * vel.y();
1101 >      Kcz += mass * vel.z() * vel.z();
1102 >      if (sd->isDirectional()) {
1103 >        Vector3d angMom = sd->getJ();
1104 >        Mat3x3d I = sd->getI();
1105 >        if (sd->isLinear()) {
1106 >          int i = sd->linearAxis();
1107 >          int j = (i + 1) % 3;
1108 >          int k = (i + 2) % 3;
1109 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1110 >            angMom[k] * angMom[k] / I(k, k);
1111 >        } else {
1112 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1113 >            + angMom[1]*angMom[1]/I(1, 1)
1114 >            + angMom[2]*angMom[2]/I(2, 2);
1115 >        }
1116        }
1117      }
1118      
# Line 872 | Line 1126 | namespace OpenMD {
1126      Kcw *= 0.5;
1127  
1128   #ifdef IS_MPI
1129 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1130 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1131 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1132 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1133 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1134 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1129 >    MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130 >    MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131 >    MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132 >    MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133 >    MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1134 >    MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1135  
1136 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1137 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1138 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1139 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1136 >    MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137 >    MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138 >    MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1139 >    MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1140  
1141 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1142 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1143 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1144 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1141 >    MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142 >    MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143 >    MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1144 >    MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1145   #endif
1146  
1147      //solve coldBin coeff's first
1148      RealType px = Pcx / Phx;
1149      RealType py = Pcy / Phy;
1150      RealType pz = Pcz / Phz;
1151 <    RealType c, x, y, z;
1151 >    RealType c(0.0), x(0.0), y(0.0), z(0.0);
1152      bool successfulScale = false;
1153      if ((rnemdFluxType_ == rnemdFullKE) ||
1154          (rnemdFluxType_ == rnemdRotKE)) {
# Line 908 | Line 1162 | namespace OpenMD {
1162  
1163        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1164          c = sqrt(c);
1165 <        //std::cerr << "cold slab scaling coefficient: " << c << endl;
912 <        //now convert to hotBin coefficient
1165 >
1166          RealType w = 0.0;
1167          if (rnemdFluxType_ ==  rnemdFullKE) {
1168            x = 1.0 + px * (1.0 - c);
# Line 936 | Line 1189 | namespace OpenMD {
1189            //if w is in the right range, so should be x, y, z.
1190            vector<StuntDouble*>::iterator sdi;
1191            Vector3d vel;
1192 <          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1192 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1193              if (rnemdFluxType_ == rnemdFullKE) {
1194                vel = (*sdi)->getVel() * c;
1195                (*sdi)->setVel(vel);
# Line 947 | Line 1200 | namespace OpenMD {
1200              }
1201            }
1202            w = sqrt(w);
1203 <          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951 <          //           << "\twh= " << w << endl;
952 <          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1203 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1204              if (rnemdFluxType_ == rnemdFullKE) {
1205                vel = (*sdi)->getVel();
1206                vel.x() *= x;
# Line 967 | Line 1218 | namespace OpenMD {
1218          }
1219        }
1220      } else {
1221 <      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1221 >      RealType a000(0.0), a110(0.0), c0(0.0);
1222 >      RealType a001(0.0), a111(0.0), b01(0.0), b11(0.0), c1(0.0);
1223        switch(rnemdFluxType_) {
1224        case rnemdKE :
1225          /* used hotBin coeff's & only scale x & y dimensions
# Line 1068 | Line 1320 | namespace OpenMD {
1320        vector<RealType>::iterator ri;
1321        RealType r1, r2, alpha0;
1322        vector<pair<RealType,RealType> > rps;
1323 <      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1323 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1324          r2 = *ri;
1325 <        //check if FindRealRoots() give the right answer
1325 >        // Check to see if FindRealRoots() gave the right answer:
1326          if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1327            sprintf(painCave.errMsg,
1328                    "RNEMD Warning: polynomial solve seems to have an error!");
# Line 1078 | Line 1330 | namespace OpenMD {
1330            simError();
1331            failRootCount_++;
1332          }
1333 <        //might not be useful w/o rescaling coefficients
1333 >        // Might not be useful w/o rescaling coefficients
1334          alpha0 = -c0 - a110 * r2 * r2;
1335          if (alpha0 >= 0.0) {
1336            r1 = sqrt(alpha0 / a000);
# Line 1093 | Line 1345 | namespace OpenMD {
1345            }
1346          }
1347        }
1348 <      // Consider combining together the solving pair part w/ the searching
1349 <      // best solution part so that we don't need the pairs vector
1348 >      // Consider combining together the part for solving for the pair
1349 >      // w/ the searching for the best solution part so that we don't
1350 >      // need the pairs vector:
1351        if (!rps.empty()) {
1352          RealType smallestDiff = HONKING_LARGE_VALUE;
1353 <        RealType diff;
1354 <        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1355 <        vector<pair<RealType,RealType> >::iterator rpi;
1356 <        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1353 >        RealType diff(0.0);
1354 >        std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1355 >        std::vector<std::pair<RealType,RealType> >::iterator rpi;
1356 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1357            r1 = (*rpi).first;
1358            r2 = (*rpi).second;
1359            switch(rnemdFluxType_) {
# Line 1167 | Line 1420 | namespace OpenMD {
1420          }
1421          vector<StuntDouble*>::iterator sdi;
1422          Vector3d vel;
1423 <        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1423 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1424            vel = (*sdi)->getVel();
1425            vel.x() *= x;
1426            vel.y() *= y;
# Line 1178 | Line 1431 | namespace OpenMD {
1431          x = 1.0 + px * (1.0 - x);
1432          y = 1.0 + py * (1.0 - y);
1433          z = 1.0 + pz * (1.0 - z);
1434 <        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1434 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1435            vel = (*sdi)->getVel();
1436            vel.x() *= x;
1437            vel.y() *= y;
# Line 1211 | Line 1464 | namespace OpenMD {
1464        failTrialCount_++;
1465      }
1466    }
1467 +  
1468 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1469 +    if (!doRNEMD_) return;
1470 +    int selei;
1471 +    int selej;
1472  
1215  void RNEMD::doVSS() {
1216
1473      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1218    RealType time = currentSnap_->getTime();    
1474      Mat3x3d hmat = currentSnap_->getHmat();
1475  
1221    seleMan_.setSelectionSet(evaluator_.evaluate());
1222
1223    int selei;
1476      StuntDouble* sd;
1225    int idx;
1477  
1478      vector<StuntDouble*> hotBin, coldBin;
1479  
1480      Vector3d Ph(V3Zero);
1481 +    Vector3d Lh(V3Zero);
1482      RealType Mh = 0.0;
1483 +    Mat3x3d Ih(0.0);
1484      RealType Kh = 0.0;
1485      Vector3d Pc(V3Zero);
1486 +    Vector3d Lc(V3Zero);
1487      RealType Mc = 0.0;
1488 +    Mat3x3d Ic(0.0);
1489      RealType Kc = 0.0;
1235    
1490  
1491 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1492 <         sd = seleMan_.nextSelected(selei)) {
1491 >    // Constraints can be on only the linear or angular momentum, but
1492 >    // not both.  Usually, the user will specify which they want, but
1493 >    // in case they don't, the use of periodic boundaries should make
1494 >    // the choice for us.
1495 >    bool doLinearPart = false;
1496 >    bool doAngularPart = false;
1497  
1498 <      idx = sd->getLocalIndex();
1498 >    switch (rnemdFluxType_) {
1499 >    case rnemdPx:
1500 >    case rnemdPy:
1501 >    case rnemdPz:
1502 >    case rnemdPvector:
1503 >    case rnemdKePx:
1504 >    case rnemdKePy:
1505 >    case rnemdKePvector:
1506 >      doLinearPart = true;
1507 >      break;
1508 >    case rnemdLx:
1509 >    case rnemdLy:
1510 >    case rnemdLz:
1511 >    case rnemdLvector:
1512 >    case rnemdKeLx:
1513 >    case rnemdKeLy:
1514 >    case rnemdKeLz:
1515 >    case rnemdKeLvector:
1516 >      doAngularPart = true;
1517 >      break;
1518 >    case rnemdKE:
1519 >    case rnemdRotKE:
1520 >    case rnemdFullKE:
1521 >    default:
1522 >      if (usePeriodicBoundaryConditions_)
1523 >        doLinearPart = true;
1524 >      else
1525 >        doAngularPart = true;
1526 >      break;
1527 >    }
1528 >    
1529 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1530 >         sd = smanA.nextSelected(selei)) {
1531  
1532        Vector3d pos = sd->getPos();
1533  
1534        // wrap the stuntdouble's position back into the box:
1535 +      
1536 +      if (usePeriodicBoundaryConditions_)
1537 +        currentSnap_->wrapVector(pos);
1538 +      
1539 +      RealType mass = sd->getMass();
1540 +      Vector3d vel = sd->getVel();
1541 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1542 +      RealType r2;
1543 +      
1544 +      hotBin.push_back(sd);
1545 +      Ph += mass * vel;
1546 +      Mh += mass;
1547 +      Kh += mass * vel.lengthSquare();
1548 +      Lh += mass * cross(rPos, vel);
1549 +      Ih -= outProduct(rPos, rPos) * mass;
1550 +      r2 = rPos.lengthSquare();
1551 +      Ih(0, 0) += mass * r2;
1552 +      Ih(1, 1) += mass * r2;
1553 +      Ih(2, 2) += mass * r2;
1554 +      
1555 +      if (rnemdFluxType_ == rnemdFullKE) {
1556 +        if (sd->isDirectional()) {
1557 +          Vector3d angMom = sd->getJ();
1558 +          Mat3x3d I = sd->getI();
1559 +          if (sd->isLinear()) {
1560 +            int i = sd->linearAxis();
1561 +            int j = (i + 1) % 3;
1562 +            int k = (i + 2) % 3;
1563 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1564 +              angMom[k] * angMom[k] / I(k, k);
1565 +          } else {
1566 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1567 +              angMom[1] * angMom[1] / I(1, 1) +
1568 +              angMom[2] * angMom[2] / I(2, 2);
1569 +          }
1570 +        }
1571 +      }
1572 +    }
1573 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1574 +         sd = smanB.nextSelected(selej)) {
1575  
1576 +      Vector3d pos = sd->getPos();
1577 +      
1578 +      // wrap the stuntdouble's position back into the box:
1579 +      
1580        if (usePeriodicBoundaryConditions_)
1581          currentSnap_->wrapVector(pos);
1582 +      
1583 +      RealType mass = sd->getMass();
1584 +      Vector3d vel = sd->getVel();
1585 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1586 +      RealType r2;
1587  
1588 <      // which bin is this stuntdouble in?
1589 <      bool inA = inSlabA(pos);
1590 <      bool inB = inSlabB(pos);
1588 >      coldBin.push_back(sd);
1589 >      Pc += mass * vel;
1590 >      Mc += mass;
1591 >      Kc += mass * vel.lengthSquare();
1592 >      Lc += mass * cross(rPos, vel);
1593 >      Ic -= outProduct(rPos, rPos) * mass;
1594 >      r2 = rPos.lengthSquare();
1595 >      Ic(0, 0) += mass * r2;
1596 >      Ic(1, 1) += mass * r2;
1597 >      Ic(2, 2) += mass * r2;
1598        
1599 <      if (inA || inB) {
1600 <        
1601 <        RealType mass = sd->getMass();
1602 <        Vector3d vel = sd->getVel();
1603 <      
1604 <        if (inA) {
1605 <          hotBin.push_back(sd);
1606 <          //std::cerr << "before, velocity = " << vel << endl;
1607 <          Ph += mass * vel;
1608 <          //std::cerr << "after, velocity = " << vel << endl;
1609 <          Mh += mass;
1610 <          Kh += mass * vel.lengthSquare();
1611 <          if (rnemdFluxType_ == rnemdFullKE) {
1612 <            if (sd->isDirectional()) {
1613 <              Vector3d angMom = sd->getJ();
1614 <              Mat3x3d I = sd->getI();
1269 <              if (sd->isLinear()) {
1270 <                int i = sd->linearAxis();
1271 <                int j = (i + 1) % 3;
1272 <                int k = (i + 2) % 3;
1273 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1274 <                  angMom[k] * angMom[k] / I(k, k);
1275 <              } else {
1276 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1277 <                  angMom[1] * angMom[1] / I(1, 1) +
1278 <                  angMom[2] * angMom[2] / I(2, 2);
1279 <              }
1280 <            }
1281 <          }
1282 <        } else { //midBin_
1283 <          coldBin.push_back(sd);
1284 <          Pc += mass * vel;
1285 <          Mc += mass;
1286 <          Kc += mass * vel.lengthSquare();
1287 <          if (rnemdFluxType_ == rnemdFullKE) {
1288 <            if (sd->isDirectional()) {
1289 <              Vector3d angMom = sd->getJ();
1290 <              Mat3x3d I = sd->getI();
1291 <              if (sd->isLinear()) {
1292 <                int i = sd->linearAxis();
1293 <                int j = (i + 1) % 3;
1294 <                int k = (i + 2) % 3;
1295 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1296 <                  angMom[k] * angMom[k] / I(k, k);
1297 <              } else {
1298 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1299 <                  angMom[1] * angMom[1] / I(1, 1) +
1300 <                  angMom[2] * angMom[2] / I(2, 2);
1301 <              }
1302 <            }
1303 <          }
1304 <        }
1599 >      if (rnemdFluxType_ == rnemdFullKE) {
1600 >        if (sd->isDirectional()) {
1601 >          Vector3d angMom = sd->getJ();
1602 >          Mat3x3d I = sd->getI();
1603 >          if (sd->isLinear()) {
1604 >            int i = sd->linearAxis();
1605 >            int j = (i + 1) % 3;
1606 >            int k = (i + 2) % 3;
1607 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1608 >              angMom[k] * angMom[k] / I(k, k);
1609 >          } else {
1610 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1611 >              angMom[1] * angMom[1] / I(1, 1) +
1612 >              angMom[2] * angMom[2] / I(2, 2);
1613 >          }
1614 >        }
1615        }
1616      }
1617      
1618      Kh *= 0.5;
1619      Kc *= 0.5;
1310
1311    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1312    //        << "\tKc= " << Kc << endl;
1313    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1620      
1621   #ifdef IS_MPI
1622 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1623 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1624 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1625 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1626 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1627 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1622 >    MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1623 >                  MPI_COMM_WORLD);
1624 >    MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1625 >                  MPI_COMM_WORLD);
1626 >    MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1627 >                  MPI_COMM_WORLD);
1628 >    MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1629 >                  MPI_COMM_WORLD);
1630 >    MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1631 >    MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632 >    MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1633 >    MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634 >    MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1635 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1636 >    MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1637 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1638   #endif
1639 +    
1640  
1641 +    Vector3d ac, acrec, bc, bcrec;
1642 +    Vector3d ah, ahrec, bh, bhrec;
1643 +
1644      bool successfulExchange = false;
1645      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1646        Vector3d vc = Pc / Mc;
1647 <      Vector3d ac = -momentumTarget_ / Mc + vc;
1648 <      Vector3d acrec = -momentumTarget_ / Mc;
1649 <      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1647 >      ac = -momentumTarget_ / Mc + vc;
1648 >      acrec = -momentumTarget_ / Mc;
1649 >      
1650 >      // We now need the inverse of the inertia tensor to calculate the
1651 >      // angular velocity of the cold slab;
1652 >      Mat3x3d Ici = Ic.inverse();
1653 >      Vector3d omegac = Ici * Lc;
1654 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1655 >      bcrec = bc - omegac;
1656 >      
1657 >      RealType cNumerator = Kc - kineticTarget_;
1658 >      if (doLinearPart)
1659 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1660 >      
1661 >      if (doAngularPart)
1662 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1663 >
1664        if (cNumerator > 0.0) {
1665 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1665 >        
1666 >        RealType cDenominator = Kc;
1667 >
1668 >        if (doLinearPart)
1669 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1670 >
1671 >        if (doAngularPart)
1672 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1673 >        
1674          if (cDenominator > 0.0) {
1675            RealType c = sqrt(cNumerator / cDenominator);
1676            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1677 +            
1678              Vector3d vh = Ph / Mh;
1679 <            Vector3d ah = momentumTarget_ / Mh + vh;
1680 <            Vector3d ahrec = momentumTarget_ / Mh;
1681 <            RealType hNumerator = Kh + kineticTarget_
1682 <              - 0.5 * Mh * ah.lengthSquare();
1683 <            if (hNumerator > 0.0) {
1684 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1679 >            ah = momentumTarget_ / Mh + vh;
1680 >            ahrec = momentumTarget_ / Mh;
1681 >            
1682 >            // We now need the inverse of the inertia tensor to
1683 >            // calculate the angular velocity of the hot slab;
1684 >            Mat3x3d Ihi = Ih.inverse();
1685 >            Vector3d omegah = Ihi * Lh;
1686 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1687 >            bhrec = bh - omegah;
1688 >            
1689 >            RealType hNumerator = Kh + kineticTarget_;
1690 >            if (doLinearPart)
1691 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1692 >            
1693 >            if (doAngularPart)
1694 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1695 >              
1696 >            if (hNumerator > 0.0) {
1697 >              
1698 >              RealType hDenominator = Kh;
1699 >              if (doLinearPart)
1700 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1701 >              if (doAngularPart)
1702 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1703 >              
1704                if (hDenominator > 0.0) {
1705                  RealType h = sqrt(hNumerator / hDenominator);
1706                  if ((h > 0.9) && (h < 1.1)) {
1707 <                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1346 <                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1707 >                  
1708                    vector<StuntDouble*>::iterator sdi;
1709                    Vector3d vel;
1710 <                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1710 >                  Vector3d rPos;
1711 >                  
1712 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1713                      //vel = (*sdi)->getVel();
1714 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1714 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1715 >                    if (doLinearPart)
1716 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1717 >                    if (doAngularPart)
1718 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1719 >
1720                      (*sdi)->setVel(vel);
1721                      if (rnemdFluxType_ == rnemdFullKE) {
1722                        if ((*sdi)->isDirectional()) {
# Line 1357 | Line 1725 | namespace OpenMD {
1725                        }
1726                      }
1727                    }
1728 <                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1728 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1729                      //vel = (*sdi)->getVel();
1730 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1730 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1731 >                    if (doLinearPart)
1732 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1733 >                    if (doAngularPart)
1734 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1735 >
1736                      (*sdi)->setVel(vel);
1737                      if (rnemdFluxType_ == rnemdFullKE) {
1738                        if ((*sdi)->isDirectional()) {
# Line 1371 | Line 1744 | namespace OpenMD {
1744                    successfulExchange = true;
1745                    kineticExchange_ += kineticTarget_;
1746                    momentumExchange_ += momentumTarget_;
1747 +                  angularMomentumExchange_ += angularMomentumTarget_;
1748                  }
1749                }
1750              }
# Line 1390 | Line 1764 | namespace OpenMD {
1764      }
1765    }
1766  
1767 <  void RNEMD::doRNEMD() {
1767 >  RealType RNEMD::getDividingArea() {
1768  
1769 +    if (hasDividingArea_) return dividingArea_;
1770 +
1771 +    RealType areaA, areaB;
1772 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1773 +
1774 +    if (hasSelectionA_) {
1775 +
1776 +      if (evaluatorA_.hasSurfaceArea())
1777 +        areaA = evaluatorA_.getSurfaceArea();
1778 +      else {
1779 +        
1780 +        int isd;
1781 +        StuntDouble* sd;
1782 +        vector<StuntDouble*> aSites;
1783 +        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1784 +        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1785 +             sd = seleManA_.nextSelected(isd)) {
1786 +          aSites.push_back(sd);
1787 +        }
1788 + #if defined(HAVE_QHULL)
1789 +        ConvexHull* surfaceMeshA = new ConvexHull();
1790 +        surfaceMeshA->computeHull(aSites);
1791 +        areaA = surfaceMeshA->getArea();
1792 +        delete surfaceMeshA;
1793 + #else
1794 +        sprintf( painCave.errMsg,
1795 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1796 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1797 +        painCave.severity = OPENMD_ERROR;
1798 +        painCave.isFatal = 1;
1799 +        simError();
1800 + #endif
1801 +      }
1802 +
1803 +    } else {
1804 +      if (usePeriodicBoundaryConditions_) {
1805 +        // in periodic boundaries, the surface area is twice the x-y
1806 +        // area of the current box:
1807 +        areaA = 2.0 * snap->getXYarea();
1808 +      } else {
1809 +        // in non-periodic simulations, without explicitly setting
1810 +        // selections, the sphere radius sets the surface area of the
1811 +        // dividing surface:
1812 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1813 +      }
1814 +    }
1815 +
1816 +    if (hasSelectionB_) {
1817 +      if (evaluatorB_.hasSurfaceArea()) {
1818 +        areaB = evaluatorB_.getSurfaceArea();
1819 +      } else {
1820 +
1821 +        int isd;
1822 +        StuntDouble* sd;
1823 +        vector<StuntDouble*> bSites;
1824 +        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1825 +        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1826 +             sd = seleManB_.nextSelected(isd)) {
1827 +          bSites.push_back(sd);
1828 +        }
1829 +        
1830 + #if defined(HAVE_QHULL)
1831 +        ConvexHull* surfaceMeshB = new ConvexHull();    
1832 +        surfaceMeshB->computeHull(bSites);
1833 +        areaB = surfaceMeshB->getArea();
1834 +        delete surfaceMeshB;
1835 + #else
1836 +        sprintf( painCave.errMsg,
1837 +                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1838 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1839 +        painCave.severity = OPENMD_ERROR;
1840 +        painCave.isFatal = 1;
1841 +        simError();
1842 + #endif
1843 +      }
1844 +      
1845 +    } else {
1846 +      if (usePeriodicBoundaryConditions_) {
1847 +        // in periodic boundaries, the surface area is twice the x-y
1848 +        // area of the current box:
1849 +        areaB = 2.0 * snap->getXYarea();
1850 +      } else {
1851 +        // in non-periodic simulations, without explicitly setting
1852 +        // selections, but if a sphereBradius has been set, just use that:
1853 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1854 +      }
1855 +    }
1856 +      
1857 +    dividingArea_ = min(areaA, areaB);
1858 +    hasDividingArea_ = true;
1859 +    return dividingArea_;
1860 +  }
1861 +  
1862 +  void RNEMD::doRNEMD() {
1863 +    if (!doRNEMD_) return;
1864      trialCount_++;
1865 +
1866 +    // object evaluator:
1867 +    evaluator_.loadScriptString(rnemdObjectSelection_);
1868 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1869 +
1870 +    evaluatorA_.loadScriptString(selectionA_);
1871 +    evaluatorB_.loadScriptString(selectionB_);
1872 +
1873 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1874 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1875 +
1876 +    commonA_ = seleManA_ & seleMan_;
1877 +    commonB_ = seleManB_ & seleMan_;
1878 +
1879 +    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1880 +    // dt = exchange time interval
1881 +    // flux = target flux
1882 +    // dividingArea = smallest dividing surface between the two regions
1883 +
1884 +    hasDividingArea_ = false;
1885 +    RealType area = getDividingArea();
1886 +
1887 +    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1888 +    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1889 +    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1890 +
1891      switch(rnemdMethod_) {
1892      case rnemdSwap:
1893 <      doSwap();
1893 >      doSwap(commonA_, commonB_);
1894        break;
1895      case rnemdNIVS:
1896 <      doNIVS();
1896 >      doNIVS(commonA_, commonB_);
1897        break;
1898      case rnemdVSS:
1899 <      doVSS();
1899 >      doVSS(commonA_, commonB_);
1900        break;
1901      case rnemdUnkownMethod:
1902      default :
# Line 1410 | Line 1905 | namespace OpenMD {
1905    }
1906  
1907    void RNEMD::collectData() {
1908 <
1908 >    if (!doRNEMD_) return;
1909      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1910 +
1911 +    // collectData can be called more frequently than the doRNEMD, so use the
1912 +    // computed area from the last exchange time:
1913 +    RealType area = getDividingArea();
1914 +    areaAccumulator_->add(area);
1915      Mat3x3d hmat = currentSnap_->getHmat();
1916 +    Vector3d u = angularMomentumFluxVector_;
1917 +    u.normalize();
1918  
1919      seleMan_.setSelectionSet(evaluator_.evaluate());
1920  
1921 <    int selei;
1921 >    int selei(0);
1922      StuntDouble* sd;
1923 <    int idx;
1923 >    int binNo;
1924 >    RealType mass;
1925 >    Vector3d vel;
1926 >    Vector3d rPos;
1927 >    RealType KE;
1928 >    Vector3d L;
1929 >    Mat3x3d I;
1930 >    RealType r2;
1931  
1932      vector<RealType> binMass(nBins_, 0.0);
1933 <    vector<RealType> binPx(nBins_, 0.0);
1934 <    vector<RealType> binPy(nBins_, 0.0);
1935 <    vector<RealType> binPz(nBins_, 0.0);
1933 >    vector<Vector3d> binP(nBins_, V3Zero);
1934 >    vector<RealType> binOmega(nBins_, 0.0);
1935 >    vector<Vector3d> binL(nBins_, V3Zero);
1936 >    vector<Mat3x3d>  binI(nBins_);
1937      vector<RealType> binKE(nBins_, 0.0);
1938      vector<int> binDOF(nBins_, 0);
1939      vector<int> binCount(nBins_, 0);
# Line 1431 | Line 1941 | namespace OpenMD {
1941      // alternative approach, track all molecules instead of only those
1942      // selected for scaling/swapping:
1943      /*
1944 <    SimInfo::MoleculeIterator miter;
1945 <    vector<StuntDouble*>::iterator iiter;
1946 <    Molecule* mol;
1947 <    StuntDouble* sd;
1948 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1944 >      SimInfo::MoleculeIterator miter;
1945 >      vector<StuntDouble*>::iterator iiter;
1946 >      Molecule* mol;
1947 >      StuntDouble* sd;
1948 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1949        mol = info_->nextMolecule(miter))
1950        sd is essentially sd
1951 <        for (sd = mol->beginIntegrableObject(iiter);
1952 <             sd != NULL;
1953 <             sd = mol->nextIntegrableObject(iiter))
1951 >      for (sd = mol->beginIntegrableObject(iiter);
1952 >      sd != NULL;
1953 >      sd = mol->nextIntegrableObject(iiter))
1954      */
1955 +
1956      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1957 <         sd = seleMan_.nextSelected(selei)) {
1958 <      
1448 <      idx = sd->getLocalIndex();
1449 <      
1957 >         sd = seleMan_.nextSelected(selei)) {    
1958 >    
1959        Vector3d pos = sd->getPos();
1960  
1961        // wrap the stuntdouble's position back into the box:
1962        
1963 <      if (usePeriodicBoundaryConditions_)
1963 >      if (usePeriodicBoundaryConditions_) {
1964          currentSnap_->wrapVector(pos);
1965 +        // which bin is this stuntdouble in?
1966 +        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1967 +        // Shift molecules by half a box to have bins start at 0
1968 +        // The modulo operator is used to wrap the case when we are
1969 +        // beyond the end of the bins back to the beginning.
1970 +        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1971 +      } else {
1972 +        Vector3d rPos = pos - coordinateOrigin_;
1973 +        binNo = int(rPos.length() / binWidth_);
1974 +      }
1975  
1976 <      // which bin is this stuntdouble in?
1977 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1978 <      // Shift molecules by half a box to have bins start at 0
1979 <      // The modulo operator is used to wrap the case when we are
1980 <      // beyond the end of the bins back to the beginning.
1981 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1982 <    
1983 <      RealType mass = sd->getMass();
1984 <      Vector3d vel = sd->getVel();
1976 >      mass = sd->getMass();
1977 >      vel = sd->getVel();
1978 >      rPos = sd->getPos() - coordinateOrigin_;
1979 >      KE = 0.5 * mass * vel.lengthSquare();
1980 >      L = mass * cross(rPos, vel);
1981 >      I = outProduct(rPos, rPos) * mass;
1982 >      r2 = rPos.lengthSquare();
1983 >      I(0, 0) += mass * r2;
1984 >      I(1, 1) += mass * r2;
1985 >      I(2, 2) += mass * r2;
1986  
1987 <      binCount[binNo]++;
1988 <      binMass[binNo] += mass;
1989 <      binPx[binNo] += mass*vel.x();
1990 <      binPy[binNo] += mass*vel.y();
1991 <      binPz[binNo] += mass*vel.z();
1992 <      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1993 <      binDOF[binNo] += 3;
1987 >      // Project the relative position onto a plane perpendicular to
1988 >      // the angularMomentumFluxVector:
1989 >      // Vector3d rProj = rPos - dot(rPos, u) * u;
1990 >      // Project the velocity onto a plane perpendicular to the
1991 >      // angularMomentumFluxVector:
1992 >      // Vector3d vProj = vel  - dot(vel, u) * u;
1993 >      // Compute angular velocity vector (should be nearly parallel to
1994 >      // angularMomentumFluxVector
1995 >      // Vector3d aVel = cross(rProj, vProj);
1996  
1997 <      if (sd->isDirectional()) {
1998 <        Vector3d angMom = sd->getJ();
1999 <        Mat3x3d I = sd->getI();
2000 <        if (sd->isLinear()) {
2001 <          int i = sd->linearAxis();
2002 <          int j = (i + 1) % 3;
2003 <          int k = (i + 2) % 3;
2004 <          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
2005 <                                 angMom[k] * angMom[k] / I(k, k));
2006 <          binDOF[binNo] += 2;
2007 <        } else {
2008 <          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
2009 <                                 angMom[1] * angMom[1] / I(1, 1) +
2010 <                                 angMom[2] * angMom[2] / I(2, 2));
2011 <          binDOF[binNo] += 3;
1997 >      if (binNo >= 0 && binNo < nBins_)  {
1998 >        binCount[binNo]++;
1999 >        binMass[binNo] += mass;
2000 >        binP[binNo] += mass*vel;
2001 >        binKE[binNo] += KE;
2002 >        binI[binNo] += I;
2003 >        binL[binNo] += L;
2004 >        binDOF[binNo] += 3;
2005 >        
2006 >        if (sd->isDirectional()) {
2007 >          Vector3d angMom = sd->getJ();
2008 >          Mat3x3d Ia = sd->getI();
2009 >          if (sd->isLinear()) {
2010 >            int i = sd->linearAxis();
2011 >            int j = (i + 1) % 3;
2012 >            int k = (i + 2) % 3;
2013 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2014 >                                   angMom[k] * angMom[k] / Ia(k, k));
2015 >            binDOF[binNo] += 2;
2016 >          } else {
2017 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2018 >                                   angMom[1] * angMom[1] / Ia(1, 1) +
2019 >                                   angMom[2] * angMom[2] / Ia(2, 2));
2020 >            binDOF[binNo] += 3;
2021 >          }
2022          }
2023        }
2024      }
1493    
2025  
2026   #ifdef IS_MPI
2027 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
2028 <                              nBins_, MPI::INT, MPI::SUM);
2029 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
2030 <                              nBins_, MPI::REALTYPE, MPI::SUM);
2031 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
2032 <                              nBins_, MPI::REALTYPE, MPI::SUM);
2033 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
2034 <                              nBins_, MPI::REALTYPE, MPI::SUM);
2035 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
2036 <                              nBins_, MPI::REALTYPE, MPI::SUM);
2037 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
2038 <                              nBins_, MPI::REALTYPE, MPI::SUM);
2039 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
2040 <                              nBins_, MPI::INT, MPI::SUM);
2027 >
2028 >    for (int i = 0; i < nBins_; i++) {
2029 >      
2030 >      MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2031 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2032 >      MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2033 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 >      MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2035 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 >      MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2037 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038 >      MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2039 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2040 >      MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2041 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2042 >      MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2043 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2044 >      //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2045 >      //                          1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2046 >    }
2047 >    
2048   #endif
2049  
2050 <    Vector3d vel;
2050 >    Vector3d omega;
2051      RealType den;
2052      RealType temp;
2053      RealType z;
2054 +    RealType r;
2055      for (int i = 0; i < nBins_; i++) {
2056 <      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2057 <      vel.x() = binPx[i] / binMass[i];
2058 <      vel.y() = binPy[i] / binMass[i];
2059 <      vel.z() = binPz[i] / binMass[i];
2060 <      den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2));
2061 <      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2062 <                               PhysicalConstants::energyConvert);
2056 >      if (usePeriodicBoundaryConditions_) {
2057 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2058 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2059 >          / currentSnap_->getVolume() ;
2060 >      } else {
2061 >        r = (((RealType)i + 0.5) * binWidth_);
2062 >        RealType rinner = (RealType)i * binWidth_;
2063 >        RealType router = (RealType)(i+1) * binWidth_;
2064 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2065 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2066 >      }
2067 >      vel = binP[i] / binMass[i];
2068  
2069 <      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2070 <        if(outputMask_[j]) {
2071 <          switch(j) {
2072 <          case Z:
2073 <            (data_[j].accumulator[i])->add(z);
2074 <            break;
2075 <          case TEMPERATURE:
2076 <            data_[j].accumulator[i]->add(temp);
2077 <            break;
2078 <          case VELOCITY:
2079 <            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2080 <            break;
2081 <          case DENSITY:
2082 <            data_[j].accumulator[i]->add(den);
2083 <            break;
2069 >      omega = binI[i].inverse() * binL[i];
2070 >
2071 >      // omega = binOmega[i] / binCount[i];
2072 >
2073 >      if (binCount[i] > 0) {
2074 >        // only add values if there are things to add
2075 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2076 >                                 PhysicalConstants::energyConvert);
2077 >        
2078 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2079 >          if(outputMask_[j]) {
2080 >            switch(j) {
2081 >            case Z:
2082 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2083 >              break;
2084 >            case R:
2085 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2086 >              break;
2087 >            case TEMPERATURE:
2088 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2089 >              break;
2090 >            case VELOCITY:
2091 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2092 >              break;
2093 >            case ANGULARVELOCITY:  
2094 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2095 >              break;
2096 >            case DENSITY:
2097 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2098 >              break;
2099 >            }
2100            }
2101          }
2102        }
2103      }
2104 +    hasData_ = true;
2105    }
2106  
2107    void RNEMD::getStarted() {
2108 +    if (!doRNEMD_) return;
2109 +    hasDividingArea_ = false;
2110      collectData();
2111      writeOutputFile();
2112    }
2113  
2114    void RNEMD::parseOutputFileFormat(const std::string& format) {
2115 +    if (!doRNEMD_) return;
2116      StringTokenizer tokenizer(format, " ,;|\t\n\r");
2117      
2118      while(tokenizer.hasMoreTokens()) {
# Line 1565 | Line 2129 | namespace OpenMD {
2129          painCave.severity = OPENMD_ERROR;
2130          simError();            
2131        }
2132 <    }  
2132 >    }
2133    }
2134    
2135    void RNEMD::writeOutputFile() {
2136 +    if (!doRNEMD_) return;
2137 +    if (!hasData_) return;
2138      
2139   #ifdef IS_MPI
2140      // If we're the root node, should we print out the results
2141 <    int worldRank = MPI::COMM_WORLD.Get_rank();
2141 >    int worldRank;
2142 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2143 >
2144      if (worldRank == 0) {
2145   #endif
2146        rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
# Line 1588 | Line 2156 | namespace OpenMD {
2156        Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2157  
2158        RealType time = currentSnap_->getTime();
2159 <      
2160 <      
2159 >      RealType avgArea;
2160 >      areaAccumulator_->getAverage(avgArea);
2161 >
2162 >      RealType Jz(0.0);
2163 >      Vector3d JzP(V3Zero);
2164 >      Vector3d JzL(V3Zero);
2165 >      if (time >= info_->getSimParams()->getDt()) {
2166 >        Jz = kineticExchange_ / (time * avgArea)
2167 >          / PhysicalConstants::energyConvert;
2168 >        JzP = momentumExchange_ / (time * avgArea);
2169 >        JzL = angularMomentumExchange_ / (time * avgArea);
2170 >      }
2171 >
2172        rnemdFile_ << "#######################################################\n";
2173        rnemdFile_ << "# RNEMD {\n";
2174  
2175        map<string, RNEMDMethod>::iterator mi;
2176        for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2177          if ( (*mi).second == rnemdMethod_)
2178 <          rnemdFile_ << "#    exchangeMethod  = " << (*mi).first << "\n";
2178 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2179        }
2180        map<string, RNEMDFluxType>::iterator fi;
2181        for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2182          if ( (*fi).second == rnemdFluxType_)
2183 <          rnemdFile_ << "#    fluxType  = " << (*fi).first << "\n";
2183 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2184        }
2185        
2186 <      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << " fs\n";
2186 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2187  
2188        rnemdFile_ << "#    objectSelection = \""
2189 <                 << rnemdObjectSelection_ << "\"\n";
2190 <      rnemdFile_ << "#    slabWidth = " << slabWidth_ << " angstroms\n";
2191 <      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << " angstroms\n";
1613 <      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << " angstroms\n";
2189 >                 << rnemdObjectSelection_ << "\";\n";
2190 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2191 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2192        rnemdFile_ << "# }\n";
2193        rnemdFile_ << "#######################################################\n";
2194 <      
2195 <      rnemdFile_ << "# running time = " << time << " fs\n";
2196 <      rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n";
2197 <      rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n";
2198 <      
2199 <      rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_
2200 <                 << "\n";
2201 <      rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_
2202 <                 << "\n";
2203 <      
2204 <      rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n";
2205 <      rnemdFile_ << "# actual momentum exchange = " << momentumExchange_
2206 <                 << "\n";
2207 <      
2208 <      rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n";
2209 <      rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n";
2210 <
2211 <      
2194 >      rnemdFile_ << "# RNEMD report:\n";      
2195 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2196 >      rnemdFile_ << "# Target flux:\n";
2197 >      rnemdFile_ << "#           kinetic = "
2198 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2199 >                 << " (kcal/mol/A^2/fs)\n";
2200 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2201 >                 << " (amu/A/fs^2)\n";
2202 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2203 >                 << " (amu/A^2/fs^2)\n";
2204 >      rnemdFile_ << "# Target one-time exchanges:\n";
2205 >      rnemdFile_ << "#          kinetic = "
2206 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2207 >                 << " (kcal/mol)\n";
2208 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2209 >                 << " (amu*A/fs)\n";
2210 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2211 >                 << " (amu*A^2/fs)\n";
2212 >      rnemdFile_ << "# Actual exchange totals:\n";
2213 >      rnemdFile_ << "#          kinetic = "
2214 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2215 >                 << " (kcal/mol)\n";
2216 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2217 >                 << " (amu*A/fs)\n";      
2218 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2219 >                 << " (amu*A^2/fs)\n";      
2220 >      rnemdFile_ << "# Actual flux:\n";
2221 >      rnemdFile_ << "#          kinetic = " << Jz
2222 >                 << " (kcal/mol/A^2/fs)\n";
2223 >      rnemdFile_ << "#          momentum = " << JzP
2224 >                 << " (amu/A/fs^2)\n";
2225 >      rnemdFile_ << "#  angular momentum = " << JzL
2226 >                 << " (amu/A^2/fs^2)\n";
2227 >      rnemdFile_ << "# Exchange statistics:\n";
2228 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2229 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2230        if (rnemdMethod_ == rnemdNIVS) {
2231 <        rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n";
2231 >        rnemdFile_ << "#  NIVS root-check errors = "
2232 >                   << failRootCount_ << "\n";
2233        }
1637
2234        rnemdFile_ << "#######################################################\n";
2235        
2236        
# Line 1645 | Line 2241 | namespace OpenMD {
2241          if (outputMask_[i]) {
2242            rnemdFile_ << "\t" << data_[i].title <<
2243              "(" << data_[i].units << ")";
2244 +          // add some extra tabs for column alignment
2245 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2246          }
2247        }
2248        rnemdFile_ << std::endl;
2249        
2250        rnemdFile_.precision(8);
2251        
2252 <      for (unsigned int j = 0; j < nBins_; j++) {        
2252 >      for (int j = 0; j < nBins_; j++) {        
2253          
2254          for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2255            if (outputMask_[i]) {
2256              if (data_[i].dataType == "RealType")
2257                writeReal(i,j);
2258 <            else if (data_[i].dataType == "Vector3d")
2258 >            else if (data_[i].dataType == "Vector3d")
2259                writeVector(i,j);
2260              else {
2261                sprintf( painCave.errMsg,
# Line 1671 | Line 2269 | namespace OpenMD {
2269          rnemdFile_ << std::endl;
2270          
2271        }        
2272 +
2273 +      rnemdFile_ << "#######################################################\n";
2274 +      rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2275 +      rnemdFile_ << "#######################################################\n";
2276 +
2277 +
2278 +      for (int j = 0; j < nBins_; j++) {        
2279 +        rnemdFile_ << "#";
2280 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2281 +          if (outputMask_[i]) {
2282 +            if (data_[i].dataType == "RealType")
2283 +              writeRealErrorBars(i,j);
2284 +            else if (data_[i].dataType == "Vector3d")
2285 +              writeVectorErrorBars(i,j);
2286 +            else {
2287 +              sprintf( painCave.errMsg,
2288 +                       "RNEMD found an unknown data type for: %s ",
2289 +                       data_[i].title.c_str());
2290 +              painCave.isFatal = 1;
2291 +              simError();
2292 +            }
2293 +          }
2294 +        }
2295 +        rnemdFile_ << std::endl;
2296 +        
2297 +      }        
2298        
2299        rnemdFile_.flush();
2300        rnemdFile_.close();
# Line 1682 | Line 2306 | namespace OpenMD {
2306    }
2307    
2308    void RNEMD::writeReal(int index, unsigned int bin) {
2309 +    if (!doRNEMD_) return;
2310      assert(index >=0 && index < ENDINDEX);
2311 <    assert(bin >=0 && bin < nBins_);
2311 >    assert(int(bin) < nBins_);
2312      RealType s;
2313 +    int count;
2314      
2315 <    data_[index].accumulator[bin]->getAverage(s);
2315 >    count = data_[index].accumulator[bin]->count();
2316 >    if (count == 0) return;
2317      
2318 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2319 +    
2320      if (! isinf(s) && ! isnan(s)) {
2321        rnemdFile_ << "\t" << s;
2322      } else{
2323        sprintf( painCave.errMsg,
2324 <               "RNEMD detected a numerical error writing: %s for bin %d",
2324 >               "RNEMD detected a numerical error writing: %s for bin %u",
2325                 data_[index].title.c_str(), bin);
2326        painCave.isFatal = 1;
2327        simError();
# Line 1700 | Line 2329 | namespace OpenMD {
2329    }
2330    
2331    void RNEMD::writeVector(int index, unsigned int bin) {
2332 +    if (!doRNEMD_) return;
2333      assert(index >=0 && index < ENDINDEX);
2334 <    assert(bin >=0 && bin < nBins_);
2334 >    assert(int(bin) < nBins_);
2335      Vector3d s;
2336 +    int count;
2337 +    
2338 +    count = data_[index].accumulator[bin]->count();
2339 +
2340 +    if (count == 0) return;
2341 +
2342      dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2343      if (isinf(s[0]) || isnan(s[0]) ||
2344          isinf(s[1]) || isnan(s[1]) ||
2345          isinf(s[2]) || isnan(s[2]) ) {      
2346        sprintf( painCave.errMsg,
2347 <               "RNEMD detected a numerical error writing: %s for bin %d",
2347 >               "RNEMD detected a numerical error writing: %s for bin %u",
2348                 data_[index].title.c_str(), bin);
2349        painCave.isFatal = 1;
2350        simError();
# Line 1716 | Line 2352 | namespace OpenMD {
2352        rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2353      }
2354    }  
2355 +
2356 +  void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2357 +    if (!doRNEMD_) return;
2358 +    assert(index >=0 && index < ENDINDEX);
2359 +    assert(int(bin) < nBins_);
2360 +    RealType s;
2361 +    int count;
2362 +    
2363 +    count = data_[index].accumulator[bin]->count();
2364 +    if (count == 0) return;
2365 +    
2366 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2367 +    
2368 +    if (! isinf(s) && ! isnan(s)) {
2369 +      rnemdFile_ << "\t" << s;
2370 +    } else{
2371 +      sprintf( painCave.errMsg,
2372 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2373 +               data_[index].title.c_str(), bin);
2374 +      painCave.isFatal = 1;
2375 +      simError();
2376 +    }    
2377 +  }
2378 +  
2379 +  void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2380 +    if (!doRNEMD_) return;
2381 +    assert(index >=0 && index < ENDINDEX);
2382 +    assert(int(bin) < nBins_);
2383 +    Vector3d s;
2384 +    int count;
2385 +    
2386 +    count = data_[index].accumulator[bin]->count();
2387 +    if (count == 0) return;
2388 +
2389 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2390 +    if (isinf(s[0]) || isnan(s[0]) ||
2391 +        isinf(s[1]) || isnan(s[1]) ||
2392 +        isinf(s[2]) || isnan(s[2]) ) {      
2393 +      sprintf( painCave.errMsg,
2394 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2395 +               data_[index].title.c_str(), bin);
2396 +      painCave.isFatal = 1;
2397 +      simError();
2398 +    } else {
2399 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2400 +    }
2401 +  }  
2402   }
2403  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines