ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #ifdef IS_MPI
42 + #include <mpi.h>
43 + #endif
44  
45   #include <cmath>
46 < #include "integrators/RNEMD.hpp"
46 > #include <sstream>
47 > #include <string>
48 >
49 > #include "rnemd/RNEMD.hpp"
50   #include "math/Vector3.hpp"
51   #include "math/Vector.hpp"
52   #include "math/SquareMatrix3.hpp"
# Line 49 | Line 55
55   #include "primitives/StuntDouble.hpp"
56   #include "utils/PhysicalConstants.hpp"
57   #include "utils/Tuple.hpp"
58 + #include "brains/Thermo.hpp"
59 + #include "math/ConvexHull.hpp"
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
56 < #include "math/ParallelRandNumGen.hpp"
57 < #include <mpi.h>
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
# Line 62 | Line 68 | namespace OpenMD {
68   using namespace std;
69   namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 <                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info),
72 >                                evaluator_(info_), seleMan_(info_),
73 >                                evaluatorA_(info_), seleManA_(info_),
74 >                                evaluatorB_(info_), seleManB_(info_),
75 >                                commonA_(info_), commonB_(info_),
76 >                                usePeriodicBoundaryConditions_(info_->getSimParams()->getUsePeriodicBoundaryConditions()),
77 >                                hasDividingArea_(false),
78 >                                hasData_(false) {
79  
80 +    trialCount_ = 0;
81      failTrialCount_ = 0;
82      failRootCount_ = 0;
83  
84 <    int seedValue;
85 <    Globals * simParams = info->getSimParams();
84 >    Globals* simParams = info->getSimParams();
85 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
86  
87 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
88 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 <    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77 <    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
79 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
80 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
81 <    stringToEnumMap_["Px"] = rnemdPx;
82 <    stringToEnumMap_["Py"] = rnemdPy;
83 <    stringToEnumMap_["Pz"] = rnemdPz;
84 <    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85 <    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
87 >    doRNEMD_ = rnemdParams->getUseRNEMD();
88 >    if (!doRNEMD_) return;
89  
90 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
91 <    evaluator_.loadScriptString(rnemdObjectSelection_);
92 <    seleMan_.setSelectionSet(evaluator_.evaluate());
90 >    stringToMethod_["Swap"]  = rnemdSwap;
91 >    stringToMethod_["NIVS"]  = rnemdNIVS;
92 >    stringToMethod_["VSS"]   = rnemdVSS;
93  
94 <    // do some sanity checking
94 >    stringToFluxType_["KE"]  = rnemdKE;
95 >    stringToFluxType_["Px"]  = rnemdPx;
96 >    stringToFluxType_["Py"]  = rnemdPy;
97 >    stringToFluxType_["Pz"]  = rnemdPz;
98 >    stringToFluxType_["Pvector"]  = rnemdPvector;
99 >    stringToFluxType_["Lx"]  = rnemdLx;
100 >    stringToFluxType_["Ly"]  = rnemdLy;
101 >    stringToFluxType_["Lz"]  = rnemdLz;
102 >    stringToFluxType_["Lvector"]  = rnemdLvector;
103 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
104 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
105 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
106 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
107 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
108 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
109 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
110  
111 <    int selectionCount = seleMan_.getSelectionCount();
112 <    int nIntegrable = info->getNGlobalIntegrableObjects();
111 >    runTime_ = simParams->getRunTime();
112 >    statusTime_ = simParams->getStatusTime();
113  
114 <    if (selectionCount > nIntegrable) {
114 >    const string methStr = rnemdParams->getMethod();
115 >    bool hasFluxType = rnemdParams->haveFluxType();
116 >
117 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
118 >
119 >    string fluxStr;
120 >    if (hasFluxType) {
121 >      fluxStr = rnemdParams->getFluxType();
122 >    } else {
123        sprintf(painCave.errMsg,
124 <              "RNEMD: The current RNEMD_objectSelection,\n"
125 <              "\t\t%s\n"
126 <              "\thas resulted in %d selected objects.  However,\n"
127 <              "\tthe total number of integrable objects in the system\n"
128 <              "\tis only %d.  This is almost certainly not what you want\n"
129 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
130 <              "\tselector in the selection script!\n",
106 <              rnemdObjectSelection_.c_str(),
107 <              selectionCount, nIntegrable);
108 <      painCave.isFatal = 0;
109 <      painCave.severity = OPENMD_WARNING;
124 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
125 >              "\twhich must be one of the following values:\n"
126 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
127 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
128 >              "\tmust be set to use RNEMD\n");
129 >      painCave.isFatal = 1;
130 >      painCave.severity = OPENMD_ERROR;
131        simError();
132      }
133 +
134 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
135 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
136 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
137 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
138 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
139 +    hasSelectionA_ = rnemdParams->haveSelectionA();
140 +    hasSelectionB_ = rnemdParams->haveSelectionB();
141 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
142 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
143 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
144 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
145 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
146 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
147 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
148 +    bool hasOutputFields = rnemdParams->haveOutputFields();
149      
150 <    const string st = simParams->getRNEMD_exchangeType();
150 >    map<string, RNEMDMethod>::iterator i;
151 >    i = stringToMethod_.find(methStr);
152 >    if (i != stringToMethod_.end())
153 >      rnemdMethod_ = i->second;
154 >    else {
155 >      sprintf(painCave.errMsg,
156 >              "RNEMD: The current method,\n"
157 >              "\t\t%s is not one of the recognized\n"
158 >              "\texchange methods: Swap, NIVS, or VSS\n",
159 >              methStr.c_str());
160 >      painCave.isFatal = 1;
161 >      painCave.severity = OPENMD_ERROR;
162 >      simError();
163 >    }
164  
165 <    map<string, RNEMDTypeEnum>::iterator i;
166 <    i = stringToEnumMap_.find(st);
167 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
168 <    if (rnemdType_ == rnemdUnknown) {
165 >    map<string, RNEMDFluxType>::iterator j;
166 >    j = stringToFluxType_.find(fluxStr);
167 >    if (j != stringToFluxType_.end())
168 >      rnemdFluxType_ = j->second;
169 >    else {
170        sprintf(painCave.errMsg,
171 <              "RNEMD: The current RNEMD_exchangeType,\n"
171 >              "RNEMD: The current fluxType,\n"
172                "\t\t%s\n"
173 <              "\tis not one of the recognized exchange types.\n",
174 <              st.c_str());
173 >              "\tis not one of the recognized flux types.\n",
174 >              fluxStr.c_str());
175        painCave.isFatal = 1;
176        painCave.severity = OPENMD_ERROR;
177        simError();
178      }
128    
129    outputTemp_ = false;
130    if (simParams->haveRNEMD_outputTemperature()) {
131      outputTemp_ = simParams->getRNEMD_outputTemperature();
132    } else if ((rnemdType_ == rnemdKineticSwap) ||
133               (rnemdType_ == rnemdKineticScale) ||
134               (rnemdType_ == rnemdKineticScaleVAM) ||
135               (rnemdType_ == rnemdKineticScaleAM)) {
136      outputTemp_ = true;
137    }
138    outputVx_ = false;
139    if (simParams->haveRNEMD_outputVx()) {
140      outputVx_ = simParams->getRNEMD_outputVx();
141    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
142      outputVx_ = true;
143    }
144    outputVy_ = false;
145    if (simParams->haveRNEMD_outputVy()) {
146      outputVy_ = simParams->getRNEMD_outputVy();
147    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
148      outputVy_ = true;
149    }
150    output3DTemp_ = false;
151    if (simParams->haveRNEMD_outputXyzTemperature()) {
152      output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
153    }
154    outputRotTemp_ = false;
155    if (simParams->haveRNEMD_outputRotTemperature()) {
156      outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
157    }
179  
180 < #ifdef IS_MPI
181 <    if (worldRank == 0) {
182 < #endif
183 <
184 <      //may have rnemdWriter separately
185 <      string rnemdFileName;
186 <
187 <      if (outputTemp_) {
188 <        rnemdFileName = "temperature.log";
189 <        tempLog_.open(rnemdFileName.c_str());
180 >    bool methodFluxMismatch = false;
181 >    bool hasCorrectFlux = false;
182 >    switch(rnemdMethod_) {
183 >    case rnemdSwap:
184 >      switch (rnemdFluxType_) {
185 >      case rnemdKE:
186 >        hasCorrectFlux = hasKineticFlux;
187 >        break;
188 >      case rnemdPx:
189 >      case rnemdPy:
190 >      case rnemdPz:
191 >        hasCorrectFlux = hasMomentumFlux;
192 >        break;
193 >      default :
194 >        methodFluxMismatch = true;
195 >        break;
196        }
197 <      if (outputVx_) {
198 <        rnemdFileName = "velocityX.log";
199 <        vxzLog_.open(rnemdFileName.c_str());
197 >      break;
198 >    case rnemdNIVS:
199 >      switch (rnemdFluxType_) {
200 >      case rnemdKE:
201 >      case rnemdRotKE:
202 >      case rnemdFullKE:
203 >        hasCorrectFlux = hasKineticFlux;
204 >        break;
205 >      case rnemdPx:
206 >      case rnemdPy:
207 >      case rnemdPz:
208 >        hasCorrectFlux = hasMomentumFlux;
209 >        break;
210 >      case rnemdKePx:
211 >      case rnemdKePy:
212 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
213 >        break;
214 >      default:
215 >        methodFluxMismatch = true;
216 >        break;
217        }
218 <      if (outputVy_) {
219 <        rnemdFileName = "velocityY.log";
220 <        vyzLog_.open(rnemdFileName.c_str());
221 <      }
222 <
223 <      if (output3DTemp_) {
224 <        rnemdFileName = "temperatureX.log";
225 <        xTempLog_.open(rnemdFileName.c_str());
226 <        rnemdFileName = "temperatureY.log";
227 <        yTempLog_.open(rnemdFileName.c_str());
228 <        rnemdFileName = "temperatureZ.log";
229 <        zTempLog_.open(rnemdFileName.c_str());
230 <      }
231 <      if (outputRotTemp_) {
232 <        rnemdFileName = "temperatureR.log";
233 <        rotTempLog_.open(rnemdFileName.c_str());
234 <      }
235 <
236 < #ifdef IS_MPI
237 <    }
238 < #endif
239 <
240 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
241 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
242 <    midBin_ = nBins_ / 2;
243 <    if (simParams->haveRNEMD_binShift()) {
244 <      if (simParams->getRNEMD_binShift()) {
245 <        zShift_ = 0.5 / (RealType)(nBins_);
246 <      } else {
247 <        zShift_ = 0.0;
218 >      break;
219 >    case rnemdVSS:
220 >      switch (rnemdFluxType_) {
221 >      case rnemdKE:
222 >      case rnemdRotKE:
223 >      case rnemdFullKE:
224 >        hasCorrectFlux = hasKineticFlux;
225 >        break;
226 >      case rnemdPx:
227 >      case rnemdPy:
228 >      case rnemdPz:
229 >        hasCorrectFlux = hasMomentumFlux;
230 >        break;
231 >      case rnemdLx:
232 >      case rnemdLy:
233 >      case rnemdLz:
234 >        hasCorrectFlux = hasAngularMomentumFlux;
235 >        break;
236 >      case rnemdPvector:
237 >        hasCorrectFlux = hasMomentumFluxVector;
238 >        break;
239 >      case rnemdLvector:
240 >        hasCorrectFlux = hasAngularMomentumFluxVector;
241 >        break;
242 >      case rnemdKePx:
243 >      case rnemdKePy:
244 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
245 >        break;
246 >      case rnemdKeLx:
247 >      case rnemdKeLy:
248 >      case rnemdKeLz:
249 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
250 >        break;
251 >      case rnemdKePvector:
252 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
253 >        break;
254 >      case rnemdKeLvector:
255 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
256 >        break;
257 >      default:
258 >        methodFluxMismatch = true;
259 >        break;
260        }
261 <    } else {
262 <      zShift_ = 0.0;
261 >    default:
262 >      break;
263      }
208    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
209    //shift slabs by half slab width, maybe useful in heterogeneous systems
210    //set to 0.0 if not using it; N/A in status output yet
211    if (simParams->haveRNEMD_logWidth()) {
212      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
213      /*arbitary rnemdLogWidth_, no checking;
214      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
215        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
216        cerr << "Automaically set back to default.\n";
217        rnemdLogWidth_ = nBins_;
218      }*/
219    } else {
220      set_RNEMD_logWidth(nBins_);
221    }
222    tempHist_.resize(rnemdLogWidth_, 0.0);
223    tempCount_.resize(rnemdLogWidth_, 0);
224    pxzHist_.resize(rnemdLogWidth_, 0.0);
225    //vxzCount_.resize(rnemdLogWidth_, 0);
226    pyzHist_.resize(rnemdLogWidth_, 0.0);
227    //vyzCount_.resize(rnemdLogWidth_, 0);
264  
265 <    mHist_.resize(rnemdLogWidth_, 0.0);
266 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
267 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
268 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
269 <    xyzTempCount_.resize(rnemdLogWidth_, 0);
270 <    rotTempHist_.resize(rnemdLogWidth_, 0.0);
271 <    rotTempCount_.resize(rnemdLogWidth_, 0);
265 >    if (methodFluxMismatch) {
266 >      sprintf(painCave.errMsg,
267 >              "RNEMD: The current method,\n"
268 >              "\t\t%s\n"
269 >              "\tcannot be used with the current flux type, %s\n",
270 >              methStr.c_str(), fluxStr.c_str());
271 >      painCave.isFatal = 1;
272 >      painCave.severity = OPENMD_ERROR;
273 >      simError();        
274 >    }
275 >    if (!hasCorrectFlux) {
276 >      sprintf(painCave.errMsg,
277 >              "RNEMD: The current method, %s, and flux type, %s,\n"
278 >              "\tdid not have the correct flux value specified. Options\n"
279 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
280 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
281 >              methStr.c_str(), fluxStr.c_str());
282 >      painCave.isFatal = 1;
283 >      painCave.severity = OPENMD_ERROR;
284 >      simError();        
285 >    }
286  
287 <    set_RNEMD_exchange_total(0.0);
288 <    if (simParams->haveRNEMD_targetFlux()) {
289 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
287 >    if (hasKineticFlux) {
288 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
289 >      // into  amu / fs^3:
290 >      kineticFlux_ = rnemdParams->getKineticFlux()
291 >        * PhysicalConstants::energyConvert;
292      } else {
293 <      set_RNEMD_target_flux(0.0);
293 >      kineticFlux_ = 0.0;
294      }
295 <    if (simParams->haveRNEMD_targetJzKE()) {
296 <      set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
295 >    if (hasMomentumFluxVector) {
296 >      std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
297 >      if (mf.size() != 3) {
298 >          sprintf(painCave.errMsg,
299 >                  "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
300 >                  "\tthere should be 3 parameters, but %lu were specified.\n",
301 >                  mf.size());
302 >          painCave.isFatal = 1;
303 >          simError();      
304 >      }
305 >      momentumFluxVector_.x() = mf[0];
306 >      momentumFluxVector_.y() = mf[1];
307 >      momentumFluxVector_.z() = mf[2];
308      } else {
309 <      set_RNEMD_target_JzKE(0.0);
309 >      momentumFluxVector_ = V3Zero;
310 >      if (hasMomentumFlux) {
311 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
312 >        switch (rnemdFluxType_) {
313 >        case rnemdPx:
314 >          momentumFluxVector_.x() = momentumFlux;
315 >          break;
316 >        case rnemdPy:
317 >          momentumFluxVector_.y() = momentumFlux;
318 >          break;
319 >        case rnemdPz:
320 >          momentumFluxVector_.z() = momentumFlux;
321 >          break;
322 >        case rnemdKePx:
323 >          momentumFluxVector_.x() = momentumFlux;
324 >          break;
325 >        case rnemdKePy:
326 >          momentumFluxVector_.y() = momentumFlux;
327 >          break;
328 >        default:
329 >          break;
330 >        }
331 >      }
332      }
333 <    if (simParams->haveRNEMD_targetJzpx()) {
334 <      set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
333 >    if (hasAngularMomentumFluxVector) {
334 >      std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
335 >      if (amf.size() != 3) {
336 >        sprintf(painCave.errMsg,
337 >                "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
338 >                "\tthere should be 3 parameters, but %lu were specified.\n",
339 >                amf.size());
340 >        painCave.isFatal = 1;
341 >        simError();      
342 >      }
343 >      angularMomentumFluxVector_.x() = amf[0];
344 >      angularMomentumFluxVector_.y() = amf[1];
345 >      angularMomentumFluxVector_.z() = amf[2];
346      } else {
347 <      set_RNEMD_target_jzpx(0.0);
347 >      angularMomentumFluxVector_ = V3Zero;
348 >      if (hasAngularMomentumFlux) {
349 >        RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
350 >        switch (rnemdFluxType_) {
351 >        case rnemdLx:
352 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
353 >          break;
354 >        case rnemdLy:
355 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
356 >          break;
357 >        case rnemdLz:
358 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
359 >          break;
360 >        case rnemdKeLx:
361 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
362 >          break;
363 >        case rnemdKeLy:
364 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
365 >          break;
366 >        case rnemdKeLz:
367 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
368 >          break;
369 >        default:
370 >          break;
371 >        }
372 >      }        
373      }
374 <    jzp_.x() = targetJzpx_;
375 <    njzp_.x() = -targetJzpx_;
376 <    if (simParams->haveRNEMD_targetJzpy()) {
377 <      set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
374 >
375 >    if (hasCoordinateOrigin) {
376 >      std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
377 >      if (co.size() != 3) {
378 >        sprintf(painCave.errMsg,
379 >                "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
380 >                "\tthere should be 3 parameters, but %lu were specified.\n",
381 >                co.size());
382 >        painCave.isFatal = 1;
383 >        simError();      
384 >      }
385 >      coordinateOrigin_.x() = co[0];
386 >      coordinateOrigin_.y() = co[1];
387 >      coordinateOrigin_.z() = co[2];
388      } else {
389 <      set_RNEMD_target_jzpy(0.0);
389 >      coordinateOrigin_ = V3Zero;
390      }
391 <    jzp_.y() = targetJzpy_;
392 <    njzp_.y() = -targetJzpy_;
393 <    if (simParams->haveRNEMD_targetJzpz()) {
394 <      set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
395 <    } else {
396 <      set_RNEMD_target_jzpz(0.0);
391 >    
392 >    // do some sanity checking
393 >    
394 >    int selectionCount = seleMan_.getSelectionCount();    
395 >    int nIntegrable = info->getNGlobalIntegrableObjects();
396 >    if (selectionCount > nIntegrable) {
397 >      sprintf(painCave.errMsg,
398 >              "RNEMD: The current objectSelection,\n"
399 >              "\t\t%s\n"
400 >              "\thas resulted in %d selected objects.  However,\n"
401 >              "\tthe total number of integrable objects in the system\n"
402 >              "\tis only %d.  This is almost certainly not what you want\n"
403 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
404 >              "\tselector in the selection script!\n",
405 >              rnemdObjectSelection_.c_str(),
406 >              selectionCount, nIntegrable);
407 >      painCave.isFatal = 0;
408 >      painCave.severity = OPENMD_WARNING;
409 >      simError();
410 >    }
411 >    
412 >    areaAccumulator_ = new Accumulator();
413 >    
414 >    nBins_ = rnemdParams->getOutputBins();
415 >    binWidth_ = rnemdParams->getOutputBinWidth();
416 >    
417 >    data_.resize(RNEMD::ENDINDEX);
418 >    OutputData z;
419 >    z.units =  "Angstroms";
420 >    z.title =  "Z";
421 >    z.dataType = "RealType";
422 >    z.accumulator.reserve(nBins_);
423 >    for (int i = 0; i < nBins_; i++)
424 >      z.accumulator.push_back( new Accumulator() );
425 >    data_[Z] = z;
426 >    outputMap_["Z"] =  Z;
427 >    
428 >    OutputData r;
429 >    r.units =  "Angstroms";
430 >    r.title =  "R";
431 >    r.dataType = "RealType";
432 >    r.accumulator.reserve(nBins_);
433 >    for (int i = 0; i < nBins_; i++)
434 >      r.accumulator.push_back( new Accumulator() );
435 >    data_[R] = r;
436 >    outputMap_["R"] =  R;
437 >    
438 >    OutputData temperature;
439 >    temperature.units =  "K";
440 >    temperature.title =  "Temperature";
441 >    temperature.dataType = "RealType";
442 >    temperature.accumulator.reserve(nBins_);
443 >    for (int i = 0; i < nBins_; i++)
444 >      temperature.accumulator.push_back( new Accumulator() );
445 >    data_[TEMPERATURE] = temperature;
446 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
447 >    
448 >    OutputData velocity;
449 >    velocity.units = "angstroms/fs";
450 >    velocity.title =  "Velocity";  
451 >    velocity.dataType = "Vector3d";
452 >    velocity.accumulator.reserve(nBins_);
453 >    for (int i = 0; i < nBins_; i++)
454 >      velocity.accumulator.push_back( new VectorAccumulator() );
455 >    data_[VELOCITY] = velocity;
456 >    outputMap_["VELOCITY"] = VELOCITY;
457 >    
458 >    OutputData angularVelocity;
459 >    angularVelocity.units = "angstroms^2/fs";
460 >    angularVelocity.title =  "AngularVelocity";  
461 >    angularVelocity.dataType = "Vector3d";
462 >    angularVelocity.accumulator.reserve(nBins_);
463 >    for (int i = 0; i < nBins_; i++)
464 >      angularVelocity.accumulator.push_back( new VectorAccumulator() );
465 >    data_[ANGULARVELOCITY] = angularVelocity;
466 >    outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
467 >    
468 >    OutputData density;
469 >    density.units =  "g cm^-3";
470 >    density.title =  "Density";
471 >    density.dataType = "RealType";
472 >    density.accumulator.reserve(nBins_);
473 >    for (int i = 0; i < nBins_; i++)
474 >      density.accumulator.push_back( new Accumulator() );
475 >    data_[DENSITY] = density;
476 >    outputMap_["DENSITY"] =  DENSITY;
477 >    
478 >    if (hasOutputFields) {
479 >      parseOutputFileFormat(rnemdParams->getOutputFields());
480 >    } else {
481 >      if (usePeriodicBoundaryConditions_)
482 >        outputMask_.set(Z);
483 >      else
484 >        outputMask_.set(R);
485 >      switch (rnemdFluxType_) {
486 >      case rnemdKE:
487 >      case rnemdRotKE:
488 >      case rnemdFullKE:
489 >        outputMask_.set(TEMPERATURE);
490 >        break;
491 >      case rnemdPx:
492 >      case rnemdPy:
493 >        outputMask_.set(VELOCITY);
494 >        break;
495 >      case rnemdPz:        
496 >      case rnemdPvector:
497 >        outputMask_.set(VELOCITY);
498 >        outputMask_.set(DENSITY);
499 >        break;
500 >      case rnemdLx:
501 >      case rnemdLy:
502 >      case rnemdLz:
503 >      case rnemdLvector:
504 >        outputMask_.set(ANGULARVELOCITY);
505 >        break;
506 >      case rnemdKeLx:
507 >      case rnemdKeLy:
508 >      case rnemdKeLz:
509 >      case rnemdKeLvector:
510 >        outputMask_.set(TEMPERATURE);
511 >        outputMask_.set(ANGULARVELOCITY);
512 >        break;
513 >      case rnemdKePx:
514 >      case rnemdKePy:
515 >        outputMask_.set(TEMPERATURE);
516 >        outputMask_.set(VELOCITY);
517 >        break;
518 >      case rnemdKePvector:
519 >        outputMask_.set(TEMPERATURE);
520 >        outputMask_.set(VELOCITY);
521 >        outputMask_.set(DENSITY);        
522 >        break;
523 >      default:
524 >        break;
525 >      }
526      }
527 <    jzp_.z() = targetJzpz_;
528 <    njzp_.z() = -targetJzpz_;
529 <
530 < #ifndef IS_MPI
531 <    if (simParams->haveSeed()) {
532 <      seedValue = simParams->getSeed();
533 <      randNumGen_ = new SeqRandNumGen(seedValue);
534 <    }else {
535 <      randNumGen_ = new SeqRandNumGen();
536 <    }    
537 < #else
538 <    if (simParams->haveSeed()) {
539 <      seedValue = simParams->getSeed();
540 <      randNumGen_ = new ParallelRandNumGen(seedValue);
541 <    }else {
542 <      randNumGen_ = new ParallelRandNumGen();
543 <    }    
544 < #endif
527 >    
528 >    if (hasOutputFileName) {
529 >      rnemdFileName_ = rnemdParams->getOutputFileName();
530 >    } else {
531 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
532 >    }          
533 >    
534 >    exchangeTime_ = rnemdParams->getExchangeTime();
535 >    
536 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
537 >    // total exchange sums are zeroed out at the beginning:
538 >    
539 >    kineticExchange_ = 0.0;
540 >    momentumExchange_ = V3Zero;
541 >    angularMomentumExchange_ = V3Zero;
542 >    
543 >    std::ostringstream selectionAstream;
544 >    std::ostringstream selectionBstream;
545 >    
546 >    if (hasSelectionA_) {
547 >      selectionA_ = rnemdParams->getSelectionA();
548 >    } else {
549 >      if (usePeriodicBoundaryConditions_) {    
550 >        Mat3x3d hmat = currentSnap_->getHmat();
551 >        
552 >        if (hasSlabWidth)
553 >          slabWidth_ = rnemdParams->getSlabWidth();
554 >        else
555 >          slabWidth_ = hmat(2,2) / 10.0;
556 >        
557 >        if (hasSlabACenter)
558 >          slabACenter_ = rnemdParams->getSlabACenter();
559 >        else
560 >          slabACenter_ = 0.0;
561 >        
562 >        selectionAstream << "select wrappedz > "
563 >                         << slabACenter_ - 0.5*slabWidth_
564 >                         <<  " && wrappedz < "
565 >                         << slabACenter_ + 0.5*slabWidth_;
566 >        selectionA_ = selectionAstream.str();
567 >      } else {
568 >        if (hasSphereARadius)
569 >          sphereARadius_ = rnemdParams->getSphereARadius();
570 >        else {
571 >          // use an initial guess to the size of the inner slab to be 1/10 the
572 >          // radius of an approximately spherical hull:
573 >          Thermo thermo(info);
574 >          RealType hVol = thermo.getHullVolume();
575 >          sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
576 >        }
577 >        selectionAstream << "select r < " << sphereARadius_;
578 >        selectionA_ = selectionAstream.str();
579 >      }
580 >    }
581 >    
582 >    if (hasSelectionB_) {
583 >      selectionB_ = rnemdParams->getSelectionB();
584 >      
585 >    } else {
586 >      if (usePeriodicBoundaryConditions_) {    
587 >        Mat3x3d hmat = currentSnap_->getHmat();
588 >        
589 >        if (hasSlabWidth)
590 >          slabWidth_ = rnemdParams->getSlabWidth();
591 >        else
592 >          slabWidth_ = hmat(2,2) / 10.0;
593 >        
594 >        if (hasSlabBCenter)
595 >          slabBCenter_ = rnemdParams->getSlabBCenter();
596 >        else
597 >          slabBCenter_ = hmat(2,2) / 2.0;
598 >        
599 >        selectionBstream << "select wrappedz > "
600 >                         << slabBCenter_ - 0.5*slabWidth_
601 >                         <<  " && wrappedz < "
602 >                         << slabBCenter_ + 0.5*slabWidth_;
603 >        selectionB_ = selectionBstream.str();
604 >      } else {
605 >        if (hasSphereBRadius_) {
606 >          sphereBRadius_ = rnemdParams->getSphereBRadius();
607 >          selectionBstream << "select r > " << sphereBRadius_;
608 >          selectionB_ = selectionBstream.str();
609 >        } else {
610 >          selectionB_ = "select hull";
611 >          BisHull_ = true;
612 >          hasSelectionB_ = true;
613 >        }
614 >      }
615 >    }
616 >  
617 >  
618 >    // object evaluator:
619 >    evaluator_.loadScriptString(rnemdObjectSelection_);
620 >    seleMan_.setSelectionSet(evaluator_.evaluate());
621 >    evaluatorA_.loadScriptString(selectionA_);
622 >    evaluatorB_.loadScriptString(selectionB_);
623 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
624 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
625 >    commonA_ = seleManA_ & seleMan_;
626 >    commonB_ = seleManB_ & seleMan_;  
627    }
628    
287  RNEMD::~RNEMD() {
288    delete randNumGen_;
629      
630 +  RNEMD::~RNEMD() {
631 +    if (!doRNEMD_) return;
632   #ifdef IS_MPI
633      if (worldRank == 0) {
634   #endif
293      
294      sprintf(painCave.errMsg,
295              "RNEMD: total failed trials: %d\n",
296              failTrialCount_);
297      painCave.isFatal = 0;
298      painCave.severity = OPENMD_INFO;
299      simError();
635  
636 <      if (outputTemp_) tempLog_.close();
302 <      if (outputVx_)   vxzLog_.close();
303 <      if (outputVy_)   vyzLog_.close();
636 >      writeOutputFile();
637  
638 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
639 <          rnemdType_ == rnemdPyScale) {
307 <        sprintf(painCave.errMsg,
308 <                "RNEMD: total root-checking warnings: %d\n",
309 <                failRootCount_);
310 <        painCave.isFatal = 0;
311 <        painCave.severity = OPENMD_INFO;
312 <        simError();
313 <      }
314 <      if (output3DTemp_) {
315 <        xTempLog_.close();
316 <        yTempLog_.close();
317 <        zTempLog_.close();
318 <      }
319 <      if (outputRotTemp_) rotTempLog_.close();
320 <
638 >      rnemdFile_.close();
639 >      
640   #ifdef IS_MPI
641      }
642   #endif
643 +
644 +    // delete all of the objects we created:
645 +    delete areaAccumulator_;    
646 +    data_.clear();
647    }
648 +  
649 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
650 +    if (!doRNEMD_) return;
651 +    int selei;
652 +    int selej;
653  
326  void RNEMD::doSwap() {
327
654      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
655      Mat3x3d hmat = currentSnap_->getHmat();
656  
331    seleMan_.setSelectionSet(evaluator_.evaluate());
332
333    int selei;
657      StuntDouble* sd;
335    int idx;
658  
659 <    RealType min_val;
660 <    bool min_found = false;  
661 <    StuntDouble* min_sd;
659 >    RealType min_val(0.0);
660 >    int min_found = 0;  
661 >    StuntDouble* min_sd = NULL;
662  
663 <    RealType max_val;
664 <    bool max_found = false;
665 <    StuntDouble* max_sd;
344 <
345 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
346 <         sd = seleMan_.nextSelected(selei)) {
663 >    RealType max_val(0.0);
664 >    int max_found = 0;
665 >    StuntDouble* max_sd = NULL;
666  
667 <      idx = sd->getLocalIndex();
667 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
668 >         sd = seleManA_.nextSelected(selei)) {
669  
670        Vector3d pos = sd->getPos();
671 <
671 >      
672        // wrap the stuntdouble's position back into the box:
673 <
673 >      
674        if (usePeriodicBoundaryConditions_)
675          currentSnap_->wrapVector(pos);
676 <
677 <      // which bin is this stuntdouble in?
678 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
679 <
680 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
681 <
682 <
363 <      // if we're in bin 0 or the middleBin
364 <      if (binNo == 0 || binNo == midBin_) {
676 >      
677 >      RealType mass = sd->getMass();
678 >      Vector3d vel = sd->getVel();
679 >      RealType value(0.0);
680 >      
681 >      switch(rnemdFluxType_) {
682 >      case rnemdKE :
683          
684 <        RealType mass = sd->getMass();
685 <        Vector3d vel = sd->getVel();
686 <        RealType value;
687 <
688 <        switch(rnemdType_) {
371 <        case rnemdKineticSwap :
684 >        value = mass * vel.lengthSquare();
685 >        
686 >        if (sd->isDirectional()) {
687 >          Vector3d angMom = sd->getJ();
688 >          Mat3x3d I = sd->getI();
689            
690 <          value = mass * vel.lengthSquare();
691 <          
692 <          if (sd->isDirectional()) {
693 <            Vector3d angMom = sd->getJ();
694 <            Mat3x3d I = sd->getI();
695 <            
696 <            if (sd->isLinear()) {
697 <              int i = sd->linearAxis();
698 <              int j = (i + 1) % 3;
699 <              int k = (i + 2) % 3;
700 <              value += angMom[j] * angMom[j] / I(j, j) +
701 <                angMom[k] * angMom[k] / I(k, k);
702 <            } else {                        
703 <              value += angMom[0]*angMom[0]/I(0, 0)
704 <                + angMom[1]*angMom[1]/I(1, 1)
705 <                + angMom[2]*angMom[2]/I(2, 2);
706 <            }
707 <          } //angular momenta exchange enabled
708 <          //energyConvert temporarily disabled
709 <          //make exchangeSum_ comparable between swap & scale
710 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
711 <          value *= 0.5;
712 <          break;
713 <        case rnemdPx :
714 <          value = mass * vel[0];
715 <          break;
716 <        case rnemdPy :
717 <          value = mass * vel[1];
718 <          break;
719 <        case rnemdPz :
720 <          value = mass * vel[2];
721 <          break;
722 <        default :
723 <          break;
690 >          if (sd->isLinear()) {
691 >            int i = sd->linearAxis();
692 >            int j = (i + 1) % 3;
693 >            int k = (i + 2) % 3;
694 >            value += angMom[j] * angMom[j] / I(j, j) +
695 >              angMom[k] * angMom[k] / I(k, k);
696 >          } else {                        
697 >            value += angMom[0]*angMom[0]/I(0, 0)
698 >              + angMom[1]*angMom[1]/I(1, 1)
699 >              + angMom[2]*angMom[2]/I(2, 2);
700 >          }
701 >        } //angular momenta exchange enabled
702 >        value *= 0.5;
703 >        break;
704 >      case rnemdPx :
705 >        value = mass * vel[0];
706 >        break;
707 >      case rnemdPy :
708 >        value = mass * vel[1];
709 >        break;
710 >      case rnemdPz :
711 >        value = mass * vel[2];
712 >        break;
713 >      default :
714 >        break;
715 >      }
716 >      if (!max_found) {
717 >        max_val = value;
718 >        max_sd = sd;
719 >        max_found = 1;
720 >      } else {
721 >        if (max_val < value) {
722 >          max_val = value;
723 >          max_sd = sd;
724          }
725 +      }  
726 +    }
727          
728 <        if (binNo == 0) {
729 <          if (!min_found) {
730 <            min_val = value;
731 <            min_sd = sd;
732 <            min_found = true;
733 <          } else {
734 <            if (min_val > value) {
735 <              min_val = value;
736 <              min_sd = sd;
737 <            }
738 <          }
739 <        } else { //midBin_
740 <          if (!max_found) {
741 <            max_val = value;
742 <            max_sd = sd;
743 <            max_found = true;
744 <          } else {
745 <            if (max_val < value) {
746 <              max_val = value;
747 <              max_sd = sd;
748 <            }
749 <          }      
750 <        }
728 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
729 >         sd = seleManB_.nextSelected(selej)) {
730 >
731 >      Vector3d pos = sd->getPos();
732 >      
733 >      // wrap the stuntdouble's position back into the box:
734 >      
735 >      if (usePeriodicBoundaryConditions_)
736 >        currentSnap_->wrapVector(pos);
737 >      
738 >      RealType mass = sd->getMass();
739 >      Vector3d vel = sd->getVel();
740 >      RealType value(0.0);
741 >      
742 >      switch(rnemdFluxType_) {
743 >      case rnemdKE :
744 >        
745 >        value = mass * vel.lengthSquare();
746 >        
747 >        if (sd->isDirectional()) {
748 >          Vector3d angMom = sd->getJ();
749 >          Mat3x3d I = sd->getI();
750 >          
751 >          if (sd->isLinear()) {
752 >            int i = sd->linearAxis();
753 >            int j = (i + 1) % 3;
754 >            int k = (i + 2) % 3;
755 >            value += angMom[j] * angMom[j] / I(j, j) +
756 >              angMom[k] * angMom[k] / I(k, k);
757 >          } else {                        
758 >            value += angMom[0]*angMom[0]/I(0, 0)
759 >              + angMom[1]*angMom[1]/I(1, 1)
760 >              + angMom[2]*angMom[2]/I(2, 2);
761 >          }
762 >        } //angular momenta exchange enabled
763 >        value *= 0.5;
764 >        break;
765 >      case rnemdPx :
766 >        value = mass * vel[0];
767 >        break;
768 >      case rnemdPy :
769 >        value = mass * vel[1];
770 >        break;
771 >      case rnemdPz :
772 >        value = mass * vel[2];
773 >        break;
774 >      default :
775 >        break;
776        }
777 +      
778 +      if (!min_found) {
779 +        min_val = value;
780 +        min_sd = sd;
781 +        min_found = 1;
782 +      } else {
783 +        if (min_val > value) {
784 +          min_val = value;
785 +          min_sd = sd;
786 +        }
787 +      }
788      }
789 +    
790 + #ifdef IS_MPI    
791 +    int worldRank;
792 +    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
793 +        
794 +    int my_min_found = min_found;
795 +    int my_max_found = max_found;
796  
435 #ifdef IS_MPI
436    int nProc, worldRank;
437
438    nProc = MPI::COMM_WORLD.Get_size();
439    worldRank = MPI::COMM_WORLD.Get_rank();
440
441    bool my_min_found = min_found;
442    bool my_max_found = max_found;
443
797      // Even if we didn't find a minimum, did someone else?
798 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
798 >    MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
799 >                  MPI_COMM_WORLD);
800      // Even if we didn't find a maximum, did someone else?
801 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
801 >    MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
802 >                  MPI_COMM_WORLD);
803   #endif
804  
805      if (max_found && min_found) {
# Line 454 | Line 809 | namespace OpenMD {
809          RealType val;
810          int rank;
811        } max_vals, min_vals;
812 <    
812 >      
813        if (my_min_found) {
814          min_vals.val = min_val;
815        } else {
# Line 463 | Line 818 | namespace OpenMD {
818        min_vals.rank = worldRank;    
819        
820        // Who had the minimum?
821 <      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
822 <                                1, MPI::REALTYPE_INT, MPI::MINLOC);
821 >      MPI_Allreduce(&min_vals, &min_vals,
822 >                    1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
823        min_val = min_vals.val;
824        
825        if (my_max_found) {
# Line 475 | Line 830 | namespace OpenMD {
830        max_vals.rank = worldRank;    
831        
832        // Who had the maximum?
833 <      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
834 <                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
833 >      MPI_Allreduce(&max_vals, &max_vals,
834 >                    1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
835        max_val = max_vals.val;
836   #endif
837        
# Line 492 | Line 847 | namespace OpenMD {
847            Vector3d max_vel = max_sd->getVel();
848            RealType temp_vel;
849            
850 <          switch(rnemdType_) {
851 <          case rnemdKineticSwap :
850 >          switch(rnemdFluxType_) {
851 >          case rnemdKE :
852              min_sd->setVel(max_vel);
853              max_sd->setVel(min_vel);
854              if (min_sd->isDirectional() && max_sd->isDirectional()) {
# Line 536 | Line 891 | namespace OpenMD {
891            
892            Vector3d min_vel;
893            Vector3d max_vel = max_sd->getVel();
894 <          MPI::Status status;
894 >          MPI_Status status;
895  
896            // point-to-point swap of the velocity vector
897 <          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
898 <                                   min_vals.rank, 0,
899 <                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
900 <                                   min_vals.rank, 0, status);
897 >          MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
898 >                       min_vals.rank, 0,
899 >                       min_vel.getArrayPointer(), 3, MPI_REALTYPE,
900 >                       min_vals.rank, 0, MPI_COMM_WORLD, &status);
901            
902 <          switch(rnemdType_) {
903 <          case rnemdKineticSwap :
902 >          switch(rnemdFluxType_) {
903 >          case rnemdKE :
904              max_sd->setVel(min_vel);
905              //angular momenta exchange enabled
906              if (max_sd->isDirectional()) {
# Line 553 | Line 908 | namespace OpenMD {
908                Vector3d max_angMom = max_sd->getJ();
909                
910                // point-to-point swap of the angular momentum vector
911 <              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
912 <                                       MPI::REALTYPE, min_vals.rank, 1,
913 <                                       min_angMom.getArrayPointer(), 3,
914 <                                       MPI::REALTYPE, min_vals.rank, 1,
915 <                                       status);
911 >              MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
912 >                           MPI_REALTYPE, min_vals.rank, 1,
913 >                           min_angMom.getArrayPointer(), 3,
914 >                           MPI_REALTYPE, min_vals.rank, 1,
915 >                           MPI_COMM_WORLD, &status);
916                
917                max_sd->setJ(min_angMom);
918              }
# Line 582 | Line 937 | namespace OpenMD {
937            
938            Vector3d max_vel;
939            Vector3d min_vel = min_sd->getVel();
940 <          MPI::Status status;
940 >          MPI_Status status;
941            
942            // point-to-point swap of the velocity vector
943 <          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
944 <                                   max_vals.rank, 0,
945 <                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
946 <                                   max_vals.rank, 0, status);
943 >          MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
944 >                       max_vals.rank, 0,
945 >                       max_vel.getArrayPointer(), 3, MPI_REALTYPE,
946 >                       max_vals.rank, 0, MPI_COMM_WORLD, &status);
947            
948 <          switch(rnemdType_) {
949 <          case rnemdKineticSwap :
948 >          switch(rnemdFluxType_) {
949 >          case rnemdKE :
950              min_sd->setVel(max_vel);
951              //angular momenta exchange enabled
952              if (min_sd->isDirectional()) {
# Line 599 | Line 954 | namespace OpenMD {
954                Vector3d max_angMom;
955                
956                // point-to-point swap of the angular momentum vector
957 <              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
958 <                                       MPI::REALTYPE, max_vals.rank, 1,
959 <                                       max_angMom.getArrayPointer(), 3,
960 <                                       MPI::REALTYPE, max_vals.rank, 1,
961 <                                       status);
957 >              MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
958 >                           MPI_REALTYPE, max_vals.rank, 1,
959 >                           max_angMom.getArrayPointer(), 3,
960 >                           MPI_REALTYPE, max_vals.rank, 1,
961 >                           MPI_COMM_WORLD, &status);
962                
963                min_sd->setJ(max_angMom);
964              }
# Line 625 | Line 980 | namespace OpenMD {
980            }
981          }
982   #endif
983 <        exchangeSum_ += max_val - min_val;
983 >        
984 >        switch(rnemdFluxType_) {
985 >        case rnemdKE:
986 >          kineticExchange_ += max_val - min_val;
987 >          break;
988 >        case rnemdPx:
989 >          momentumExchange_.x() += max_val - min_val;
990 >          break;
991 >        case rnemdPy:
992 >          momentumExchange_.y() += max_val - min_val;
993 >          break;
994 >        case rnemdPz:
995 >          momentumExchange_.z() += max_val - min_val;
996 >          break;
997 >        default:
998 >          break;
999 >        }
1000        } else {        
1001          sprintf(painCave.errMsg,
1002 <                "RNEMD: exchange NOT performed because min_val > max_val\n");
1002 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
1003          painCave.isFatal = 0;
1004          painCave.severity = OPENMD_INFO;
1005          simError();        
# Line 636 | Line 1007 | namespace OpenMD {
1007        }
1008      } else {
1009        sprintf(painCave.errMsg,
1010 <              "RNEMD: exchange NOT performed because selected object\n"
1011 <              "\tnot present in at least one of the two slabs.\n");
1010 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
1011 >              "\twas not present in at least one of the two slabs.\n");
1012        painCave.isFatal = 0;
1013        painCave.severity = OPENMD_INFO;
1014        simError();        
1015        failTrialCount_++;
1016 <    }
646 <    
1016 >    }    
1017    }
1018    
1019 <  void RNEMD::doScale() {
1019 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1020 >    if (!doRNEMD_) return;
1021 >    int selei;
1022 >    int selej;
1023  
1024      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1025      Mat3x3d hmat = currentSnap_->getHmat();
1026  
654    seleMan_.setSelectionSet(evaluator_.evaluate());
655
656    int selei;
1027      StuntDouble* sd;
658    int idx;
1028  
1029      vector<StuntDouble*> hotBin, coldBin;
1030  
# Line 674 | Line 1043 | namespace OpenMD {
1043      RealType Kcz = 0.0;
1044      RealType Kcw = 0.0;
1045  
1046 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1047 <         sd = seleMan_.nextSelected(selei)) {
1046 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1047 >         sd = smanA.nextSelected(selei)) {
1048  
680      idx = sd->getLocalIndex();
681
1049        Vector3d pos = sd->getPos();
1050 <
1050 >      
1051        // wrap the stuntdouble's position back into the box:
1052 <
1052 >      
1053        if (usePeriodicBoundaryConditions_)
1054          currentSnap_->wrapVector(pos);
1055 +      
1056 +      
1057 +      RealType mass = sd->getMass();
1058 +      Vector3d vel = sd->getVel();
1059 +      
1060 +      hotBin.push_back(sd);
1061 +      Phx += mass * vel.x();
1062 +      Phy += mass * vel.y();
1063 +      Phz += mass * vel.z();
1064 +      Khx += mass * vel.x() * vel.x();
1065 +      Khy += mass * vel.y() * vel.y();
1066 +      Khz += mass * vel.z() * vel.z();
1067 +      if (sd->isDirectional()) {
1068 +        Vector3d angMom = sd->getJ();
1069 +        Mat3x3d I = sd->getI();
1070 +        if (sd->isLinear()) {
1071 +          int i = sd->linearAxis();
1072 +          int j = (i + 1) % 3;
1073 +          int k = (i + 2) % 3;
1074 +          Khw += angMom[j] * angMom[j] / I(j, j) +
1075 +            angMom[k] * angMom[k] / I(k, k);
1076 +        } else {
1077 +          Khw += angMom[0]*angMom[0]/I(0, 0)
1078 +            + angMom[1]*angMom[1]/I(1, 1)
1079 +            + angMom[2]*angMom[2]/I(2, 2);
1080 +        }
1081 +      }
1082 +    }
1083 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1084 +         sd = smanB.nextSelected(selej)) {
1085 +      Vector3d pos = sd->getPos();
1086 +      
1087 +      // wrap the stuntdouble's position back into the box:
1088 +      
1089 +      if (usePeriodicBoundaryConditions_)
1090 +        currentSnap_->wrapVector(pos);
1091 +            
1092 +      RealType mass = sd->getMass();
1093 +      Vector3d vel = sd->getVel();
1094  
1095 <      // which bin is this stuntdouble in?
1096 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1097 <
1098 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1099 <
1100 <      // if we're in bin 0 or the middleBin
1101 <      if (binNo == 0 || binNo == midBin_) {
1102 <        
1103 <        RealType mass = sd->getMass();
1104 <        Vector3d vel = sd->getVel();
1105 <      
1106 <        if (binNo == 0) {
1107 <          hotBin.push_back(sd);
1108 <          Phx += mass * vel.x();
1109 <          Phy += mass * vel.y();
1110 <          Phz += mass * vel.z();
1111 <          Khx += mass * vel.x() * vel.x();
1112 <          Khy += mass * vel.y() * vel.y();
1113 <          Khz += mass * vel.z() * vel.z();
1114 <          //if (rnemdType_ == rnemdKineticScaleVAM) {
1115 <          if (sd->isDirectional()) {
710 <            Vector3d angMom = sd->getJ();
711 <            Mat3x3d I = sd->getI();
712 <            if (sd->isLinear()) {
713 <              int i = sd->linearAxis();
714 <              int j = (i + 1) % 3;
715 <              int k = (i + 2) % 3;
716 <              Khw += angMom[j] * angMom[j] / I(j, j) +
717 <                angMom[k] * angMom[k] / I(k, k);
718 <            } else {
719 <              Khw += angMom[0]*angMom[0]/I(0, 0)
720 <                + angMom[1]*angMom[1]/I(1, 1)
721 <                + angMom[2]*angMom[2]/I(2, 2);
722 <            }
723 <          }
724 <          //}
725 <        } else { //midBin_
726 <          coldBin.push_back(sd);
727 <          Pcx += mass * vel.x();
728 <          Pcy += mass * vel.y();
729 <          Pcz += mass * vel.z();
730 <          Kcx += mass * vel.x() * vel.x();
731 <          Kcy += mass * vel.y() * vel.y();
732 <          Kcz += mass * vel.z() * vel.z();
733 <          //if (rnemdType_ == rnemdKineticScaleVAM) {
734 <          if (sd->isDirectional()) {
735 <            Vector3d angMom = sd->getJ();
736 <            Mat3x3d I = sd->getI();
737 <            if (sd->isLinear()) {
738 <              int i = sd->linearAxis();
739 <              int j = (i + 1) % 3;
740 <              int k = (i + 2) % 3;
741 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
742 <                angMom[k] * angMom[k] / I(k, k);
743 <            } else {
744 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
745 <                + angMom[1]*angMom[1]/I(1, 1)
746 <                + angMom[2]*angMom[2]/I(2, 2);
747 <            }
748 <          }
749 <          //}
750 <        }
1095 >      coldBin.push_back(sd);
1096 >      Pcx += mass * vel.x();
1097 >      Pcy += mass * vel.y();
1098 >      Pcz += mass * vel.z();
1099 >      Kcx += mass * vel.x() * vel.x();
1100 >      Kcy += mass * vel.y() * vel.y();
1101 >      Kcz += mass * vel.z() * vel.z();
1102 >      if (sd->isDirectional()) {
1103 >        Vector3d angMom = sd->getJ();
1104 >        Mat3x3d I = sd->getI();
1105 >        if (sd->isLinear()) {
1106 >          int i = sd->linearAxis();
1107 >          int j = (i + 1) % 3;
1108 >          int k = (i + 2) % 3;
1109 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1110 >            angMom[k] * angMom[k] / I(k, k);
1111 >        } else {
1112 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1113 >            + angMom[1]*angMom[1]/I(1, 1)
1114 >            + angMom[2]*angMom[2]/I(2, 2);
1115 >        }
1116        }
1117      }
1118      
# Line 760 | Line 1125 | namespace OpenMD {
1125      Kcz *= 0.5;
1126      Kcw *= 0.5;
1127  
763    std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
764              << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
765              << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
766    std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
767              << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
768
1128   #ifdef IS_MPI
1129 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1130 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1131 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1132 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1133 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1134 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1129 >    MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130 >    MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131 >    MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132 >    MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133 >    MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1134 >    MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1135  
1136 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1137 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1138 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1139 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1136 >    MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137 >    MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138 >    MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1139 >    MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1140  
1141 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1142 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1143 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1144 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1141 >    MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142 >    MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143 >    MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1144 >    MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1145   #endif
1146  
1147      //solve coldBin coeff's first
1148      RealType px = Pcx / Phx;
1149      RealType py = Pcy / Phy;
1150      RealType pz = Pcz / Phz;
1151 <    RealType c, x, y, z;
1151 >    RealType c(0.0), x(0.0), y(0.0), z(0.0);
1152      bool successfulScale = false;
1153 <    if ((rnemdType_ == rnemdKineticScaleVAM) ||
1154 <        (rnemdType_ == rnemdKineticScaleAM)) {
1153 >    if ((rnemdFluxType_ == rnemdFullKE) ||
1154 >        (rnemdFluxType_ == rnemdRotKE)) {
1155        //may need sanity check Khw & Kcw > 0
1156  
1157 <      if (rnemdType_ == rnemdKineticScaleVAM) {
1158 <        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
1157 >      if (rnemdFluxType_ == rnemdFullKE) {
1158 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1159        } else {
1160 <        c = 1.0 - targetFlux_ / Kcw;
1160 >        c = 1.0 - kineticTarget_ / Kcw;
1161        }
1162  
1163        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1164          c = sqrt(c);
1165 <        std::cerr << "cold slab scaling coefficient: " << c << endl;
807 <        //now convert to hotBin coefficient
1165 >
1166          RealType w = 0.0;
1167 <        if (rnemdType_ ==  rnemdKineticScaleVAM) {
1167 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1168            x = 1.0 + px * (1.0 - c);
1169            y = 1.0 + py * (1.0 - c);
1170            z = 1.0 + pz * (1.0 - c);
# Line 820 | Line 1178 | namespace OpenMD {
1178            */
1179            if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1180                (fabs(z - 1.0) < 0.1)) {
1181 <            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1181 >            w = 1.0 + (kineticTarget_
1182 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1183                         + Khz * (1.0 - z * z)) / Khw;
1184            }//no need to calculate w if x, y or z is out of range
1185          } else {
1186 <          w = 1.0 + targetFlux_ / Khw;
1186 >          w = 1.0 + kineticTarget_ / Khw;
1187          }
1188          if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1189            //if w is in the right range, so should be x, y, z.
1190            vector<StuntDouble*>::iterator sdi;
1191            Vector3d vel;
1192 <          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1193 <            if (rnemdType_ == rnemdKineticScaleVAM) {
1192 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1193 >            if (rnemdFluxType_ == rnemdFullKE) {
1194                vel = (*sdi)->getVel() * c;
836              //vel.x() *= c;
837              //vel.y() *= c;
838              //vel.z() *= c;
1195                (*sdi)->setVel(vel);
1196              }
1197              if ((*sdi)->isDirectional()) {
1198                Vector3d angMom = (*sdi)->getJ() * c;
843              //angMom[0] *= c;
844              //angMom[1] *= c;
845              //angMom[2] *= c;
1199                (*sdi)->setJ(angMom);
1200              }
1201            }
1202            w = sqrt(w);
1203 <          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
1204 <                    << "\twh= " << w << endl;
852 <          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
853 <            if (rnemdType_ == rnemdKineticScaleVAM) {
1203 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1204 >            if (rnemdFluxType_ == rnemdFullKE) {
1205                vel = (*sdi)->getVel();
1206                vel.x() *= x;
1207                vel.y() *= y;
# Line 859 | Line 1210 | namespace OpenMD {
1210              }
1211              if ((*sdi)->isDirectional()) {
1212                Vector3d angMom = (*sdi)->getJ() * w;
862              //angMom[0] *= w;
863              //angMom[1] *= w;
864              //angMom[2] *= w;
1213                (*sdi)->setJ(angMom);
1214              }
1215            }
1216            successfulScale = true;
1217 <          exchangeSum_ += targetFlux_;
1217 >          kineticExchange_ += kineticTarget_;
1218          }
1219        }
1220      } else {
1221 <      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1222 <      switch(rnemdType_) {
1223 <      case rnemdKineticScale :
1221 >      RealType a000(0.0), a110(0.0), c0(0.0);
1222 >      RealType a001(0.0), a111(0.0), b01(0.0), b11(0.0), c1(0.0);
1223 >      switch(rnemdFluxType_) {
1224 >      case rnemdKE :
1225          /* used hotBin coeff's & only scale x & y dimensions
1226             RealType px = Phx / Pcx;
1227             RealType py = Phy / Pcy;
1228             a110 = Khy;
1229 <           c0 = - Khx - Khy - targetFlux_;
1229 >           c0 = - Khx - Khy - kineticTarget_;
1230             a000 = Khx;
1231             a111 = Kcy * py * py;
1232             b11 = -2.0 * Kcy * py * (1.0 + py);
1233 <           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
1233 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1234             b01 = -2.0 * Kcx * px * (1.0 + px);
1235             a001 = Kcx * px * px;
1236          */
1237          //scale all three dimensions, let c_x = c_y
1238          a000 = Kcx + Kcy;
1239          a110 = Kcz;
1240 <        c0 = targetFlux_ - Kcx - Kcy - Kcz;
1240 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1241          a001 = Khx * px * px + Khy * py * py;
1242          a111 = Khz * pz * pz;
1243          b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1244          b11 = -2.0 * Khz * pz * (1.0 + pz);
1245          c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1246 <          + Khz * pz * (2.0 + pz) - targetFlux_;
1246 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1247          break;
1248 <      case rnemdPxScale :
1249 <        c = 1 - targetFlux_ / Pcx;
1248 >      case rnemdPx :
1249 >        c = 1 - momentumTarget_.x() / Pcx;
1250          a000 = Kcy;
1251          a110 = Kcz;
1252          c0 = Kcx * c * c - Kcx - Kcy - Kcz;
# Line 908 | Line 1257 | namespace OpenMD {
1257          c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1258            + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1259          break;
1260 <      case rnemdPyScale :
1261 <        c = 1 - targetFlux_ / Pcy;
1260 >      case rnemdPy :
1261 >        c = 1 - momentumTarget_.y() / Pcy;
1262          a000 = Kcx;
1263          a110 = Kcz;
1264          c0 = Kcy * c * c - Kcx - Kcy - Kcz;
# Line 920 | Line 1269 | namespace OpenMD {
1269          c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1270            + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1271          break;
1272 <      case rnemdPzScale ://we don't really do this, do we?
1273 <        c = 1 - targetFlux_ / Pcz;
1272 >      case rnemdPz ://we don't really do this, do we?
1273 >        c = 1 - momentumTarget_.z() / Pcz;
1274          a000 = Kcx;
1275          a110 = Kcy;
1276          c0 = Kcz * c * c - Kcx - Kcy - Kcz;
# Line 971 | Line 1320 | namespace OpenMD {
1320        vector<RealType>::iterator ri;
1321        RealType r1, r2, alpha0;
1322        vector<pair<RealType,RealType> > rps;
1323 <      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1323 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1324          r2 = *ri;
1325 <        //check if FindRealRoots() give the right answer
1325 >        // Check to see if FindRealRoots() gave the right answer:
1326          if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1327            sprintf(painCave.errMsg,
1328                    "RNEMD Warning: polynomial solve seems to have an error!");
# Line 981 | Line 1330 | namespace OpenMD {
1330            simError();
1331            failRootCount_++;
1332          }
1333 <        //might not be useful w/o rescaling coefficients
1333 >        // Might not be useful w/o rescaling coefficients
1334          alpha0 = -c0 - a110 * r2 * r2;
1335          if (alpha0 >= 0.0) {
1336            r1 = sqrt(alpha0 / a000);
# Line 996 | Line 1345 | namespace OpenMD {
1345            }
1346          }
1347        }
1348 <      // Consider combining together the solving pair part w/ the searching
1349 <      // best solution part so that we don't need the pairs vector
1348 >      // Consider combining together the part for solving for the pair
1349 >      // w/ the searching for the best solution part so that we don't
1350 >      // need the pairs vector:
1351        if (!rps.empty()) {
1352          RealType smallestDiff = HONKING_LARGE_VALUE;
1353 <        RealType diff;
1354 <        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1355 <        vector<pair<RealType,RealType> >::iterator rpi;
1356 <        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1353 >        RealType diff(0.0);
1354 >        std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1355 >        std::vector<std::pair<RealType,RealType> >::iterator rpi;
1356 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1357            r1 = (*rpi).first;
1358            r2 = (*rpi).second;
1359 <          switch(rnemdType_) {
1360 <          case rnemdKineticScale :
1359 >          switch(rnemdFluxType_) {
1360 >          case rnemdKE :
1361              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1362                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1363                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1364              break;
1365 <          case rnemdPxScale :
1365 >          case rnemdPx :
1366              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1367                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1368              break;
1369 <          case rnemdPyScale :
1369 >          case rnemdPy :
1370              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1371                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1372              break;
1373 <          case rnemdPzScale :
1373 >          case rnemdPz :
1374              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1375                + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1376            default :
# Line 1034 | Line 1384 | namespace OpenMD {
1384   #ifdef IS_MPI
1385          if (worldRank == 0) {
1386   #endif
1387 <          sprintf(painCave.errMsg,
1388 <                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1389 <                  bestPair.first, bestPair.second);
1390 <          painCave.isFatal = 0;
1391 <          painCave.severity = OPENMD_INFO;
1392 <          simError();
1387 >          // sprintf(painCave.errMsg,
1388 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1389 >          //         bestPair.first, bestPair.second);
1390 >          // painCave.isFatal = 0;
1391 >          // painCave.severity = OPENMD_INFO;
1392 >          // simError();
1393   #ifdef IS_MPI
1394          }
1395   #endif
1396          
1397 <        switch(rnemdType_) {
1398 <        case rnemdKineticScale :
1397 >        switch(rnemdFluxType_) {
1398 >        case rnemdKE :
1399            x = bestPair.first;
1400            y = bestPair.first;
1401            z = bestPair.second;
1402            break;
1403 <        case rnemdPxScale :
1403 >        case rnemdPx :
1404            x = c;
1405            y = bestPair.first;
1406            z = bestPair.second;
1407            break;
1408 <        case rnemdPyScale :
1408 >        case rnemdPy :
1409            x = bestPair.first;
1410            y = c;
1411            z = bestPair.second;
1412            break;
1413 <        case rnemdPzScale :
1413 >        case rnemdPz :
1414            x = bestPair.first;
1415            y = bestPair.second;
1416            z = c;
# Line 1070 | Line 1420 | namespace OpenMD {
1420          }
1421          vector<StuntDouble*>::iterator sdi;
1422          Vector3d vel;
1423 <        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1423 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1424            vel = (*sdi)->getVel();
1425            vel.x() *= x;
1426            vel.y() *= y;
# Line 1081 | Line 1431 | namespace OpenMD {
1431          x = 1.0 + px * (1.0 - x);
1432          y = 1.0 + py * (1.0 - y);
1433          z = 1.0 + pz * (1.0 - z);
1434 <        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1434 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1435            vel = (*sdi)->getVel();
1436            vel.x() *= x;
1437            vel.y() *= y;
# Line 1089 | Line 1439 | namespace OpenMD {
1439            (*sdi)->setVel(vel);
1440          }
1441          successfulScale = true;
1442 <        exchangeSum_ += targetFlux_;
1442 >        switch(rnemdFluxType_) {
1443 >        case rnemdKE :
1444 >          kineticExchange_ += kineticTarget_;
1445 >          break;
1446 >        case rnemdPx :
1447 >        case rnemdPy :
1448 >        case rnemdPz :
1449 >          momentumExchange_ += momentumTarget_;
1450 >          break;          
1451 >        default :
1452 >          break;
1453 >        }      
1454        }
1455      }
1456      if (successfulScale != true) {
1457        sprintf(painCave.errMsg,
1458 <              "RNEMD: exchange NOT performed!\n");
1458 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1459 >              "\tthe constraint equations may not exist or there may be\n"
1460 >              "\tno selected objects in one or both slabs.\n");
1461        painCave.isFatal = 0;
1462        painCave.severity = OPENMD_INFO;
1463        simError();        
1464        failTrialCount_++;
1465      }
1466    }
1467 +  
1468 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1469 +    if (!doRNEMD_) return;
1470 +    int selei;
1471 +    int selej;
1472  
1105  void RNEMD::doShiftScale() {
1106
1473      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1474      Mat3x3d hmat = currentSnap_->getHmat();
1475  
1110    seleMan_.setSelectionSet(evaluator_.evaluate());
1111
1112    int selei;
1476      StuntDouble* sd;
1114    int idx;
1477  
1478      vector<StuntDouble*> hotBin, coldBin;
1479  
1480      Vector3d Ph(V3Zero);
1481 +    Vector3d Lh(V3Zero);
1482      RealType Mh = 0.0;
1483 +    Mat3x3d Ih(0.0);
1484      RealType Kh = 0.0;
1485      Vector3d Pc(V3Zero);
1486 +    Vector3d Lc(V3Zero);
1487      RealType Mc = 0.0;
1488 +    Mat3x3d Ic(0.0);
1489      RealType Kc = 0.0;
1490  
1491 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1492 <         sd = seleMan_.nextSelected(selei)) {
1491 >    // Constraints can be on only the linear or angular momentum, but
1492 >    // not both.  Usually, the user will specify which they want, but
1493 >    // in case they don't, the use of periodic boundaries should make
1494 >    // the choice for us.
1495 >    bool doLinearPart = false;
1496 >    bool doAngularPart = false;
1497  
1498 <      idx = sd->getLocalIndex();
1498 >    switch (rnemdFluxType_) {
1499 >    case rnemdPx:
1500 >    case rnemdPy:
1501 >    case rnemdPz:
1502 >    case rnemdPvector:
1503 >    case rnemdKePx:
1504 >    case rnemdKePy:
1505 >    case rnemdKePvector:
1506 >      doLinearPart = true;
1507 >      break;
1508 >    case rnemdLx:
1509 >    case rnemdLy:
1510 >    case rnemdLz:
1511 >    case rnemdLvector:
1512 >    case rnemdKeLx:
1513 >    case rnemdKeLy:
1514 >    case rnemdKeLz:
1515 >    case rnemdKeLvector:
1516 >      doAngularPart = true;
1517 >      break;
1518 >    case rnemdKE:
1519 >    case rnemdRotKE:
1520 >    case rnemdFullKE:
1521 >    default:
1522 >      if (usePeriodicBoundaryConditions_)
1523 >        doLinearPart = true;
1524 >      else
1525 >        doAngularPart = true;
1526 >      break;
1527 >    }
1528 >    
1529 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1530 >         sd = smanA.nextSelected(selei)) {
1531  
1532        Vector3d pos = sd->getPos();
1533  
1534        // wrap the stuntdouble's position back into the box:
1535 +      
1536 +      if (usePeriodicBoundaryConditions_)
1537 +        currentSnap_->wrapVector(pos);
1538 +      
1539 +      RealType mass = sd->getMass();
1540 +      Vector3d vel = sd->getVel();
1541 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1542 +      RealType r2;
1543 +      
1544 +      hotBin.push_back(sd);
1545 +      Ph += mass * vel;
1546 +      Mh += mass;
1547 +      Kh += mass * vel.lengthSquare();
1548 +      Lh += mass * cross(rPos, vel);
1549 +      Ih -= outProduct(rPos, rPos) * mass;
1550 +      r2 = rPos.lengthSquare();
1551 +      Ih(0, 0) += mass * r2;
1552 +      Ih(1, 1) += mass * r2;
1553 +      Ih(2, 2) += mass * r2;
1554 +      
1555 +      if (rnemdFluxType_ == rnemdFullKE) {
1556 +        if (sd->isDirectional()) {
1557 +          Vector3d angMom = sd->getJ();
1558 +          Mat3x3d I = sd->getI();
1559 +          if (sd->isLinear()) {
1560 +            int i = sd->linearAxis();
1561 +            int j = (i + 1) % 3;
1562 +            int k = (i + 2) % 3;
1563 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1564 +              angMom[k] * angMom[k] / I(k, k);
1565 +          } else {
1566 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1567 +              angMom[1] * angMom[1] / I(1, 1) +
1568 +              angMom[2] * angMom[2] / I(2, 2);
1569 +          }
1570 +        }
1571 +      }
1572 +    }
1573 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1574 +         sd = smanB.nextSelected(selej)) {
1575  
1576 +      Vector3d pos = sd->getPos();
1577 +      
1578 +      // wrap the stuntdouble's position back into the box:
1579 +      
1580        if (usePeriodicBoundaryConditions_)
1581          currentSnap_->wrapVector(pos);
1582 +      
1583 +      RealType mass = sd->getMass();
1584 +      Vector3d vel = sd->getVel();
1585 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1586 +      RealType r2;
1587  
1588 <      // which bin is this stuntdouble in?
1589 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1590 <
1591 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1592 <
1593 <      // if we're in bin 0 or the middleBin
1594 <      if (binNo == 0 || binNo == midBin_) {
1595 <        
1596 <        RealType mass = sd->getMass();
1597 <        Vector3d vel = sd->getVel();
1598 <      
1599 <        if (binNo == 0) {
1600 <          hotBin.push_back(sd);
1601 <          //std::cerr << "before, velocity = " << vel << endl;
1602 <          Ph += mass * vel;
1603 <          //std::cerr << "after, velocity = " << vel << endl;
1604 <          Mh += mass;
1605 <          Kh += mass * vel.lengthSquare();
1606 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1607 <            if (sd->isDirectional()) {
1608 <              Vector3d angMom = sd->getJ();
1609 <              Mat3x3d I = sd->getI();
1610 <              if (sd->isLinear()) {
1611 <                int i = sd->linearAxis();
1612 <                int j = (i + 1) % 3;
1613 <                int k = (i + 2) % 3;
1614 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1164 <                  angMom[k] * angMom[k] / I(k, k);
1165 <              } else {
1166 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1167 <                  angMom[1] * angMom[1] / I(1, 1) +
1168 <                  angMom[2] * angMom[2] / I(2, 2);
1169 <              }
1170 <            }
1171 <          }
1172 <        } else { //midBin_
1173 <          coldBin.push_back(sd);
1174 <          Pc += mass * vel;
1175 <          Mc += mass;
1176 <          Kc += mass * vel.lengthSquare();
1177 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1178 <            if (sd->isDirectional()) {
1179 <              Vector3d angMom = sd->getJ();
1180 <              Mat3x3d I = sd->getI();
1181 <              if (sd->isLinear()) {
1182 <                int i = sd->linearAxis();
1183 <                int j = (i + 1) % 3;
1184 <                int k = (i + 2) % 3;
1185 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1186 <                  angMom[k] * angMom[k] / I(k, k);
1187 <              } else {
1188 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1189 <                  angMom[1] * angMom[1] / I(1, 1) +
1190 <                  angMom[2] * angMom[2] / I(2, 2);
1191 <              }
1192 <            }
1193 <          }
1194 <        }
1588 >      coldBin.push_back(sd);
1589 >      Pc += mass * vel;
1590 >      Mc += mass;
1591 >      Kc += mass * vel.lengthSquare();
1592 >      Lc += mass * cross(rPos, vel);
1593 >      Ic -= outProduct(rPos, rPos) * mass;
1594 >      r2 = rPos.lengthSquare();
1595 >      Ic(0, 0) += mass * r2;
1596 >      Ic(1, 1) += mass * r2;
1597 >      Ic(2, 2) += mass * r2;
1598 >      
1599 >      if (rnemdFluxType_ == rnemdFullKE) {
1600 >        if (sd->isDirectional()) {
1601 >          Vector3d angMom = sd->getJ();
1602 >          Mat3x3d I = sd->getI();
1603 >          if (sd->isLinear()) {
1604 >            int i = sd->linearAxis();
1605 >            int j = (i + 1) % 3;
1606 >            int k = (i + 2) % 3;
1607 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1608 >              angMom[k] * angMom[k] / I(k, k);
1609 >          } else {
1610 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1611 >              angMom[1] * angMom[1] / I(1, 1) +
1612 >              angMom[2] * angMom[2] / I(2, 2);
1613 >          }
1614 >        }
1615        }
1616      }
1617      
1618      Kh *= 0.5;
1619      Kc *= 0.5;
1620 <
1201 <    std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1202 <              << "\tKc= " << Kc << endl;
1203 <    std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1204 <
1620 >    
1621   #ifdef IS_MPI
1622 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1623 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1624 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1625 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1626 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1627 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1622 >    MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1623 >                  MPI_COMM_WORLD);
1624 >    MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1625 >                  MPI_COMM_WORLD);
1626 >    MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1627 >                  MPI_COMM_WORLD);
1628 >    MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1629 >                  MPI_COMM_WORLD);
1630 >    MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1631 >    MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632 >    MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1633 >    MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634 >    MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1635 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1636 >    MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1637 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1638   #endif
1639 +    
1640  
1641 +    Vector3d ac, acrec, bc, bcrec;
1642 +    Vector3d ah, ahrec, bh, bhrec;
1643 +
1644      bool successfulExchange = false;
1645      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1646        Vector3d vc = Pc / Mc;
1647 <      Vector3d ac = njzp_ / Mc + vc;
1648 <      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1647 >      ac = -momentumTarget_ / Mc + vc;
1648 >      acrec = -momentumTarget_ / Mc;
1649 >      
1650 >      // We now need the inverse of the inertia tensor to calculate the
1651 >      // angular velocity of the cold slab;
1652 >      Mat3x3d Ici = Ic.inverse();
1653 >      Vector3d omegac = Ici * Lc;
1654 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1655 >      bcrec = bc - omegac;
1656 >      
1657 >      RealType cNumerator = Kc - kineticTarget_;
1658 >      if (doLinearPart)
1659 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1660 >      
1661 >      if (doAngularPart)
1662 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1663 >
1664        if (cNumerator > 0.0) {
1665 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1665 >        
1666 >        RealType cDenominator = Kc;
1667 >
1668 >        if (doLinearPart)
1669 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1670 >
1671 >        if (doAngularPart)
1672 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1673 >        
1674          if (cDenominator > 0.0) {
1675            RealType c = sqrt(cNumerator / cDenominator);
1676            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1677 +            
1678              Vector3d vh = Ph / Mh;
1679 <            Vector3d ah = jzp_ / Mh + vh;
1680 <            RealType hNumerator = Kh + targetJzKE_
1681 <              - 0.5 * Mh * ah.lengthSquare();
1682 <            if (hNumerator > 0.0) {
1683 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1679 >            ah = momentumTarget_ / Mh + vh;
1680 >            ahrec = momentumTarget_ / Mh;
1681 >            
1682 >            // We now need the inverse of the inertia tensor to
1683 >            // calculate the angular velocity of the hot slab;
1684 >            Mat3x3d Ihi = Ih.inverse();
1685 >            Vector3d omegah = Ihi * Lh;
1686 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1687 >            bhrec = bh - omegah;
1688 >            
1689 >            RealType hNumerator = Kh + kineticTarget_;
1690 >            if (doLinearPart)
1691 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1692 >            
1693 >            if (doAngularPart)
1694 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1695 >              
1696 >            if (hNumerator > 0.0) {
1697 >              
1698 >              RealType hDenominator = Kh;
1699 >              if (doLinearPart)
1700 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1701 >              if (doAngularPart)
1702 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1703 >              
1704                if (hDenominator > 0.0) {
1705                  RealType h = sqrt(hNumerator / hDenominator);
1706                  if ((h > 0.9) && (h < 1.1)) {
1707 <                  std::cerr << "cold slab scaling coefficient: " << c << "\n";
1234 <                  std::cerr << "hot slab scaling coefficient: " << h << "\n";
1707 >                  
1708                    vector<StuntDouble*>::iterator sdi;
1709                    Vector3d vel;
1710 <                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1710 >                  Vector3d rPos;
1711 >                  
1712 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1713                      //vel = (*sdi)->getVel();
1714 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1714 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1715 >                    if (doLinearPart)
1716 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1717 >                    if (doAngularPart)
1718 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1719 >
1720                      (*sdi)->setVel(vel);
1721 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1721 >                    if (rnemdFluxType_ == rnemdFullKE) {
1722                        if ((*sdi)->isDirectional()) {
1723                          Vector3d angMom = (*sdi)->getJ() * c;
1724                          (*sdi)->setJ(angMom);
1725                        }
1726                      }
1727                    }
1728 <                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1728 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1729                      //vel = (*sdi)->getVel();
1730 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1730 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1731 >                    if (doLinearPart)
1732 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1733 >                    if (doAngularPart)
1734 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1735 >
1736                      (*sdi)->setVel(vel);
1737 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1737 >                    if (rnemdFluxType_ == rnemdFullKE) {
1738                        if ((*sdi)->isDirectional()) {
1739                          Vector3d angMom = (*sdi)->getJ() * h;
1740                          (*sdi)->setJ(angMom);
# Line 1257 | Line 1742 | namespace OpenMD {
1742                      }
1743                    }
1744                    successfulExchange = true;
1745 <                  exchangeSum_ += targetFlux_;
1746 <                  // this is a redundant variable for doShiftScale() so that
1747 <                  // RNEMD can output one exchange quantity needed in a job.
1263 <                  // need a better way to do this.
1745 >                  kineticExchange_ += kineticTarget_;
1746 >                  momentumExchange_ += momentumTarget_;
1747 >                  angularMomentumExchange_ += angularMomentumTarget_;
1748                  }
1749                }
1750              }
# Line 1270 | Line 1754 | namespace OpenMD {
1754      }
1755      if (successfulExchange != true) {
1756        sprintf(painCave.errMsg,
1757 <              "RNEMD: exchange NOT performed!\n");
1757 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1758 >              "\tthe constraint equations may not exist or there may be\n"
1759 >              "\tno selected objects in one or both slabs.\n");
1760        painCave.isFatal = 0;
1761        painCave.severity = OPENMD_INFO;
1762        simError();        
# Line 1278 | Line 1764 | namespace OpenMD {
1764      }
1765    }
1766  
1767 <  void RNEMD::doRNEMD() {
1767 >  RealType RNEMD::getDividingArea() {
1768  
1769 <    switch(rnemdType_) {
1770 <    case rnemdKineticScale :
1771 <    case rnemdKineticScaleVAM :
1772 <    case rnemdKineticScaleAM :
1773 <    case rnemdPxScale :
1774 <    case rnemdPyScale :
1775 <    case rnemdPzScale :
1776 <      doScale();
1777 <      break;
1778 <    case rnemdKineticSwap :
1779 <    case rnemdPx :
1780 <    case rnemdPy :
1781 <    case rnemdPz :
1782 <      doSwap();
1783 <      break;
1784 <    case rnemdShiftScaleV :
1785 <    case rnemdShiftScaleVAM :
1786 <      doShiftScale();
1769 >    if (hasDividingArea_) return dividingArea_;
1770 >
1771 >    RealType areaA, areaB;
1772 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1773 >
1774 >    if (hasSelectionA_) {
1775 >
1776 >      if (evaluatorA_.hasSurfaceArea())
1777 >        areaA = evaluatorA_.getSurfaceArea();
1778 >      else {
1779 >        
1780 >        int isd;
1781 >        StuntDouble* sd;
1782 >        vector<StuntDouble*> aSites;
1783 >        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1784 >        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1785 >             sd = seleManA_.nextSelected(isd)) {
1786 >          aSites.push_back(sd);
1787 >        }
1788 > #if defined(HAVE_QHULL)
1789 >        ConvexHull* surfaceMeshA = new ConvexHull();
1790 >        surfaceMeshA->computeHull(aSites);
1791 >        areaA = surfaceMeshA->getArea();
1792 >        delete surfaceMeshA;
1793 > #else
1794 >        sprintf( painCave.errMsg,
1795 >               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1796 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1797 >        painCave.severity = OPENMD_ERROR;
1798 >        painCave.isFatal = 1;
1799 >        simError();
1800 > #endif
1801 >      }
1802 >
1803 >    } else {
1804 >      if (usePeriodicBoundaryConditions_) {
1805 >        // in periodic boundaries, the surface area is twice the x-y
1806 >        // area of the current box:
1807 >        areaA = 2.0 * snap->getXYarea();
1808 >      } else {
1809 >        // in non-periodic simulations, without explicitly setting
1810 >        // selections, the sphere radius sets the surface area of the
1811 >        // dividing surface:
1812 >        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1813 >      }
1814 >    }
1815 >
1816 >    if (hasSelectionB_) {
1817 >      if (evaluatorB_.hasSurfaceArea()) {
1818 >        areaB = evaluatorB_.getSurfaceArea();
1819 >      } else {
1820 >
1821 >        int isd;
1822 >        StuntDouble* sd;
1823 >        vector<StuntDouble*> bSites;
1824 >        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1825 >        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1826 >             sd = seleManB_.nextSelected(isd)) {
1827 >          bSites.push_back(sd);
1828 >        }
1829 >        
1830 > #if defined(HAVE_QHULL)
1831 >        ConvexHull* surfaceMeshB = new ConvexHull();    
1832 >        surfaceMeshB->computeHull(bSites);
1833 >        areaB = surfaceMeshB->getArea();
1834 >        delete surfaceMeshB;
1835 > #else
1836 >        sprintf( painCave.errMsg,
1837 >                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1838 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1839 >        painCave.severity = OPENMD_ERROR;
1840 >        painCave.isFatal = 1;
1841 >        simError();
1842 > #endif
1843 >      }
1844 >      
1845 >    } else {
1846 >      if (usePeriodicBoundaryConditions_) {
1847 >        // in periodic boundaries, the surface area is twice the x-y
1848 >        // area of the current box:
1849 >        areaB = 2.0 * snap->getXYarea();
1850 >      } else {
1851 >        // in non-periodic simulations, without explicitly setting
1852 >        // selections, but if a sphereBradius has been set, just use that:
1853 >        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1854 >      }
1855 >    }
1856 >      
1857 >    dividingArea_ = min(areaA, areaB);
1858 >    hasDividingArea_ = true;
1859 >    return dividingArea_;
1860 >  }
1861 >  
1862 >  void RNEMD::doRNEMD() {
1863 >    if (!doRNEMD_) return;
1864 >    trialCount_++;
1865 >
1866 >    // object evaluator:
1867 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1868 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1869 >
1870 >    evaluatorA_.loadScriptString(selectionA_);
1871 >    evaluatorB_.loadScriptString(selectionB_);
1872 >
1873 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1874 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1875 >
1876 >    commonA_ = seleManA_ & seleMan_;
1877 >    commonB_ = seleManB_ & seleMan_;
1878 >
1879 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1880 >    // dt = exchange time interval
1881 >    // flux = target flux
1882 >    // dividingArea = smallest dividing surface between the two regions
1883 >
1884 >    hasDividingArea_ = false;
1885 >    RealType area = getDividingArea();
1886 >
1887 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1888 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1889 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1890 >
1891 >    switch(rnemdMethod_) {
1892 >    case rnemdSwap:
1893 >      doSwap(commonA_, commonB_);
1894        break;
1895 <    case rnemdUnknown :
1895 >    case rnemdNIVS:
1896 >      doNIVS(commonA_, commonB_);
1897 >      break;
1898 >    case rnemdVSS:
1899 >      doVSS(commonA_, commonB_);
1900 >      break;
1901 >    case rnemdUnkownMethod:
1902      default :
1903        break;
1904      }
1905    }
1906  
1907    void RNEMD::collectData() {
1908 <
1908 >    if (!doRNEMD_) return;
1909      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1910 +
1911 +    // collectData can be called more frequently than the doRNEMD, so use the
1912 +    // computed area from the last exchange time:
1913 +    RealType area = getDividingArea();
1914 +    areaAccumulator_->add(area);
1915      Mat3x3d hmat = currentSnap_->getHmat();
1916 +    Vector3d u = angularMomentumFluxVector_;
1917 +    u.normalize();
1918  
1919      seleMan_.setSelectionSet(evaluator_.evaluate());
1920  
1921 <    int selei;
1921 >    int selei(0);
1922      StuntDouble* sd;
1923 <    int idx;
1923 >    int binNo;
1924 >    RealType mass;
1925 >    Vector3d vel;
1926 >    Vector3d rPos;
1927 >    RealType KE;
1928 >    Vector3d L;
1929 >    Mat3x3d I;
1930 >    RealType r2;
1931  
1932 +    vector<RealType> binMass(nBins_, 0.0);
1933 +    vector<Vector3d> binP(nBins_, V3Zero);
1934 +    vector<RealType> binOmega(nBins_, 0.0);
1935 +    vector<Vector3d> binL(nBins_, V3Zero);
1936 +    vector<Mat3x3d>  binI(nBins_);
1937 +    vector<RealType> binKE(nBins_, 0.0);
1938 +    vector<int> binDOF(nBins_, 0);
1939 +    vector<int> binCount(nBins_, 0);
1940 +
1941      // alternative approach, track all molecules instead of only those
1942      // selected for scaling/swapping:
1943      /*
1944 <    SimInfo::MoleculeIterator miter;
1945 <    vector<StuntDouble*>::iterator iiter;
1946 <    Molecule* mol;
1947 <    StuntDouble* integrableObject;
1948 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1949 <         mol = info_->nextMolecule(miter))
1950 <      integrableObject is essentially sd
1951 <        for (integrableObject = mol->beginIntegrableObject(iiter);
1952 <             integrableObject != NULL;
1953 <             integrableObject = mol->nextIntegrableObject(iiter))
1944 >      SimInfo::MoleculeIterator miter;
1945 >      vector<StuntDouble*>::iterator iiter;
1946 >      Molecule* mol;
1947 >      StuntDouble* sd;
1948 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1949 >      mol = info_->nextMolecule(miter))
1950 >      sd is essentially sd
1951 >      for (sd = mol->beginIntegrableObject(iiter);
1952 >      sd != NULL;
1953 >      sd = mol->nextIntegrableObject(iiter))
1954      */
1955 +
1956      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1957 <         sd = seleMan_.nextSelected(selei)) {
1958 <      
1336 <      idx = sd->getLocalIndex();
1337 <      
1957 >         sd = seleMan_.nextSelected(selei)) {    
1958 >    
1959        Vector3d pos = sd->getPos();
1960  
1961        // wrap the stuntdouble's position back into the box:
1962        
1963 <      if (usePeriodicBoundaryConditions_)
1963 >      if (usePeriodicBoundaryConditions_) {
1964          currentSnap_->wrapVector(pos);
1965 <      
1966 <      // which bin is this stuntdouble in?
1967 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1968 <      
1969 <      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1970 <        rnemdLogWidth_;
1971 <      // no symmetrization allowed due to arbitary rnemdLogWidth_
1972 <      /*
1973 <      if (rnemdLogWidth_ == midBin_ + 1)
1974 <        if (binNo > midBin_)
1354 <          binNo = nBins_ - binNo;
1355 <      */
1356 <      RealType mass = sd->getMass();
1357 <      mHist_[binNo] += mass;
1358 <      Vector3d vel = sd->getVel();
1359 <      RealType value;
1360 <      //RealType xVal, yVal, zVal;
1965 >        // which bin is this stuntdouble in?
1966 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1967 >        // Shift molecules by half a box to have bins start at 0
1968 >        // The modulo operator is used to wrap the case when we are
1969 >        // beyond the end of the bins back to the beginning.
1970 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1971 >      } else {
1972 >        Vector3d rPos = pos - coordinateOrigin_;
1973 >        binNo = int(rPos.length() / binWidth_);
1974 >      }
1975  
1976 <      if (outputTemp_) {
1977 <        value = mass * vel.lengthSquare();
1978 <        tempCount_[binNo] += 3;
1979 <        if (sd->isDirectional()) {
1980 <          Vector3d angMom = sd->getJ();
1981 <          Mat3x3d I = sd->getI();
1982 <          if (sd->isLinear()) {
1983 <            int i = sd->linearAxis();
1984 <            int j = (i + 1) % 3;
1985 <            int k = (i + 2) % 3;
1986 <            value += angMom[j] * angMom[j] / I(j, j) +
1987 <              angMom[k] * angMom[k] / I(k, k);
1988 <            tempCount_[binNo] +=2;
1989 <          } else {
1990 <            value += angMom[0] * angMom[0] / I(0, 0) +
1991 <              angMom[1]*angMom[1]/I(1, 1) +
1992 <              angMom[2]*angMom[2]/I(2, 2);
1993 <            tempCount_[binNo] +=3;
1994 <          }
1995 <        }
1996 <        value = value / PhysicalConstants::energyConvert
1997 <          / PhysicalConstants::kb;//may move to getStatus()
1998 <        tempHist_[binNo] += value;
1976 >      mass = sd->getMass();
1977 >      vel = sd->getVel();
1978 >      rPos = sd->getPos() - coordinateOrigin_;
1979 >      KE = 0.5 * mass * vel.lengthSquare();
1980 >      L = mass * cross(rPos, vel);
1981 >      I = outProduct(rPos, rPos) * mass;
1982 >      r2 = rPos.lengthSquare();
1983 >      I(0, 0) += mass * r2;
1984 >      I(1, 1) += mass * r2;
1985 >      I(2, 2) += mass * r2;
1986 >
1987 >      // Project the relative position onto a plane perpendicular to
1988 >      // the angularMomentumFluxVector:
1989 >      // Vector3d rProj = rPos - dot(rPos, u) * u;
1990 >      // Project the velocity onto a plane perpendicular to the
1991 >      // angularMomentumFluxVector:
1992 >      // Vector3d vProj = vel  - dot(vel, u) * u;
1993 >      // Compute angular velocity vector (should be nearly parallel to
1994 >      // angularMomentumFluxVector
1995 >      // Vector3d aVel = cross(rProj, vProj);
1996 >
1997 >      if (binNo >= 0 && binNo < nBins_)  {
1998 >        binCount[binNo]++;
1999 >        binMass[binNo] += mass;
2000 >        binP[binNo] += mass*vel;
2001 >        binKE[binNo] += KE;
2002 >        binI[binNo] += I;
2003 >        binL[binNo] += L;
2004 >        binDOF[binNo] += 3;
2005 >        
2006 >        if (sd->isDirectional()) {
2007 >          Vector3d angMom = sd->getJ();
2008 >          Mat3x3d Ia = sd->getI();
2009 >          if (sd->isLinear()) {
2010 >            int i = sd->linearAxis();
2011 >            int j = (i + 1) % 3;
2012 >            int k = (i + 2) % 3;
2013 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2014 >                                   angMom[k] * angMom[k] / Ia(k, k));
2015 >            binDOF[binNo] += 2;
2016 >          } else {
2017 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2018 >                                   angMom[1] * angMom[1] / Ia(1, 1) +
2019 >                                   angMom[2] * angMom[2] / Ia(2, 2));
2020 >            binDOF[binNo] += 3;
2021 >          }
2022 >        }
2023        }
2024 <      if (outputVx_) {
1387 <        value = mass * vel[0];
1388 <        //vxzCount_[binNo]++;
1389 <        pxzHist_[binNo] += value;
1390 <      }
1391 <      if (outputVy_) {
1392 <        value = mass * vel[1];
1393 <        //vyzCount_[binNo]++;
1394 <        pyzHist_[binNo] += value;
1395 <      }
2024 >    }
2025  
2026 <      if (output3DTemp_) {
2027 <        value = mass * vel.x() * vel.x();
2028 <        xTempHist_[binNo] += value;
2029 <        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
2030 <          / PhysicalConstants::kb;
2031 <        yTempHist_[binNo] += value;
2032 <        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
2033 <          / PhysicalConstants::kb;
2034 <        zTempHist_[binNo] += value;
2035 <        xyzTempCount_[binNo]++;
2026 > #ifdef IS_MPI
2027 >
2028 >    for (int i = 0; i < nBins_; i++) {
2029 >      
2030 >      MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2031 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2032 >      MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2033 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 >      MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2035 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 >      MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2037 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038 >      MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2039 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2040 >      MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2041 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2042 >      MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2043 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2044 >      //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2045 >      //                          1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2046 >    }
2047 >    
2048 > #endif
2049 >
2050 >    Vector3d omega;
2051 >    RealType den;
2052 >    RealType temp;
2053 >    RealType z;
2054 >    RealType r;
2055 >    for (int i = 0; i < nBins_; i++) {
2056 >      if (usePeriodicBoundaryConditions_) {
2057 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2058 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2059 >          / currentSnap_->getVolume() ;
2060 >      } else {
2061 >        r = (((RealType)i + 0.5) * binWidth_);
2062 >        RealType rinner = (RealType)i * binWidth_;
2063 >        RealType router = (RealType)(i+1) * binWidth_;
2064 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2065 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2066        }
2067 <      if (outputRotTemp_) {
1409 <        if (sd->isDirectional()) {
1410 <          Vector3d angMom = sd->getJ();
1411 <          Mat3x3d I = sd->getI();
1412 <          if (sd->isLinear()) {
1413 <            int i = sd->linearAxis();
1414 <            int j = (i + 1) % 3;
1415 <            int k = (i + 2) % 3;
1416 <            value = angMom[j] * angMom[j] / I(j, j) +
1417 <              angMom[k] * angMom[k] / I(k, k);
1418 <            rotTempCount_[binNo] +=2;
1419 <          } else {
1420 <            value = angMom[0] * angMom[0] / I(0, 0) +
1421 <              angMom[1] * angMom[1] / I(1, 1) +
1422 <              angMom[2] * angMom[2] / I(2, 2);
1423 <            rotTempCount_[binNo] +=3;
1424 <          }
1425 <        }
1426 <        value = value / PhysicalConstants::energyConvert
1427 <          / PhysicalConstants::kb;//may move to getStatus()
1428 <        rotTempHist_[binNo] += value;
1429 <      }
2067 >      vel = binP[i] / binMass[i];
2068  
2069 +      omega = binI[i].inverse() * binL[i];
2070 +
2071 +      // omega = binOmega[i] / binCount[i];
2072 +
2073 +      if (binCount[i] > 0) {
2074 +        // only add values if there are things to add
2075 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2076 +                                 PhysicalConstants::energyConvert);
2077 +        
2078 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2079 +          if(outputMask_[j]) {
2080 +            switch(j) {
2081 +            case Z:
2082 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2083 +              break;
2084 +            case R:
2085 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2086 +              break;
2087 +            case TEMPERATURE:
2088 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2089 +              break;
2090 +            case VELOCITY:
2091 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2092 +              break;
2093 +            case ANGULARVELOCITY:  
2094 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2095 +              break;
2096 +            case DENSITY:
2097 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2098 +              break;
2099 +            }
2100 +          }
2101 +        }
2102 +      }
2103      }
2104 +    hasData_ = true;
2105    }
2106  
2107    void RNEMD::getStarted() {
2108 +    if (!doRNEMD_) return;
2109 +    hasDividingArea_ = false;
2110      collectData();
2111 <    /*now can output profile in step 0, but might not be useful;
1437 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1438 <    Stats& stat = currentSnap_->statData;
1439 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1440 <    */
1441 <    //may output a header for the log file here
1442 <    getStatus();
2111 >    writeOutputFile();
2112    }
2113  
2114 <  void RNEMD::getStatus() {
2115 <
2116 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2117 <    Stats& stat = currentSnap_->statData;
2118 <    RealType time = currentSnap_->getTime();
2119 <
2120 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2121 <    //or to be more meaningful, define another item as exchangeSum_ / time
2122 <    int j;
2123 <
2124 < #ifdef IS_MPI
2125 <
2126 <    // all processors have the same number of bins, and STL vectors pack their
2127 <    // arrays, so in theory, this should be safe:
2128 <
2129 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
2130 <                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2131 <    if (outputTemp_) {
1463 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1464 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1465 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1466 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1467 <    }
1468 <    if (outputVx_) {
1469 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1470 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1471 <      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1472 <      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
2114 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2115 >    if (!doRNEMD_) return;
2116 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2117 >    
2118 >    while(tokenizer.hasMoreTokens()) {
2119 >      std::string token(tokenizer.nextToken());
2120 >      toUpper(token);
2121 >      OutputMapType::iterator i = outputMap_.find(token);
2122 >      if (i != outputMap_.end()) {
2123 >        outputMask_.set(i->second);
2124 >      } else {
2125 >        sprintf( painCave.errMsg,
2126 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2127 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2128 >        painCave.isFatal = 0;
2129 >        painCave.severity = OPENMD_ERROR;
2130 >        simError();            
2131 >      }
2132      }
2133 <    if (outputVy_) {
2134 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
2135 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2136 <      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
2137 <      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
2138 <    }
2139 <    if (output3DTemp_) {
1481 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1482 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1483 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1484 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1485 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1486 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1487 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1488 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1489 <    }
1490 <    if (outputRotTemp_) {
1491 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1492 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1493 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1494 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1495 <    }
1496 <
2133 >  }
2134 >  
2135 >  void RNEMD::writeOutputFile() {
2136 >    if (!doRNEMD_) return;
2137 >    if (!hasData_) return;
2138 >    
2139 > #ifdef IS_MPI
2140      // If we're the root node, should we print out the results
2141 <    int worldRank = MPI::COMM_WORLD.Get_rank();
2141 >    int worldRank;
2142 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2143 >
2144      if (worldRank == 0) {
2145   #endif
2146 +      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2147 +      
2148 +      if( !rnemdFile_ ){        
2149 +        sprintf( painCave.errMsg,
2150 +                 "Could not open \"%s\" for RNEMD output.\n",
2151 +                 rnemdFileName_.c_str());
2152 +        painCave.isFatal = 1;
2153 +        simError();
2154 +      }
2155  
2156 <      if (outputTemp_) {
2157 <        tempLog_ << time;
2158 <        for (j = 0; j < rnemdLogWidth_; j++) {
2159 <          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
2160 <        }
2161 <        tempLog_ << endl;
2156 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2157 >
2158 >      RealType time = currentSnap_->getTime();
2159 >      RealType avgArea;
2160 >      areaAccumulator_->getAverage(avgArea);
2161 >
2162 >      RealType Jz(0.0);
2163 >      Vector3d JzP(V3Zero);
2164 >      Vector3d JzL(V3Zero);
2165 >      if (time >= info_->getSimParams()->getDt()) {
2166 >        Jz = kineticExchange_ / (time * avgArea)
2167 >          / PhysicalConstants::energyConvert;
2168 >        JzP = momentumExchange_ / (time * avgArea);
2169 >        JzL = angularMomentumExchange_ / (time * avgArea);
2170        }
2171 <      if (outputVx_) {
2172 <        vxzLog_ << time;
2173 <        for (j = 0; j < rnemdLogWidth_; j++) {
2174 <          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
2175 <        }
2176 <        vxzLog_ << endl;
2171 >
2172 >      rnemdFile_ << "#######################################################\n";
2173 >      rnemdFile_ << "# RNEMD {\n";
2174 >
2175 >      map<string, RNEMDMethod>::iterator mi;
2176 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2177 >        if ( (*mi).second == rnemdMethod_)
2178 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2179        }
2180 <      if (outputVy_) {
2181 <        vyzLog_ << time;
2182 <        for (j = 0; j < rnemdLogWidth_; j++) {
2183 <          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1520 <        }
1521 <        vyzLog_ << endl;
2180 >      map<string, RNEMDFluxType>::iterator fi;
2181 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2182 >        if ( (*fi).second == rnemdFluxType_)
2183 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2184        }
2185 +      
2186 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2187  
2188 <      if (output3DTemp_) {
2189 <        RealType temp;
2190 <        xTempLog_ << time;
2191 <        for (j = 0; j < rnemdLogWidth_; j++) {
2192 <          if (outputVx_)
2193 <            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
2194 <          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
2195 <            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
2196 <          xTempLog_ << "\t" << temp;
2188 >      rnemdFile_ << "#    objectSelection = \""
2189 >                 << rnemdObjectSelection_ << "\";\n";
2190 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2191 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2192 >      rnemdFile_ << "# }\n";
2193 >      rnemdFile_ << "#######################################################\n";
2194 >      rnemdFile_ << "# RNEMD report:\n";      
2195 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2196 >      rnemdFile_ << "# Target flux:\n";
2197 >      rnemdFile_ << "#           kinetic = "
2198 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2199 >                 << " (kcal/mol/A^2/fs)\n";
2200 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2201 >                 << " (amu/A/fs^2)\n";
2202 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2203 >                 << " (amu/A^2/fs^2)\n";
2204 >      rnemdFile_ << "# Target one-time exchanges:\n";
2205 >      rnemdFile_ << "#          kinetic = "
2206 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2207 >                 << " (kcal/mol)\n";
2208 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2209 >                 << " (amu*A/fs)\n";
2210 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2211 >                 << " (amu*A^2/fs)\n";
2212 >      rnemdFile_ << "# Actual exchange totals:\n";
2213 >      rnemdFile_ << "#          kinetic = "
2214 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2215 >                 << " (kcal/mol)\n";
2216 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2217 >                 << " (amu*A/fs)\n";      
2218 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2219 >                 << " (amu*A^2/fs)\n";      
2220 >      rnemdFile_ << "# Actual flux:\n";
2221 >      rnemdFile_ << "#          kinetic = " << Jz
2222 >                 << " (kcal/mol/A^2/fs)\n";
2223 >      rnemdFile_ << "#          momentum = " << JzP
2224 >                 << " (amu/A/fs^2)\n";
2225 >      rnemdFile_ << "#  angular momentum = " << JzL
2226 >                 << " (amu/A^2/fs^2)\n";
2227 >      rnemdFile_ << "# Exchange statistics:\n";
2228 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2229 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2230 >      if (rnemdMethod_ == rnemdNIVS) {
2231 >        rnemdFile_ << "#  NIVS root-check errors = "
2232 >                   << failRootCount_ << "\n";
2233 >      }
2234 >      rnemdFile_ << "#######################################################\n";
2235 >      
2236 >      
2237 >      
2238 >      //write title
2239 >      rnemdFile_ << "#";
2240 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2241 >        if (outputMask_[i]) {
2242 >          rnemdFile_ << "\t" << data_[i].title <<
2243 >            "(" << data_[i].units << ")";
2244 >          // add some extra tabs for column alignment
2245 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2246          }
1534        xTempLog_ << endl;
1535        yTempLog_ << time;
1536        for (j = 0; j < rnemdLogWidth_; j++) {
1537          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1538        }
1539        yTempLog_ << endl;
1540        zTempLog_ << time;
1541        for (j = 0; j < rnemdLogWidth_; j++) {
1542          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1543        }
1544        zTempLog_ << endl;
2247        }
2248 <      if (outputRotTemp_) {
2249 <        rotTempLog_ << time;
2250 <        for (j = 0; j < rnemdLogWidth_; j++) {
2251 <          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
2252 <        }
2253 <        rotTempLog_ << endl;
2254 <      }
2248 >      rnemdFile_ << std::endl;
2249 >      
2250 >      rnemdFile_.precision(8);
2251 >      
2252 >      for (int j = 0; j < nBins_; j++) {        
2253 >        
2254 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2255 >          if (outputMask_[i]) {
2256 >            if (data_[i].dataType == "RealType")
2257 >              writeReal(i,j);
2258 >            else if (data_[i].dataType == "Vector3d")
2259 >              writeVector(i,j);
2260 >            else {
2261 >              sprintf( painCave.errMsg,
2262 >                       "RNEMD found an unknown data type for: %s ",
2263 >                       data_[i].title.c_str());
2264 >              painCave.isFatal = 1;
2265 >              simError();
2266 >            }
2267 >          }
2268 >        }
2269 >        rnemdFile_ << std::endl;
2270 >        
2271 >      }        
2272  
2273 +      rnemdFile_ << "#######################################################\n";
2274 +      rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2275 +      rnemdFile_ << "#######################################################\n";
2276 +
2277 +
2278 +      for (int j = 0; j < nBins_; j++) {        
2279 +        rnemdFile_ << "#";
2280 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2281 +          if (outputMask_[i]) {
2282 +            if (data_[i].dataType == "RealType")
2283 +              writeRealErrorBars(i,j);
2284 +            else if (data_[i].dataType == "Vector3d")
2285 +              writeVectorErrorBars(i,j);
2286 +            else {
2287 +              sprintf( painCave.errMsg,
2288 +                       "RNEMD found an unknown data type for: %s ",
2289 +                       data_[i].title.c_str());
2290 +              painCave.isFatal = 1;
2291 +              simError();
2292 +            }
2293 +          }
2294 +        }
2295 +        rnemdFile_ << std::endl;
2296 +        
2297 +      }        
2298 +      
2299 +      rnemdFile_.flush();
2300 +      rnemdFile_.close();
2301 +      
2302   #ifdef IS_MPI
2303      }
2304   #endif
2305 +    
2306 +  }
2307 +  
2308 +  void RNEMD::writeReal(int index, unsigned int bin) {
2309 +    if (!doRNEMD_) return;
2310 +    assert(index >=0 && index < ENDINDEX);
2311 +    assert(int(bin) < nBins_);
2312 +    RealType s;
2313 +    int count;
2314 +    
2315 +    count = data_[index].accumulator[bin]->count();
2316 +    if (count == 0) return;
2317 +    
2318 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2319 +    
2320 +    if (! isinf(s) && ! isnan(s)) {
2321 +      rnemdFile_ << "\t" << s;
2322 +    } else{
2323 +      sprintf( painCave.errMsg,
2324 +               "RNEMD detected a numerical error writing: %s for bin %u",
2325 +               data_[index].title.c_str(), bin);
2326 +      painCave.isFatal = 1;
2327 +      simError();
2328 +    }    
2329 +  }
2330 +  
2331 +  void RNEMD::writeVector(int index, unsigned int bin) {
2332 +    if (!doRNEMD_) return;
2333 +    assert(index >=0 && index < ENDINDEX);
2334 +    assert(int(bin) < nBins_);
2335 +    Vector3d s;
2336 +    int count;
2337 +    
2338 +    count = data_[index].accumulator[bin]->count();
2339  
2340 <    for (j = 0; j < rnemdLogWidth_; j++) {
2341 <      mHist_[j] = 0.0;
2340 >    if (count == 0) return;
2341 >
2342 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2343 >    if (isinf(s[0]) || isnan(s[0]) ||
2344 >        isinf(s[1]) || isnan(s[1]) ||
2345 >        isinf(s[2]) || isnan(s[2]) ) {      
2346 >      sprintf( painCave.errMsg,
2347 >               "RNEMD detected a numerical error writing: %s for bin %u",
2348 >               data_[index].title.c_str(), bin);
2349 >      painCave.isFatal = 1;
2350 >      simError();
2351 >    } else {
2352 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2353      }
2354 <    if (outputTemp_)
1562 <      for (j = 0; j < rnemdLogWidth_; j++) {
1563 <        tempCount_[j] = 0;
1564 <        tempHist_[j] = 0.0;
1565 <      }
1566 <    if (outputVx_)
1567 <      for (j = 0; j < rnemdLogWidth_; j++) {
1568 <        //pxzCount_[j] = 0;
1569 <        pxzHist_[j] = 0.0;
1570 <      }
1571 <    if (outputVy_)
1572 <      for (j = 0; j < rnemdLogWidth_; j++) {
1573 <        //pyzCount_[j] = 0;
1574 <        pyzHist_[j] = 0.0;
1575 <      }
2354 >  }  
2355  
2356 <    if (output3DTemp_)
2357 <      for (j = 0; j < rnemdLogWidth_; j++) {
2358 <        xTempHist_[j] = 0.0;
2359 <        yTempHist_[j] = 0.0;
2360 <        zTempHist_[j] = 0.0;
2361 <        xyzTempCount_[j] = 0;
2362 <      }
2363 <    if (outputRotTemp_)
2364 <      for (j = 0; j < rnemdLogWidth_; j++) {
2365 <        rotTempCount_[j] = 0;
2366 <        rotTempHist_[j] = 0.0;
2367 <      }
2356 >  void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2357 >    if (!doRNEMD_) return;
2358 >    assert(index >=0 && index < ENDINDEX);
2359 >    assert(int(bin) < nBins_);
2360 >    RealType s;
2361 >    int count;
2362 >    
2363 >    count = data_[index].accumulator[bin]->count();
2364 >    if (count == 0) return;
2365 >    
2366 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2367 >    
2368 >    if (! isinf(s) && ! isnan(s)) {
2369 >      rnemdFile_ << "\t" << s;
2370 >    } else{
2371 >      sprintf( painCave.errMsg,
2372 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2373 >               data_[index].title.c_str(), bin);
2374 >      painCave.isFatal = 1;
2375 >      simError();
2376 >    }    
2377    }
2378 +  
2379 +  void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2380 +    if (!doRNEMD_) return;
2381 +    assert(index >=0 && index < ENDINDEX);
2382 +    assert(int(bin) < nBins_);
2383 +    Vector3d s;
2384 +    int count;
2385 +    
2386 +    count = data_[index].accumulator[bin]->count();
2387 +    if (count == 0) return;
2388 +
2389 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2390 +    if (isinf(s[0]) || isnan(s[0]) ||
2391 +        isinf(s[1]) || isnan(s[1]) ||
2392 +        isinf(s[2]) || isnan(s[2]) ) {      
2393 +      sprintf( painCave.errMsg,
2394 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2395 +               data_[index].title.c_str(), bin);
2396 +      painCave.isFatal = 1;
2397 +      simError();
2398 +    } else {
2399 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2400 +    }
2401 +  }  
2402   }
2403  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines