ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 2027 by gezelter, Wed Oct 22 14:29:20 2014 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #ifdef IS_MPI
42 + #include <mpi.h>
43 + #endif
44  
45   #include <cmath>
46 < #include "integrators/RNEMD.hpp"
46 > #include <sstream>
47 > #include <string>
48 >
49 > #include "rnemd/RNEMD.hpp"
50   #include "math/Vector3.hpp"
51   #include "math/Vector.hpp"
52   #include "math/SquareMatrix3.hpp"
# Line 49 | Line 55
55   #include "primitives/StuntDouble.hpp"
56   #include "utils/PhysicalConstants.hpp"
57   #include "utils/Tuple.hpp"
58 + #include "brains/Thermo.hpp"
59 + #include "math/ConvexHull.hpp"
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
56 < #include "math/ParallelRandNumGen.hpp"
57 < #include <mpi.h>
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
# Line 63 | Line 69 | namespace OpenMD {
69   namespace OpenMD {
70    
71    RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 +                                evaluatorA_(info), seleManA_(info),
73 +                                commonA_(info), evaluatorB_(info),
74 +                                seleManB_(info), commonB_(info),
75 +                                hasData_(false), hasDividingArea_(false),
76                                  usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78 +    trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    int seedValue;
83 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
86 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 <    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77 <    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
79 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
80 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
81 <    stringToEnumMap_["Px"] = rnemdPx;
82 <    stringToEnumMap_["Py"] = rnemdPy;
83 <    stringToEnumMap_["Pz"] = rnemdPz;
84 <    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85 <    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
85 >    doRNEMD_ = rnemdParams->getUseRNEMD();
86 >    if (!doRNEMD_) return;
87  
88 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 <    evaluator_.loadScriptString(rnemdObjectSelection_);
90 <    seleMan_.setSelectionSet(evaluator_.evaluate());
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91  
92 <    // do some sanity checking
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109 <    int selectionCount = seleMan_.getSelectionCount();
110 <    int nIntegrable = info->getNGlobalIntegrableObjects();
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111  
112 <    if (selectionCount > nIntegrable) {
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121        sprintf(painCave.errMsg,
122 <              "RNEMD: The current RNEMD_objectSelection,\n"
123 <              "\t\t%s\n"
124 <              "\thas resulted in %d selected objects.  However,\n"
125 <              "\tthe total number of integrable objects in the system\n"
126 <              "\tis only %d.  This is almost certainly not what you want\n"
127 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
128 <              "\tselector in the selection script!\n",
106 <              rnemdObjectSelection_.c_str(),
107 <              selectionCount, nIntegrable);
108 <      painCave.isFatal = 0;
109 <      painCave.severity = OPENMD_WARNING;
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129        simError();
130      }
131 +
132 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 +    bool hasOutputFields = rnemdParams->haveOutputFields();
147      
148 <    const string st = simParams->getRNEMD_exchangeType();
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162  
163 <    map<string, RNEMDTypeEnum>::iterator i;
164 <    i = stringToEnumMap_.find(st);
165 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
166 <    if (rnemdType_ == rnemdUnknown) {
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168        sprintf(painCave.errMsg,
169 <              "RNEMD: The current RNEMD_exchangeType,\n"
169 >              "RNEMD: The current fluxType,\n"
170                "\t\t%s\n"
171 <              "\tis not one of the recognized exchange types.\n",
172 <              st.c_str());
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173        painCave.isFatal = 1;
174        painCave.severity = OPENMD_ERROR;
175        simError();
176      }
128    
129    outputTemp_ = false;
130    if (simParams->haveRNEMD_outputTemperature()) {
131      outputTemp_ = simParams->getRNEMD_outputTemperature();
132    } else if ((rnemdType_ == rnemdKineticSwap) ||
133               (rnemdType_ == rnemdKineticScale) ||
134               (rnemdType_ == rnemdKineticScaleVAM) ||
135               (rnemdType_ == rnemdKineticScaleAM)) {
136      outputTemp_ = true;
137    }
138    outputVx_ = false;
139    if (simParams->haveRNEMD_outputVx()) {
140      outputVx_ = simParams->getRNEMD_outputVx();
141    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
142      outputVx_ = true;
143    }
144    outputVy_ = false;
145    if (simParams->haveRNEMD_outputVy()) {
146      outputVy_ = simParams->getRNEMD_outputVy();
147    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
148      outputVy_ = true;
149    }
150    output3DTemp_ = false;
151    if (simParams->haveRNEMD_outputXyzTemperature()) {
152      output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
153    }
154    outputRotTemp_ = false;
155    if (simParams->haveRNEMD_outputRotTemperature()) {
156      outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
157    }
177  
178 < #ifdef IS_MPI
179 <    if (worldRank == 0) {
180 < #endif
181 <
182 <      //may have rnemdWriter separately
183 <      string rnemdFileName;
184 <
185 <      if (outputTemp_) {
186 <        rnemdFileName = "temperature.log";
187 <        tempLog_.open(rnemdFileName.c_str());
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185 >        break;
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190 >        break;
191 >      default :
192 >        methodFluxMismatch = true;
193 >        break;
194        }
195 <      if (outputVx_) {
196 <        rnemdFileName = "velocityX.log";
197 <        vxzLog_.open(rnemdFileName.c_str());
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215        }
216 <      if (outputVy_) {
217 <        rnemdFileName = "velocityY.log";
218 <        vyzLog_.open(rnemdFileName.c_str());
219 <      }
220 <
221 <      if (output3DTemp_) {
222 <        rnemdFileName = "temperatureX.log";
223 <        xTempLog_.open(rnemdFileName.c_str());
224 <        rnemdFileName = "temperatureY.log";
225 <        yTempLog_.open(rnemdFileName.c_str());
226 <        rnemdFileName = "temperatureZ.log";
227 <        zTempLog_.open(rnemdFileName.c_str());
228 <      }
229 <      if (outputRotTemp_) {
230 <        rnemdFileName = "temperatureR.log";
231 <        rotTempLog_.open(rnemdFileName.c_str());
232 <      }
233 <
234 < #ifdef IS_MPI
235 <    }
236 < #endif
237 <
238 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
239 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
240 <    midBin_ = nBins_ / 2;
241 <    if (simParams->haveRNEMD_binShift()) {
242 <      if (simParams->getRNEMD_binShift()) {
243 <        zShift_ = 0.5 / (RealType)(nBins_);
244 <      } else {
245 <        zShift_ = 0.0;
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258        }
259 <    } else {
260 <      zShift_ = 0.0;
259 >    default:
260 >      break;
261      }
208    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
209    //shift slabs by half slab width, maybe useful in heterogeneous systems
210    //set to 0.0 if not using it; N/A in status output yet
211    if (simParams->haveRNEMD_logWidth()) {
212      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
213      /*arbitary rnemdLogWidth_, no checking;
214      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
215        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
216        cerr << "Automaically set back to default.\n";
217        rnemdLogWidth_ = nBins_;
218      }*/
219    } else {
220      set_RNEMD_logWidth(nBins_);
221    }
222    tempHist_.resize(rnemdLogWidth_, 0.0);
223    tempCount_.resize(rnemdLogWidth_, 0);
224    pxzHist_.resize(rnemdLogWidth_, 0.0);
225    //vxzCount_.resize(rnemdLogWidth_, 0);
226    pyzHist_.resize(rnemdLogWidth_, 0.0);
227    //vyzCount_.resize(rnemdLogWidth_, 0);
262  
263 <    mHist_.resize(rnemdLogWidth_, 0.0);
264 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
265 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
266 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
267 <    xyzTempCount_.resize(rnemdLogWidth_, 0);
268 <    rotTempHist_.resize(rnemdLogWidth_, 0.0);
269 <    rotTempCount_.resize(rnemdLogWidth_, 0);
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284  
285 <    set_RNEMD_exchange_total(0.0);
286 <    if (simParams->haveRNEMD_targetFlux()) {
287 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290      } else {
291 <      set_RNEMD_target_flux(0.0);
291 >      kineticFlux_ = 0.0;
292      }
293 <    if (simParams->haveRNEMD_targetJzKE()) {
294 <      set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
293 >    if (hasMomentumFluxVector) {
294 >      std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
295 >      if (mf.size() != 3) {
296 >          sprintf(painCave.errMsg,
297 >                  "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
298 >                  "\tthere should be 3 parameters, but %lu were specified.\n",
299 >                  mf.size());
300 >          painCave.isFatal = 1;
301 >          simError();      
302 >      }
303 >      momentumFluxVector_.x() = mf[0];
304 >      momentumFluxVector_.y() = mf[1];
305 >      momentumFluxVector_.z() = mf[2];
306      } else {
307 <      set_RNEMD_target_JzKE(0.0);
307 >      momentumFluxVector_ = V3Zero;
308 >      if (hasMomentumFlux) {
309 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
310 >        switch (rnemdFluxType_) {
311 >        case rnemdPx:
312 >          momentumFluxVector_.x() = momentumFlux;
313 >          break;
314 >        case rnemdPy:
315 >          momentumFluxVector_.y() = momentumFlux;
316 >          break;
317 >        case rnemdPz:
318 >          momentumFluxVector_.z() = momentumFlux;
319 >          break;
320 >        case rnemdKePx:
321 >          momentumFluxVector_.x() = momentumFlux;
322 >          break;
323 >        case rnemdKePy:
324 >          momentumFluxVector_.y() = momentumFlux;
325 >          break;
326 >        default:
327 >          break;
328 >        }
329 >      }
330      }
331 <    if (simParams->haveRNEMD_targetJzpx()) {
332 <      set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
331 >    if (hasAngularMomentumFluxVector) {
332 >      std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
333 >      if (amf.size() != 3) {
334 >        sprintf(painCave.errMsg,
335 >                "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
336 >                "\tthere should be 3 parameters, but %lu were specified.\n",
337 >                amf.size());
338 >        painCave.isFatal = 1;
339 >        simError();      
340 >      }
341 >      angularMomentumFluxVector_.x() = amf[0];
342 >      angularMomentumFluxVector_.y() = amf[1];
343 >      angularMomentumFluxVector_.z() = amf[2];
344      } else {
345 <      set_RNEMD_target_jzpx(0.0);
345 >      angularMomentumFluxVector_ = V3Zero;
346 >      if (hasAngularMomentumFlux) {
347 >        RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
348 >        switch (rnemdFluxType_) {
349 >        case rnemdLx:
350 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
351 >          break;
352 >        case rnemdLy:
353 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
354 >          break;
355 >        case rnemdLz:
356 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
357 >          break;
358 >        case rnemdKeLx:
359 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
360 >          break;
361 >        case rnemdKeLy:
362 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
363 >          break;
364 >        case rnemdKeLz:
365 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
366 >          break;
367 >        default:
368 >          break;
369 >        }
370 >      }        
371      }
372 <    jzp_.x() = targetJzpx_;
373 <    njzp_.x() = -targetJzpx_;
374 <    if (simParams->haveRNEMD_targetJzpy()) {
375 <      set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
372 >
373 >    if (hasCoordinateOrigin) {
374 >      std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
375 >      if (co.size() != 3) {
376 >        sprintf(painCave.errMsg,
377 >                "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
378 >                "\tthere should be 3 parameters, but %lu were specified.\n",
379 >                co.size());
380 >        painCave.isFatal = 1;
381 >        simError();      
382 >      }
383 >      coordinateOrigin_.x() = co[0];
384 >      coordinateOrigin_.y() = co[1];
385 >      coordinateOrigin_.z() = co[2];
386      } else {
387 <      set_RNEMD_target_jzpy(0.0);
387 >      coordinateOrigin_ = V3Zero;
388      }
389 <    jzp_.y() = targetJzpy_;
390 <    njzp_.y() = -targetJzpy_;
391 <    if (simParams->haveRNEMD_targetJzpz()) {
392 <      set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
393 <    } else {
394 <      set_RNEMD_target_jzpz(0.0);
389 >    
390 >    // do some sanity checking
391 >    
392 >    int selectionCount = seleMan_.getSelectionCount();    
393 >    int nIntegrable = info->getNGlobalIntegrableObjects();
394 >    if (selectionCount > nIntegrable) {
395 >      sprintf(painCave.errMsg,
396 >              "RNEMD: The current objectSelection,\n"
397 >              "\t\t%s\n"
398 >              "\thas resulted in %d selected objects.  However,\n"
399 >              "\tthe total number of integrable objects in the system\n"
400 >              "\tis only %d.  This is almost certainly not what you want\n"
401 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
402 >              "\tselector in the selection script!\n",
403 >              rnemdObjectSelection_.c_str(),
404 >              selectionCount, nIntegrable);
405 >      painCave.isFatal = 0;
406 >      painCave.severity = OPENMD_WARNING;
407 >      simError();
408 >    }
409 >    
410 >    areaAccumulator_ = new Accumulator();
411 >    
412 >    nBins_ = rnemdParams->getOutputBins();
413 >    binWidth_ = rnemdParams->getOutputBinWidth();
414 >    
415 >    data_.resize(RNEMD::ENDINDEX);
416 >    OutputData z;
417 >    z.units =  "Angstroms";
418 >    z.title =  "Z";
419 >    z.dataType = "RealType";
420 >    z.accumulator.reserve(nBins_);
421 >    for (int i = 0; i < nBins_; i++)
422 >      z.accumulator.push_back( new Accumulator() );
423 >    data_[Z] = z;
424 >    outputMap_["Z"] =  Z;
425 >    
426 >    OutputData r;
427 >    r.units =  "Angstroms";
428 >    r.title =  "R";
429 >    r.dataType = "RealType";
430 >    r.accumulator.reserve(nBins_);
431 >    for (int i = 0; i < nBins_; i++)
432 >      r.accumulator.push_back( new Accumulator() );
433 >    data_[R] = r;
434 >    outputMap_["R"] =  R;
435 >    
436 >    OutputData temperature;
437 >    temperature.units =  "K";
438 >    temperature.title =  "Temperature";
439 >    temperature.dataType = "RealType";
440 >    temperature.accumulator.reserve(nBins_);
441 >    for (int i = 0; i < nBins_; i++)
442 >      temperature.accumulator.push_back( new Accumulator() );
443 >    data_[TEMPERATURE] = temperature;
444 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
445 >    
446 >    OutputData velocity;
447 >    velocity.units = "angstroms/fs";
448 >    velocity.title =  "Velocity";  
449 >    velocity.dataType = "Vector3d";
450 >    velocity.accumulator.reserve(nBins_);
451 >    for (int i = 0; i < nBins_; i++)
452 >      velocity.accumulator.push_back( new VectorAccumulator() );
453 >    data_[VELOCITY] = velocity;
454 >    outputMap_["VELOCITY"] = VELOCITY;
455 >    
456 >    OutputData angularVelocity;
457 >    angularVelocity.units = "angstroms^2/fs";
458 >    angularVelocity.title =  "AngularVelocity";  
459 >    angularVelocity.dataType = "Vector3d";
460 >    angularVelocity.accumulator.reserve(nBins_);
461 >    for (int i = 0; i < nBins_; i++)
462 >      angularVelocity.accumulator.push_back( new VectorAccumulator() );
463 >    data_[ANGULARVELOCITY] = angularVelocity;
464 >    outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
465 >    
466 >    OutputData density;
467 >    density.units =  "g cm^-3";
468 >    density.title =  "Density";
469 >    density.dataType = "RealType";
470 >    density.accumulator.reserve(nBins_);
471 >    for (int i = 0; i < nBins_; i++)
472 >      density.accumulator.push_back( new Accumulator() );
473 >    data_[DENSITY] = density;
474 >    outputMap_["DENSITY"] =  DENSITY;
475 >    
476 >    if (hasOutputFields) {
477 >      parseOutputFileFormat(rnemdParams->getOutputFields());
478 >    } else {
479 >      if (usePeriodicBoundaryConditions_)
480 >        outputMask_.set(Z);
481 >      else
482 >        outputMask_.set(R);
483 >      switch (rnemdFluxType_) {
484 >      case rnemdKE:
485 >      case rnemdRotKE:
486 >      case rnemdFullKE:
487 >        outputMask_.set(TEMPERATURE);
488 >        break;
489 >      case rnemdPx:
490 >      case rnemdPy:
491 >        outputMask_.set(VELOCITY);
492 >        break;
493 >      case rnemdPz:        
494 >      case rnemdPvector:
495 >        outputMask_.set(VELOCITY);
496 >        outputMask_.set(DENSITY);
497 >        break;
498 >      case rnemdLx:
499 >      case rnemdLy:
500 >      case rnemdLz:
501 >      case rnemdLvector:
502 >        outputMask_.set(ANGULARVELOCITY);
503 >        break;
504 >      case rnemdKeLx:
505 >      case rnemdKeLy:
506 >      case rnemdKeLz:
507 >      case rnemdKeLvector:
508 >        outputMask_.set(TEMPERATURE);
509 >        outputMask_.set(ANGULARVELOCITY);
510 >        break;
511 >      case rnemdKePx:
512 >      case rnemdKePy:
513 >        outputMask_.set(TEMPERATURE);
514 >        outputMask_.set(VELOCITY);
515 >        break;
516 >      case rnemdKePvector:
517 >        outputMask_.set(TEMPERATURE);
518 >        outputMask_.set(VELOCITY);
519 >        outputMask_.set(DENSITY);        
520 >        break;
521 >      default:
522 >        break;
523 >      }
524      }
525 <    jzp_.z() = targetJzpz_;
526 <    njzp_.z() = -targetJzpz_;
527 <
528 < #ifndef IS_MPI
529 <    if (simParams->haveSeed()) {
530 <      seedValue = simParams->getSeed();
531 <      randNumGen_ = new SeqRandNumGen(seedValue);
532 <    }else {
533 <      randNumGen_ = new SeqRandNumGen();
534 <    }    
535 < #else
536 <    if (simParams->haveSeed()) {
537 <      seedValue = simParams->getSeed();
538 <      randNumGen_ = new ParallelRandNumGen(seedValue);
539 <    }else {
540 <      randNumGen_ = new ParallelRandNumGen();
541 <    }    
542 < #endif
525 >    
526 >    if (hasOutputFileName) {
527 >      rnemdFileName_ = rnemdParams->getOutputFileName();
528 >    } else {
529 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
530 >    }          
531 >    
532 >    exchangeTime_ = rnemdParams->getExchangeTime();
533 >    
534 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
535 >    // total exchange sums are zeroed out at the beginning:
536 >    
537 >    kineticExchange_ = 0.0;
538 >    momentumExchange_ = V3Zero;
539 >    angularMomentumExchange_ = V3Zero;
540 >    
541 >    std::ostringstream selectionAstream;
542 >    std::ostringstream selectionBstream;
543 >    
544 >    if (hasSelectionA_) {
545 >      selectionA_ = rnemdParams->getSelectionA();
546 >    } else {
547 >      if (usePeriodicBoundaryConditions_) {    
548 >        Mat3x3d hmat = currentSnap_->getHmat();
549 >        
550 >        if (hasSlabWidth)
551 >          slabWidth_ = rnemdParams->getSlabWidth();
552 >        else
553 >          slabWidth_ = hmat(2,2) / 10.0;
554 >        
555 >        if (hasSlabACenter)
556 >          slabACenter_ = rnemdParams->getSlabACenter();
557 >        else
558 >          slabACenter_ = 0.0;
559 >        
560 >        selectionAstream << "select wrappedz > "
561 >                         << slabACenter_ - 0.5*slabWidth_
562 >                         <<  " && wrappedz < "
563 >                         << slabACenter_ + 0.5*slabWidth_;
564 >        selectionA_ = selectionAstream.str();
565 >      } else {
566 >        if (hasSphereARadius)
567 >          sphereARadius_ = rnemdParams->getSphereARadius();
568 >        else {
569 >          // use an initial guess to the size of the inner slab to be 1/10 the
570 >          // radius of an approximately spherical hull:
571 >          Thermo thermo(info);
572 >          RealType hVol = thermo.getHullVolume();
573 >          sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
574 >        }
575 >        selectionAstream << "select r < " << sphereARadius_;
576 >        selectionA_ = selectionAstream.str();
577 >      }
578 >    }
579 >    
580 >    if (hasSelectionB_) {
581 >      selectionB_ = rnemdParams->getSelectionB();
582 >      
583 >    } else {
584 >      if (usePeriodicBoundaryConditions_) {    
585 >        Mat3x3d hmat = currentSnap_->getHmat();
586 >        
587 >        if (hasSlabWidth)
588 >          slabWidth_ = rnemdParams->getSlabWidth();
589 >        else
590 >          slabWidth_ = hmat(2,2) / 10.0;
591 >        
592 >        if (hasSlabBCenter)
593 >          slabBCenter_ = rnemdParams->getSlabBCenter();
594 >        else
595 >          slabBCenter_ = hmat(2,2) / 2.0;
596 >        
597 >        selectionBstream << "select wrappedz > "
598 >                         << slabBCenter_ - 0.5*slabWidth_
599 >                         <<  " && wrappedz < "
600 >                         << slabBCenter_ + 0.5*slabWidth_;
601 >        selectionB_ = selectionBstream.str();
602 >      } else {
603 >        if (hasSphereBRadius_) {
604 >          sphereBRadius_ = rnemdParams->getSphereBRadius();
605 >          selectionBstream << "select r > " << sphereBRadius_;
606 >          selectionB_ = selectionBstream.str();
607 >        } else {
608 >          selectionB_ = "select hull";
609 >          BisHull_ = true;
610 >          hasSelectionB_ = true;
611 >        }
612 >      }
613 >    }
614 >  
615 >  
616 >    // object evaluator:
617 >    evaluator_.loadScriptString(rnemdObjectSelection_);
618 >    seleMan_.setSelectionSet(evaluator_.evaluate());
619 >    evaluatorA_.loadScriptString(selectionA_);
620 >    evaluatorB_.loadScriptString(selectionB_);
621 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
622 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
623 >    commonA_ = seleManA_ & seleMan_;
624 >    commonB_ = seleManB_ & seleMan_;  
625    }
626    
287  RNEMD::~RNEMD() {
288    delete randNumGen_;
627      
628 +  RNEMD::~RNEMD() {
629 +    if (!doRNEMD_) return;
630   #ifdef IS_MPI
631      if (worldRank == 0) {
632   #endif
293      
294      sprintf(painCave.errMsg,
295              "RNEMD: total failed trials: %d\n",
296              failTrialCount_);
297      painCave.isFatal = 0;
298      painCave.severity = OPENMD_INFO;
299      simError();
633  
634 <      if (outputTemp_) tempLog_.close();
302 <      if (outputVx_)   vxzLog_.close();
303 <      if (outputVy_)   vyzLog_.close();
634 >      writeOutputFile();
635  
636 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
637 <          rnemdType_ == rnemdPyScale) {
307 <        sprintf(painCave.errMsg,
308 <                "RNEMD: total root-checking warnings: %d\n",
309 <                failRootCount_);
310 <        painCave.isFatal = 0;
311 <        painCave.severity = OPENMD_INFO;
312 <        simError();
313 <      }
314 <      if (output3DTemp_) {
315 <        xTempLog_.close();
316 <        yTempLog_.close();
317 <        zTempLog_.close();
318 <      }
319 <      if (outputRotTemp_) rotTempLog_.close();
320 <
636 >      rnemdFile_.close();
637 >      
638   #ifdef IS_MPI
639      }
640   #endif
641 +
642 +    // delete all of the objects we created:
643 +    delete areaAccumulator_;    
644 +    data_.clear();
645    }
646 +  
647 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
648 +    if (!doRNEMD_) return;
649 +    int selei;
650 +    int selej;
651  
326  void RNEMD::doSwap() {
327
652      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
653      Mat3x3d hmat = currentSnap_->getHmat();
654  
331    seleMan_.setSelectionSet(evaluator_.evaluate());
332
333    int selei;
655      StuntDouble* sd;
335    int idx;
656  
657      RealType min_val;
658 <    bool min_found = false;  
658 >    int min_found = 0;  
659      StuntDouble* min_sd;
660  
661      RealType max_val;
662 <    bool max_found = false;
662 >    int max_found = 0;
663      StuntDouble* max_sd;
664  
665 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
666 <         sd = seleMan_.nextSelected(selei)) {
665 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
666 >         sd = seleManA_.nextSelected(selei)) {
667  
348      idx = sd->getLocalIndex();
349
668        Vector3d pos = sd->getPos();
669 <
669 >      
670        // wrap the stuntdouble's position back into the box:
671 <
671 >      
672        if (usePeriodicBoundaryConditions_)
673          currentSnap_->wrapVector(pos);
674 <
675 <      // which bin is this stuntdouble in?
676 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
677 <
678 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
679 <
680 <
363 <      // if we're in bin 0 or the middleBin
364 <      if (binNo == 0 || binNo == midBin_) {
674 >      
675 >      RealType mass = sd->getMass();
676 >      Vector3d vel = sd->getVel();
677 >      RealType value;
678 >      
679 >      switch(rnemdFluxType_) {
680 >      case rnemdKE :
681          
682 <        RealType mass = sd->getMass();
683 <        Vector3d vel = sd->getVel();
684 <        RealType value;
685 <
686 <        switch(rnemdType_) {
371 <        case rnemdKineticSwap :
682 >        value = mass * vel.lengthSquare();
683 >        
684 >        if (sd->isDirectional()) {
685 >          Vector3d angMom = sd->getJ();
686 >          Mat3x3d I = sd->getI();
687            
688 <          value = mass * vel.lengthSquare();
689 <          
690 <          if (sd->isDirectional()) {
691 <            Vector3d angMom = sd->getJ();
692 <            Mat3x3d I = sd->getI();
693 <            
694 <            if (sd->isLinear()) {
695 <              int i = sd->linearAxis();
696 <              int j = (i + 1) % 3;
697 <              int k = (i + 2) % 3;
698 <              value += angMom[j] * angMom[j] / I(j, j) +
699 <                angMom[k] * angMom[k] / I(k, k);
700 <            } else {                        
701 <              value += angMom[0]*angMom[0]/I(0, 0)
702 <                + angMom[1]*angMom[1]/I(1, 1)
703 <                + angMom[2]*angMom[2]/I(2, 2);
704 <            }
705 <          } //angular momenta exchange enabled
706 <          //energyConvert temporarily disabled
707 <          //make exchangeSum_ comparable between swap & scale
708 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
709 <          value *= 0.5;
710 <          break;
711 <        case rnemdPx :
712 <          value = mass * vel[0];
713 <          break;
714 <        case rnemdPy :
715 <          value = mass * vel[1];
716 <          break;
717 <        case rnemdPz :
718 <          value = mass * vel[2];
719 <          break;
720 <        default :
721 <          break;
688 >          if (sd->isLinear()) {
689 >            int i = sd->linearAxis();
690 >            int j = (i + 1) % 3;
691 >            int k = (i + 2) % 3;
692 >            value += angMom[j] * angMom[j] / I(j, j) +
693 >              angMom[k] * angMom[k] / I(k, k);
694 >          } else {                        
695 >            value += angMom[0]*angMom[0]/I(0, 0)
696 >              + angMom[1]*angMom[1]/I(1, 1)
697 >              + angMom[2]*angMom[2]/I(2, 2);
698 >          }
699 >        } //angular momenta exchange enabled
700 >        value *= 0.5;
701 >        break;
702 >      case rnemdPx :
703 >        value = mass * vel[0];
704 >        break;
705 >      case rnemdPy :
706 >        value = mass * vel[1];
707 >        break;
708 >      case rnemdPz :
709 >        value = mass * vel[2];
710 >        break;
711 >      default :
712 >        break;
713 >      }
714 >      if (!max_found) {
715 >        max_val = value;
716 >        max_sd = sd;
717 >        max_found = 1;
718 >      } else {
719 >        if (max_val < value) {
720 >          max_val = value;
721 >          max_sd = sd;
722          }
723 +      }  
724 +    }
725          
726 <        if (binNo == 0) {
727 <          if (!min_found) {
728 <            min_val = value;
729 <            min_sd = sd;
730 <            min_found = true;
731 <          } else {
732 <            if (min_val > value) {
733 <              min_val = value;
734 <              min_sd = sd;
735 <            }
736 <          }
737 <        } else { //midBin_
738 <          if (!max_found) {
739 <            max_val = value;
740 <            max_sd = sd;
741 <            max_found = true;
742 <          } else {
743 <            if (max_val < value) {
744 <              max_val = value;
745 <              max_sd = sd;
746 <            }
747 <          }      
748 <        }
726 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
727 >         sd = seleManB_.nextSelected(selej)) {
728 >
729 >      Vector3d pos = sd->getPos();
730 >      
731 >      // wrap the stuntdouble's position back into the box:
732 >      
733 >      if (usePeriodicBoundaryConditions_)
734 >        currentSnap_->wrapVector(pos);
735 >      
736 >      RealType mass = sd->getMass();
737 >      Vector3d vel = sd->getVel();
738 >      RealType value;
739 >      
740 >      switch(rnemdFluxType_) {
741 >      case rnemdKE :
742 >        
743 >        value = mass * vel.lengthSquare();
744 >        
745 >        if (sd->isDirectional()) {
746 >          Vector3d angMom = sd->getJ();
747 >          Mat3x3d I = sd->getI();
748 >          
749 >          if (sd->isLinear()) {
750 >            int i = sd->linearAxis();
751 >            int j = (i + 1) % 3;
752 >            int k = (i + 2) % 3;
753 >            value += angMom[j] * angMom[j] / I(j, j) +
754 >              angMom[k] * angMom[k] / I(k, k);
755 >          } else {                        
756 >            value += angMom[0]*angMom[0]/I(0, 0)
757 >              + angMom[1]*angMom[1]/I(1, 1)
758 >              + angMom[2]*angMom[2]/I(2, 2);
759 >          }
760 >        } //angular momenta exchange enabled
761 >        value *= 0.5;
762 >        break;
763 >      case rnemdPx :
764 >        value = mass * vel[0];
765 >        break;
766 >      case rnemdPy :
767 >        value = mass * vel[1];
768 >        break;
769 >      case rnemdPz :
770 >        value = mass * vel[2];
771 >        break;
772 >      default :
773 >        break;
774        }
775 +      
776 +      if (!min_found) {
777 +        min_val = value;
778 +        min_sd = sd;
779 +        min_found = 1;
780 +      } else {
781 +        if (min_val > value) {
782 +          min_val = value;
783 +          min_sd = sd;
784 +        }
785 +      }
786      }
787 +    
788 + #ifdef IS_MPI    
789 +    int worldRank;
790 +    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
791 +        
792 +    int my_min_found = min_found;
793 +    int my_max_found = max_found;
794  
435 #ifdef IS_MPI
436    int nProc, worldRank;
437
438    nProc = MPI::COMM_WORLD.Get_size();
439    worldRank = MPI::COMM_WORLD.Get_rank();
440
441    bool my_min_found = min_found;
442    bool my_max_found = max_found;
443
795      // Even if we didn't find a minimum, did someone else?
796 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
796 >    MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
797 >                  MPI_COMM_WORLD);
798      // Even if we didn't find a maximum, did someone else?
799 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
799 >    MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
800 >                  MPI_COMM_WORLD);
801   #endif
802  
803      if (max_found && min_found) {
# Line 454 | Line 807 | namespace OpenMD {
807          RealType val;
808          int rank;
809        } max_vals, min_vals;
810 <    
810 >      
811        if (my_min_found) {
812          min_vals.val = min_val;
813        } else {
# Line 463 | Line 816 | namespace OpenMD {
816        min_vals.rank = worldRank;    
817        
818        // Who had the minimum?
819 <      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
820 <                                1, MPI::REALTYPE_INT, MPI::MINLOC);
819 >      MPI_Allreduce(&min_vals, &min_vals,
820 >                    1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
821        min_val = min_vals.val;
822        
823        if (my_max_found) {
# Line 475 | Line 828 | namespace OpenMD {
828        max_vals.rank = worldRank;    
829        
830        // Who had the maximum?
831 <      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
832 <                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
831 >      MPI_Allreduce(&max_vals, &max_vals,
832 >                    1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
833        max_val = max_vals.val;
834   #endif
835        
# Line 492 | Line 845 | namespace OpenMD {
845            Vector3d max_vel = max_sd->getVel();
846            RealType temp_vel;
847            
848 <          switch(rnemdType_) {
849 <          case rnemdKineticSwap :
848 >          switch(rnemdFluxType_) {
849 >          case rnemdKE :
850              min_sd->setVel(max_vel);
851              max_sd->setVel(min_vel);
852              if (min_sd->isDirectional() && max_sd->isDirectional()) {
# Line 536 | Line 889 | namespace OpenMD {
889            
890            Vector3d min_vel;
891            Vector3d max_vel = max_sd->getVel();
892 <          MPI::Status status;
892 >          MPI_Status status;
893  
894            // point-to-point swap of the velocity vector
895 <          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
896 <                                   min_vals.rank, 0,
897 <                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
898 <                                   min_vals.rank, 0, status);
895 >          MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
896 >                       min_vals.rank, 0,
897 >                       min_vel.getArrayPointer(), 3, MPI_REALTYPE,
898 >                       min_vals.rank, 0, MPI_COMM_WORLD, &status);
899            
900 <          switch(rnemdType_) {
901 <          case rnemdKineticSwap :
900 >          switch(rnemdFluxType_) {
901 >          case rnemdKE :
902              max_sd->setVel(min_vel);
903              //angular momenta exchange enabled
904              if (max_sd->isDirectional()) {
# Line 553 | Line 906 | namespace OpenMD {
906                Vector3d max_angMom = max_sd->getJ();
907                
908                // point-to-point swap of the angular momentum vector
909 <              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
910 <                                       MPI::REALTYPE, min_vals.rank, 1,
911 <                                       min_angMom.getArrayPointer(), 3,
912 <                                       MPI::REALTYPE, min_vals.rank, 1,
913 <                                       status);
909 >              MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
910 >                           MPI_REALTYPE, min_vals.rank, 1,
911 >                           min_angMom.getArrayPointer(), 3,
912 >                           MPI_REALTYPE, min_vals.rank, 1,
913 >                           MPI_COMM_WORLD, &status);
914                
915                max_sd->setJ(min_angMom);
916              }
# Line 582 | Line 935 | namespace OpenMD {
935            
936            Vector3d max_vel;
937            Vector3d min_vel = min_sd->getVel();
938 <          MPI::Status status;
938 >          MPI_Status status;
939            
940            // point-to-point swap of the velocity vector
941 <          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
942 <                                   max_vals.rank, 0,
943 <                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
944 <                                   max_vals.rank, 0, status);
941 >          MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
942 >                       max_vals.rank, 0,
943 >                       max_vel.getArrayPointer(), 3, MPI_REALTYPE,
944 >                       max_vals.rank, 0, MPI_COMM_WORLD, &status);
945            
946 <          switch(rnemdType_) {
947 <          case rnemdKineticSwap :
946 >          switch(rnemdFluxType_) {
947 >          case rnemdKE :
948              min_sd->setVel(max_vel);
949              //angular momenta exchange enabled
950              if (min_sd->isDirectional()) {
# Line 599 | Line 952 | namespace OpenMD {
952                Vector3d max_angMom;
953                
954                // point-to-point swap of the angular momentum vector
955 <              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
956 <                                       MPI::REALTYPE, max_vals.rank, 1,
957 <                                       max_angMom.getArrayPointer(), 3,
958 <                                       MPI::REALTYPE, max_vals.rank, 1,
959 <                                       status);
955 >              MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
956 >                           MPI_REALTYPE, max_vals.rank, 1,
957 >                           max_angMom.getArrayPointer(), 3,
958 >                           MPI_REALTYPE, max_vals.rank, 1,
959 >                           MPI_COMM_WORLD, &status);
960                
961                min_sd->setJ(max_angMom);
962              }
# Line 625 | Line 978 | namespace OpenMD {
978            }
979          }
980   #endif
981 <        exchangeSum_ += max_val - min_val;
981 >        
982 >        switch(rnemdFluxType_) {
983 >        case rnemdKE:
984 >          kineticExchange_ += max_val - min_val;
985 >          break;
986 >        case rnemdPx:
987 >          momentumExchange_.x() += max_val - min_val;
988 >          break;
989 >        case rnemdPy:
990 >          momentumExchange_.y() += max_val - min_val;
991 >          break;
992 >        case rnemdPz:
993 >          momentumExchange_.z() += max_val - min_val;
994 >          break;
995 >        default:
996 >          break;
997 >        }
998        } else {        
999          sprintf(painCave.errMsg,
1000 <                "RNEMD: exchange NOT performed because min_val > max_val\n");
1000 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
1001          painCave.isFatal = 0;
1002          painCave.severity = OPENMD_INFO;
1003          simError();        
# Line 636 | Line 1005 | namespace OpenMD {
1005        }
1006      } else {
1007        sprintf(painCave.errMsg,
1008 <              "RNEMD: exchange NOT performed because selected object\n"
1009 <              "\tnot present in at least one of the two slabs.\n");
1008 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
1009 >              "\twas not present in at least one of the two slabs.\n");
1010        painCave.isFatal = 0;
1011        painCave.severity = OPENMD_INFO;
1012        simError();        
1013        failTrialCount_++;
1014 <    }
646 <    
1014 >    }    
1015    }
1016    
1017 <  void RNEMD::doScale() {
1017 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1018 >    if (!doRNEMD_) return;
1019 >    int selei;
1020 >    int selej;
1021  
1022      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1023 +    RealType time = currentSnap_->getTime();    
1024      Mat3x3d hmat = currentSnap_->getHmat();
1025  
654    seleMan_.setSelectionSet(evaluator_.evaluate());
655
656    int selei;
1026      StuntDouble* sd;
658    int idx;
1027  
1028      vector<StuntDouble*> hotBin, coldBin;
1029  
# Line 674 | Line 1042 | namespace OpenMD {
1042      RealType Kcz = 0.0;
1043      RealType Kcw = 0.0;
1044  
1045 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1046 <         sd = seleMan_.nextSelected(selei)) {
1045 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1046 >         sd = smanA.nextSelected(selei)) {
1047  
680      idx = sd->getLocalIndex();
681
1048        Vector3d pos = sd->getPos();
1049 <
1049 >      
1050        // wrap the stuntdouble's position back into the box:
1051 <
1051 >      
1052        if (usePeriodicBoundaryConditions_)
1053          currentSnap_->wrapVector(pos);
1054 +      
1055 +      
1056 +      RealType mass = sd->getMass();
1057 +      Vector3d vel = sd->getVel();
1058 +      
1059 +      hotBin.push_back(sd);
1060 +      Phx += mass * vel.x();
1061 +      Phy += mass * vel.y();
1062 +      Phz += mass * vel.z();
1063 +      Khx += mass * vel.x() * vel.x();
1064 +      Khy += mass * vel.y() * vel.y();
1065 +      Khz += mass * vel.z() * vel.z();
1066 +      if (sd->isDirectional()) {
1067 +        Vector3d angMom = sd->getJ();
1068 +        Mat3x3d I = sd->getI();
1069 +        if (sd->isLinear()) {
1070 +          int i = sd->linearAxis();
1071 +          int j = (i + 1) % 3;
1072 +          int k = (i + 2) % 3;
1073 +          Khw += angMom[j] * angMom[j] / I(j, j) +
1074 +            angMom[k] * angMom[k] / I(k, k);
1075 +        } else {
1076 +          Khw += angMom[0]*angMom[0]/I(0, 0)
1077 +            + angMom[1]*angMom[1]/I(1, 1)
1078 +            + angMom[2]*angMom[2]/I(2, 2);
1079 +        }
1080 +      }
1081 +    }
1082 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1083 +         sd = smanB.nextSelected(selej)) {
1084 +      Vector3d pos = sd->getPos();
1085 +      
1086 +      // wrap the stuntdouble's position back into the box:
1087 +      
1088 +      if (usePeriodicBoundaryConditions_)
1089 +        currentSnap_->wrapVector(pos);
1090 +            
1091 +      RealType mass = sd->getMass();
1092 +      Vector3d vel = sd->getVel();
1093  
1094 <      // which bin is this stuntdouble in?
1095 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1096 <
1097 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1098 <
1099 <      // if we're in bin 0 or the middleBin
1100 <      if (binNo == 0 || binNo == midBin_) {
1101 <        
1102 <        RealType mass = sd->getMass();
1103 <        Vector3d vel = sd->getVel();
1104 <      
1105 <        if (binNo == 0) {
1106 <          hotBin.push_back(sd);
1107 <          Phx += mass * vel.x();
1108 <          Phy += mass * vel.y();
1109 <          Phz += mass * vel.z();
1110 <          Khx += mass * vel.x() * vel.x();
1111 <          Khy += mass * vel.y() * vel.y();
1112 <          Khz += mass * vel.z() * vel.z();
1113 <          //if (rnemdType_ == rnemdKineticScaleVAM) {
1114 <          if (sd->isDirectional()) {
710 <            Vector3d angMom = sd->getJ();
711 <            Mat3x3d I = sd->getI();
712 <            if (sd->isLinear()) {
713 <              int i = sd->linearAxis();
714 <              int j = (i + 1) % 3;
715 <              int k = (i + 2) % 3;
716 <              Khw += angMom[j] * angMom[j] / I(j, j) +
717 <                angMom[k] * angMom[k] / I(k, k);
718 <            } else {
719 <              Khw += angMom[0]*angMom[0]/I(0, 0)
720 <                + angMom[1]*angMom[1]/I(1, 1)
721 <                + angMom[2]*angMom[2]/I(2, 2);
722 <            }
723 <          }
724 <          //}
725 <        } else { //midBin_
726 <          coldBin.push_back(sd);
727 <          Pcx += mass * vel.x();
728 <          Pcy += mass * vel.y();
729 <          Pcz += mass * vel.z();
730 <          Kcx += mass * vel.x() * vel.x();
731 <          Kcy += mass * vel.y() * vel.y();
732 <          Kcz += mass * vel.z() * vel.z();
733 <          //if (rnemdType_ == rnemdKineticScaleVAM) {
734 <          if (sd->isDirectional()) {
735 <            Vector3d angMom = sd->getJ();
736 <            Mat3x3d I = sd->getI();
737 <            if (sd->isLinear()) {
738 <              int i = sd->linearAxis();
739 <              int j = (i + 1) % 3;
740 <              int k = (i + 2) % 3;
741 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
742 <                angMom[k] * angMom[k] / I(k, k);
743 <            } else {
744 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
745 <                + angMom[1]*angMom[1]/I(1, 1)
746 <                + angMom[2]*angMom[2]/I(2, 2);
747 <            }
748 <          }
749 <          //}
750 <        }
1094 >      coldBin.push_back(sd);
1095 >      Pcx += mass * vel.x();
1096 >      Pcy += mass * vel.y();
1097 >      Pcz += mass * vel.z();
1098 >      Kcx += mass * vel.x() * vel.x();
1099 >      Kcy += mass * vel.y() * vel.y();
1100 >      Kcz += mass * vel.z() * vel.z();
1101 >      if (sd->isDirectional()) {
1102 >        Vector3d angMom = sd->getJ();
1103 >        Mat3x3d I = sd->getI();
1104 >        if (sd->isLinear()) {
1105 >          int i = sd->linearAxis();
1106 >          int j = (i + 1) % 3;
1107 >          int k = (i + 2) % 3;
1108 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1109 >            angMom[k] * angMom[k] / I(k, k);
1110 >        } else {
1111 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1112 >            + angMom[1]*angMom[1]/I(1, 1)
1113 >            + angMom[2]*angMom[2]/I(2, 2);
1114 >        }
1115        }
1116      }
1117      
# Line 760 | Line 1124 | namespace OpenMD {
1124      Kcz *= 0.5;
1125      Kcw *= 0.5;
1126  
763    std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
764              << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
765              << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
766    std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
767              << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
768
1127   #ifdef IS_MPI
1128 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1129 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1130 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1131 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1132 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1133 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
776 <
777 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
778 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
779 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
780 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1128 >    MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1129 >    MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130 >    MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131 >    MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132 >    MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133 >    MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1134  
1135 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1136 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1137 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1138 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1135 >    MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1136 >    MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137 >    MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138 >    MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1139 >
1140 >    MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1141 >    MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142 >    MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143 >    MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1144   #endif
1145  
1146      //solve coldBin coeff's first
# Line 791 | Line 1149 | namespace OpenMD {
1149      RealType pz = Pcz / Phz;
1150      RealType c, x, y, z;
1151      bool successfulScale = false;
1152 <    if ((rnemdType_ == rnemdKineticScaleVAM) ||
1153 <        (rnemdType_ == rnemdKineticScaleAM)) {
1152 >    if ((rnemdFluxType_ == rnemdFullKE) ||
1153 >        (rnemdFluxType_ == rnemdRotKE)) {
1154        //may need sanity check Khw & Kcw > 0
1155  
1156 <      if (rnemdType_ == rnemdKineticScaleVAM) {
1157 <        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
1156 >      if (rnemdFluxType_ == rnemdFullKE) {
1157 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1158        } else {
1159 <        c = 1.0 - targetFlux_ / Kcw;
1159 >        c = 1.0 - kineticTarget_ / Kcw;
1160        }
1161  
1162        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1163          c = sqrt(c);
1164 <        std::cerr << "cold slab scaling coefficient: " << c << endl;
807 <        //now convert to hotBin coefficient
1164 >
1165          RealType w = 0.0;
1166 <        if (rnemdType_ ==  rnemdKineticScaleVAM) {
1166 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1167            x = 1.0 + px * (1.0 - c);
1168            y = 1.0 + py * (1.0 - c);
1169            z = 1.0 + pz * (1.0 - c);
# Line 820 | Line 1177 | namespace OpenMD {
1177            */
1178            if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1179                (fabs(z - 1.0) < 0.1)) {
1180 <            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1180 >            w = 1.0 + (kineticTarget_
1181 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1182                         + Khz * (1.0 - z * z)) / Khw;
1183            }//no need to calculate w if x, y or z is out of range
1184          } else {
1185 <          w = 1.0 + targetFlux_ / Khw;
1185 >          w = 1.0 + kineticTarget_ / Khw;
1186          }
1187          if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1188            //if w is in the right range, so should be x, y, z.
1189            vector<StuntDouble*>::iterator sdi;
1190            Vector3d vel;
1191 <          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1192 <            if (rnemdType_ == rnemdKineticScaleVAM) {
1191 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1192 >            if (rnemdFluxType_ == rnemdFullKE) {
1193                vel = (*sdi)->getVel() * c;
836              //vel.x() *= c;
837              //vel.y() *= c;
838              //vel.z() *= c;
1194                (*sdi)->setVel(vel);
1195              }
1196              if ((*sdi)->isDirectional()) {
1197                Vector3d angMom = (*sdi)->getJ() * c;
843              //angMom[0] *= c;
844              //angMom[1] *= c;
845              //angMom[2] *= c;
1198                (*sdi)->setJ(angMom);
1199              }
1200            }
1201            w = sqrt(w);
1202 <          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
1203 <                    << "\twh= " << w << endl;
852 <          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
853 <            if (rnemdType_ == rnemdKineticScaleVAM) {
1202 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1203 >            if (rnemdFluxType_ == rnemdFullKE) {
1204                vel = (*sdi)->getVel();
1205                vel.x() *= x;
1206                vel.y() *= y;
# Line 859 | Line 1209 | namespace OpenMD {
1209              }
1210              if ((*sdi)->isDirectional()) {
1211                Vector3d angMom = (*sdi)->getJ() * w;
862              //angMom[0] *= w;
863              //angMom[1] *= w;
864              //angMom[2] *= w;
1212                (*sdi)->setJ(angMom);
1213              }
1214            }
1215            successfulScale = true;
1216 <          exchangeSum_ += targetFlux_;
1216 >          kineticExchange_ += kineticTarget_;
1217          }
1218        }
1219      } else {
1220        RealType a000, a110, c0, a001, a111, b01, b11, c1;
1221 <      switch(rnemdType_) {
1222 <      case rnemdKineticScale :
1221 >      switch(rnemdFluxType_) {
1222 >      case rnemdKE :
1223          /* used hotBin coeff's & only scale x & y dimensions
1224             RealType px = Phx / Pcx;
1225             RealType py = Phy / Pcy;
1226             a110 = Khy;
1227 <           c0 = - Khx - Khy - targetFlux_;
1227 >           c0 = - Khx - Khy - kineticTarget_;
1228             a000 = Khx;
1229             a111 = Kcy * py * py;
1230             b11 = -2.0 * Kcy * py * (1.0 + py);
1231 <           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
1231 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1232             b01 = -2.0 * Kcx * px * (1.0 + px);
1233             a001 = Kcx * px * px;
1234          */
1235          //scale all three dimensions, let c_x = c_y
1236          a000 = Kcx + Kcy;
1237          a110 = Kcz;
1238 <        c0 = targetFlux_ - Kcx - Kcy - Kcz;
1238 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1239          a001 = Khx * px * px + Khy * py * py;
1240          a111 = Khz * pz * pz;
1241          b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1242          b11 = -2.0 * Khz * pz * (1.0 + pz);
1243          c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1244 <          + Khz * pz * (2.0 + pz) - targetFlux_;
1244 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1245          break;
1246 <      case rnemdPxScale :
1247 <        c = 1 - targetFlux_ / Pcx;
1246 >      case rnemdPx :
1247 >        c = 1 - momentumTarget_.x() / Pcx;
1248          a000 = Kcy;
1249          a110 = Kcz;
1250          c0 = Kcx * c * c - Kcx - Kcy - Kcz;
# Line 908 | Line 1255 | namespace OpenMD {
1255          c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1256            + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1257          break;
1258 <      case rnemdPyScale :
1259 <        c = 1 - targetFlux_ / Pcy;
1258 >      case rnemdPy :
1259 >        c = 1 - momentumTarget_.y() / Pcy;
1260          a000 = Kcx;
1261          a110 = Kcz;
1262          c0 = Kcy * c * c - Kcx - Kcy - Kcz;
# Line 920 | Line 1267 | namespace OpenMD {
1267          c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1268            + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1269          break;
1270 <      case rnemdPzScale ://we don't really do this, do we?
1271 <        c = 1 - targetFlux_ / Pcz;
1270 >      case rnemdPz ://we don't really do this, do we?
1271 >        c = 1 - momentumTarget_.z() / Pcz;
1272          a000 = Kcx;
1273          a110 = Kcy;
1274          c0 = Kcz * c * c - Kcx - Kcy - Kcz;
# Line 971 | Line 1318 | namespace OpenMD {
1318        vector<RealType>::iterator ri;
1319        RealType r1, r2, alpha0;
1320        vector<pair<RealType,RealType> > rps;
1321 <      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1321 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1322          r2 = *ri;
1323          //check if FindRealRoots() give the right answer
1324          if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
# Line 1003 | Line 1350 | namespace OpenMD {
1350          RealType diff;
1351          pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1352          vector<pair<RealType,RealType> >::iterator rpi;
1353 <        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1353 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1354            r1 = (*rpi).first;
1355            r2 = (*rpi).second;
1356 <          switch(rnemdType_) {
1357 <          case rnemdKineticScale :
1356 >          switch(rnemdFluxType_) {
1357 >          case rnemdKE :
1358              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1359                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1360                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1361              break;
1362 <          case rnemdPxScale :
1362 >          case rnemdPx :
1363              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1364                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1365              break;
1366 <          case rnemdPyScale :
1366 >          case rnemdPy :
1367              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1368                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1369              break;
1370 <          case rnemdPzScale :
1370 >          case rnemdPz :
1371              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1372                + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1373            default :
# Line 1034 | Line 1381 | namespace OpenMD {
1381   #ifdef IS_MPI
1382          if (worldRank == 0) {
1383   #endif
1384 <          sprintf(painCave.errMsg,
1385 <                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1386 <                  bestPair.first, bestPair.second);
1387 <          painCave.isFatal = 0;
1388 <          painCave.severity = OPENMD_INFO;
1389 <          simError();
1384 >          // sprintf(painCave.errMsg,
1385 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1386 >          //         bestPair.first, bestPair.second);
1387 >          // painCave.isFatal = 0;
1388 >          // painCave.severity = OPENMD_INFO;
1389 >          // simError();
1390   #ifdef IS_MPI
1391          }
1392   #endif
1393          
1394 <        switch(rnemdType_) {
1395 <        case rnemdKineticScale :
1394 >        switch(rnemdFluxType_) {
1395 >        case rnemdKE :
1396            x = bestPair.first;
1397            y = bestPair.first;
1398            z = bestPair.second;
1399            break;
1400 <        case rnemdPxScale :
1400 >        case rnemdPx :
1401            x = c;
1402            y = bestPair.first;
1403            z = bestPair.second;
1404            break;
1405 <        case rnemdPyScale :
1405 >        case rnemdPy :
1406            x = bestPair.first;
1407            y = c;
1408            z = bestPair.second;
1409            break;
1410 <        case rnemdPzScale :
1410 >        case rnemdPz :
1411            x = bestPair.first;
1412            y = bestPair.second;
1413            z = c;
# Line 1070 | Line 1417 | namespace OpenMD {
1417          }
1418          vector<StuntDouble*>::iterator sdi;
1419          Vector3d vel;
1420 <        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1420 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1421            vel = (*sdi)->getVel();
1422            vel.x() *= x;
1423            vel.y() *= y;
# Line 1081 | Line 1428 | namespace OpenMD {
1428          x = 1.0 + px * (1.0 - x);
1429          y = 1.0 + py * (1.0 - y);
1430          z = 1.0 + pz * (1.0 - z);
1431 <        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1431 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1432            vel = (*sdi)->getVel();
1433            vel.x() *= x;
1434            vel.y() *= y;
# Line 1089 | Line 1436 | namespace OpenMD {
1436            (*sdi)->setVel(vel);
1437          }
1438          successfulScale = true;
1439 <        exchangeSum_ += targetFlux_;
1439 >        switch(rnemdFluxType_) {
1440 >        case rnemdKE :
1441 >          kineticExchange_ += kineticTarget_;
1442 >          break;
1443 >        case rnemdPx :
1444 >        case rnemdPy :
1445 >        case rnemdPz :
1446 >          momentumExchange_ += momentumTarget_;
1447 >          break;          
1448 >        default :
1449 >          break;
1450 >        }      
1451        }
1452      }
1453      if (successfulScale != true) {
1454        sprintf(painCave.errMsg,
1455 <              "RNEMD: exchange NOT performed!\n");
1455 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1456 >              "\tthe constraint equations may not exist or there may be\n"
1457 >              "\tno selected objects in one or both slabs.\n");
1458        painCave.isFatal = 0;
1459        painCave.severity = OPENMD_INFO;
1460        simError();        
1461        failTrialCount_++;
1462      }
1463    }
1464 +  
1465 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1466 +    if (!doRNEMD_) return;
1467 +    int selei;
1468 +    int selej;
1469  
1105  void RNEMD::doShiftScale() {
1106
1470      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1471 +    RealType time = currentSnap_->getTime();    
1472      Mat3x3d hmat = currentSnap_->getHmat();
1473  
1110    seleMan_.setSelectionSet(evaluator_.evaluate());
1111
1112    int selei;
1474      StuntDouble* sd;
1114    int idx;
1475  
1476      vector<StuntDouble*> hotBin, coldBin;
1477  
1478      Vector3d Ph(V3Zero);
1479 +    Vector3d Lh(V3Zero);
1480      RealType Mh = 0.0;
1481 +    Mat3x3d Ih(0.0);
1482      RealType Kh = 0.0;
1483      Vector3d Pc(V3Zero);
1484 +    Vector3d Lc(V3Zero);
1485      RealType Mc = 0.0;
1486 +    Mat3x3d Ic(0.0);
1487      RealType Kc = 0.0;
1488  
1489 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1490 <         sd = seleMan_.nextSelected(selei)) {
1489 >    // Constraints can be on only the linear or angular momentum, but
1490 >    // not both.  Usually, the user will specify which they want, but
1491 >    // in case they don't, the use of periodic boundaries should make
1492 >    // the choice for us.
1493 >    bool doLinearPart = false;
1494 >    bool doAngularPart = false;
1495  
1496 <      idx = sd->getLocalIndex();
1496 >    switch (rnemdFluxType_) {
1497 >    case rnemdPx:
1498 >    case rnemdPy:
1499 >    case rnemdPz:
1500 >    case rnemdPvector:
1501 >    case rnemdKePx:
1502 >    case rnemdKePy:
1503 >    case rnemdKePvector:
1504 >      doLinearPart = true;
1505 >      break;
1506 >    case rnemdLx:
1507 >    case rnemdLy:
1508 >    case rnemdLz:
1509 >    case rnemdLvector:
1510 >    case rnemdKeLx:
1511 >    case rnemdKeLy:
1512 >    case rnemdKeLz:
1513 >    case rnemdKeLvector:
1514 >      doAngularPart = true;
1515 >      break;
1516 >    case rnemdKE:
1517 >    case rnemdRotKE:
1518 >    case rnemdFullKE:
1519 >    default:
1520 >      if (usePeriodicBoundaryConditions_)
1521 >        doLinearPart = true;
1522 >      else
1523 >        doAngularPart = true;
1524 >      break;
1525 >    }
1526 >    
1527 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1528 >         sd = smanA.nextSelected(selei)) {
1529  
1530        Vector3d pos = sd->getPos();
1531  
1532        // wrap the stuntdouble's position back into the box:
1533 +      
1534 +      if (usePeriodicBoundaryConditions_)
1535 +        currentSnap_->wrapVector(pos);
1536 +      
1537 +      RealType mass = sd->getMass();
1538 +      Vector3d vel = sd->getVel();
1539 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1540 +      RealType r2;
1541 +      
1542 +      hotBin.push_back(sd);
1543 +      Ph += mass * vel;
1544 +      Mh += mass;
1545 +      Kh += mass * vel.lengthSquare();
1546 +      Lh += mass * cross(rPos, vel);
1547 +      Ih -= outProduct(rPos, rPos) * mass;
1548 +      r2 = rPos.lengthSquare();
1549 +      Ih(0, 0) += mass * r2;
1550 +      Ih(1, 1) += mass * r2;
1551 +      Ih(2, 2) += mass * r2;
1552 +      
1553 +      if (rnemdFluxType_ == rnemdFullKE) {
1554 +        if (sd->isDirectional()) {
1555 +          Vector3d angMom = sd->getJ();
1556 +          Mat3x3d I = sd->getI();
1557 +          if (sd->isLinear()) {
1558 +            int i = sd->linearAxis();
1559 +            int j = (i + 1) % 3;
1560 +            int k = (i + 2) % 3;
1561 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1562 +              angMom[k] * angMom[k] / I(k, k);
1563 +          } else {
1564 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1565 +              angMom[1] * angMom[1] / I(1, 1) +
1566 +              angMom[2] * angMom[2] / I(2, 2);
1567 +          }
1568 +        }
1569 +      }
1570 +    }
1571 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1572 +         sd = smanB.nextSelected(selej)) {
1573  
1574 +      Vector3d pos = sd->getPos();
1575 +      
1576 +      // wrap the stuntdouble's position back into the box:
1577 +      
1578        if (usePeriodicBoundaryConditions_)
1579          currentSnap_->wrapVector(pos);
1580 +      
1581 +      RealType mass = sd->getMass();
1582 +      Vector3d vel = sd->getVel();
1583 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1584 +      RealType r2;
1585  
1586 <      // which bin is this stuntdouble in?
1587 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1588 <
1589 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1590 <
1591 <      // if we're in bin 0 or the middleBin
1592 <      if (binNo == 0 || binNo == midBin_) {
1593 <        
1594 <        RealType mass = sd->getMass();
1595 <        Vector3d vel = sd->getVel();
1596 <      
1597 <        if (binNo == 0) {
1598 <          hotBin.push_back(sd);
1599 <          //std::cerr << "before, velocity = " << vel << endl;
1600 <          Ph += mass * vel;
1601 <          //std::cerr << "after, velocity = " << vel << endl;
1602 <          Mh += mass;
1603 <          Kh += mass * vel.lengthSquare();
1604 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1605 <            if (sd->isDirectional()) {
1606 <              Vector3d angMom = sd->getJ();
1607 <              Mat3x3d I = sd->getI();
1608 <              if (sd->isLinear()) {
1609 <                int i = sd->linearAxis();
1610 <                int j = (i + 1) % 3;
1611 <                int k = (i + 2) % 3;
1612 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1164 <                  angMom[k] * angMom[k] / I(k, k);
1165 <              } else {
1166 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1167 <                  angMom[1] * angMom[1] / I(1, 1) +
1168 <                  angMom[2] * angMom[2] / I(2, 2);
1169 <              }
1170 <            }
1171 <          }
1172 <        } else { //midBin_
1173 <          coldBin.push_back(sd);
1174 <          Pc += mass * vel;
1175 <          Mc += mass;
1176 <          Kc += mass * vel.lengthSquare();
1177 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1178 <            if (sd->isDirectional()) {
1179 <              Vector3d angMom = sd->getJ();
1180 <              Mat3x3d I = sd->getI();
1181 <              if (sd->isLinear()) {
1182 <                int i = sd->linearAxis();
1183 <                int j = (i + 1) % 3;
1184 <                int k = (i + 2) % 3;
1185 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1186 <                  angMom[k] * angMom[k] / I(k, k);
1187 <              } else {
1188 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1189 <                  angMom[1] * angMom[1] / I(1, 1) +
1190 <                  angMom[2] * angMom[2] / I(2, 2);
1191 <              }
1192 <            }
1193 <          }
1194 <        }
1586 >      coldBin.push_back(sd);
1587 >      Pc += mass * vel;
1588 >      Mc += mass;
1589 >      Kc += mass * vel.lengthSquare();
1590 >      Lc += mass * cross(rPos, vel);
1591 >      Ic -= outProduct(rPos, rPos) * mass;
1592 >      r2 = rPos.lengthSquare();
1593 >      Ic(0, 0) += mass * r2;
1594 >      Ic(1, 1) += mass * r2;
1595 >      Ic(2, 2) += mass * r2;
1596 >      
1597 >      if (rnemdFluxType_ == rnemdFullKE) {
1598 >        if (sd->isDirectional()) {
1599 >          Vector3d angMom = sd->getJ();
1600 >          Mat3x3d I = sd->getI();
1601 >          if (sd->isLinear()) {
1602 >            int i = sd->linearAxis();
1603 >            int j = (i + 1) % 3;
1604 >            int k = (i + 2) % 3;
1605 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1606 >              angMom[k] * angMom[k] / I(k, k);
1607 >          } else {
1608 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1609 >              angMom[1] * angMom[1] / I(1, 1) +
1610 >              angMom[2] * angMom[2] / I(2, 2);
1611 >          }
1612 >        }
1613        }
1614      }
1615      
1616      Kh *= 0.5;
1617      Kc *= 0.5;
1618 <
1201 <    std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1202 <              << "\tKc= " << Kc << endl;
1203 <    std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1204 <
1618 >    
1619   #ifdef IS_MPI
1620 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1621 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1622 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1623 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1624 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1625 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1620 >    MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1621 >                  MPI_COMM_WORLD);
1622 >    MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1623 >                  MPI_COMM_WORLD);
1624 >    MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1625 >                  MPI_COMM_WORLD);
1626 >    MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1627 >                  MPI_COMM_WORLD);
1628 >    MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1629 >    MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1630 >    MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1631 >    MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632 >    MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1633 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634 >    MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1635 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1636   #endif
1637 +    
1638  
1639 +    Vector3d ac, acrec, bc, bcrec;
1640 +    Vector3d ah, ahrec, bh, bhrec;
1641 +
1642      bool successfulExchange = false;
1643      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1644        Vector3d vc = Pc / Mc;
1645 <      Vector3d ac = njzp_ / Mc + vc;
1646 <      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1645 >      ac = -momentumTarget_ / Mc + vc;
1646 >      acrec = -momentumTarget_ / Mc;
1647 >      
1648 >      // We now need the inverse of the inertia tensor to calculate the
1649 >      // angular velocity of the cold slab;
1650 >      Mat3x3d Ici = Ic.inverse();
1651 >      Vector3d omegac = Ici * Lc;
1652 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1653 >      bcrec = bc - omegac;
1654 >      
1655 >      RealType cNumerator = Kc - kineticTarget_;
1656 >      if (doLinearPart)
1657 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1658 >      
1659 >      if (doAngularPart)
1660 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1661 >
1662        if (cNumerator > 0.0) {
1663 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1663 >        
1664 >        RealType cDenominator = Kc;
1665 >
1666 >        if (doLinearPart)
1667 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1668 >
1669 >        if (doAngularPart)
1670 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1671 >        
1672          if (cDenominator > 0.0) {
1673            RealType c = sqrt(cNumerator / cDenominator);
1674            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1675 +            
1676              Vector3d vh = Ph / Mh;
1677 <            Vector3d ah = jzp_ / Mh + vh;
1678 <            RealType hNumerator = Kh + targetJzKE_
1679 <              - 0.5 * Mh * ah.lengthSquare();
1680 <            if (hNumerator > 0.0) {
1681 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1677 >            ah = momentumTarget_ / Mh + vh;
1678 >            ahrec = momentumTarget_ / Mh;
1679 >            
1680 >            // We now need the inverse of the inertia tensor to
1681 >            // calculate the angular velocity of the hot slab;
1682 >            Mat3x3d Ihi = Ih.inverse();
1683 >            Vector3d omegah = Ihi * Lh;
1684 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1685 >            bhrec = bh - omegah;
1686 >            
1687 >            RealType hNumerator = Kh + kineticTarget_;
1688 >            if (doLinearPart)
1689 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1690 >            
1691 >            if (doAngularPart)
1692 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1693 >              
1694 >            if (hNumerator > 0.0) {
1695 >              
1696 >              RealType hDenominator = Kh;
1697 >              if (doLinearPart)
1698 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1699 >              if (doAngularPart)
1700 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1701 >              
1702                if (hDenominator > 0.0) {
1703                  RealType h = sqrt(hNumerator / hDenominator);
1704                  if ((h > 0.9) && (h < 1.1)) {
1705 <                  std::cerr << "cold slab scaling coefficient: " << c << "\n";
1234 <                  std::cerr << "hot slab scaling coefficient: " << h << "\n";
1705 >                  
1706                    vector<StuntDouble*>::iterator sdi;
1707                    Vector3d vel;
1708 <                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1708 >                  Vector3d rPos;
1709 >                  
1710 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1711                      //vel = (*sdi)->getVel();
1712 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1712 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1713 >                    if (doLinearPart)
1714 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1715 >                    if (doAngularPart)
1716 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1717 >
1718                      (*sdi)->setVel(vel);
1719 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1719 >                    if (rnemdFluxType_ == rnemdFullKE) {
1720                        if ((*sdi)->isDirectional()) {
1721                          Vector3d angMom = (*sdi)->getJ() * c;
1722                          (*sdi)->setJ(angMom);
1723                        }
1724                      }
1725                    }
1726 <                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1726 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1727                      //vel = (*sdi)->getVel();
1728 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1728 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1729 >                    if (doLinearPart)
1730 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1731 >                    if (doAngularPart)
1732 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1733 >
1734                      (*sdi)->setVel(vel);
1735 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1735 >                    if (rnemdFluxType_ == rnemdFullKE) {
1736                        if ((*sdi)->isDirectional()) {
1737                          Vector3d angMom = (*sdi)->getJ() * h;
1738                          (*sdi)->setJ(angMom);
# Line 1257 | Line 1740 | namespace OpenMD {
1740                      }
1741                    }
1742                    successfulExchange = true;
1743 <                  exchangeSum_ += targetFlux_;
1744 <                  // this is a redundant variable for doShiftScale() so that
1745 <                  // RNEMD can output one exchange quantity needed in a job.
1263 <                  // need a better way to do this.
1743 >                  kineticExchange_ += kineticTarget_;
1744 >                  momentumExchange_ += momentumTarget_;
1745 >                  angularMomentumExchange_ += angularMomentumTarget_;
1746                  }
1747                }
1748              }
# Line 1270 | Line 1752 | namespace OpenMD {
1752      }
1753      if (successfulExchange != true) {
1754        sprintf(painCave.errMsg,
1755 <              "RNEMD: exchange NOT performed!\n");
1755 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1756 >              "\tthe constraint equations may not exist or there may be\n"
1757 >              "\tno selected objects in one or both slabs.\n");
1758        painCave.isFatal = 0;
1759        painCave.severity = OPENMD_INFO;
1760        simError();        
# Line 1278 | Line 1762 | namespace OpenMD {
1762      }
1763    }
1764  
1765 <  void RNEMD::doRNEMD() {
1765 >  RealType RNEMD::getDividingArea() {
1766  
1767 <    switch(rnemdType_) {
1768 <    case rnemdKineticScale :
1769 <    case rnemdKineticScaleVAM :
1770 <    case rnemdKineticScaleAM :
1771 <    case rnemdPxScale :
1772 <    case rnemdPyScale :
1773 <    case rnemdPzScale :
1774 <      doScale();
1775 <      break;
1776 <    case rnemdKineticSwap :
1777 <    case rnemdPx :
1778 <    case rnemdPy :
1779 <    case rnemdPz :
1780 <      doSwap();
1781 <      break;
1782 <    case rnemdShiftScaleV :
1783 <    case rnemdShiftScaleVAM :
1784 <      doShiftScale();
1767 >    if (hasDividingArea_) return dividingArea_;
1768 >
1769 >    RealType areaA, areaB;
1770 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1771 >
1772 >    if (hasSelectionA_) {
1773 >
1774 >      if (evaluatorA_.hasSurfaceArea())
1775 >        areaA = evaluatorA_.getSurfaceArea();
1776 >      else {
1777 >        
1778 >        int isd;
1779 >        StuntDouble* sd;
1780 >        vector<StuntDouble*> aSites;
1781 >        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1782 >        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1783 >             sd = seleManA_.nextSelected(isd)) {
1784 >          aSites.push_back(sd);
1785 >        }
1786 > #if defined(HAVE_QHULL)
1787 >        ConvexHull* surfaceMeshA = new ConvexHull();
1788 >        surfaceMeshA->computeHull(aSites);
1789 >        areaA = surfaceMeshA->getArea();
1790 >        delete surfaceMeshA;
1791 > #else
1792 >        sprintf( painCave.errMsg,
1793 >               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1794 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1795 >        painCave.severity = OPENMD_ERROR;
1796 >        painCave.isFatal = 1;
1797 >        simError();
1798 > #endif
1799 >      }
1800 >
1801 >    } else {
1802 >      if (usePeriodicBoundaryConditions_) {
1803 >        // in periodic boundaries, the surface area is twice the x-y
1804 >        // area of the current box:
1805 >        areaA = 2.0 * snap->getXYarea();
1806 >      } else {
1807 >        // in non-periodic simulations, without explicitly setting
1808 >        // selections, the sphere radius sets the surface area of the
1809 >        // dividing surface:
1810 >        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1811 >      }
1812 >    }
1813 >
1814 >    if (hasSelectionB_) {
1815 >      if (evaluatorB_.hasSurfaceArea())
1816 >        areaB = evaluatorB_.getSurfaceArea();
1817 >      else {
1818 >
1819 >        int isd;
1820 >        StuntDouble* sd;
1821 >        vector<StuntDouble*> bSites;
1822 >        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1823 >        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1824 >             sd = seleManB_.nextSelected(isd)) {
1825 >          bSites.push_back(sd);
1826 >        }
1827 >        
1828 > #if defined(HAVE_QHULL)
1829 >        ConvexHull* surfaceMeshB = new ConvexHull();    
1830 >        surfaceMeshB->computeHull(bSites);
1831 >        areaB = surfaceMeshB->getArea();
1832 >        delete surfaceMeshB;
1833 > #else
1834 >        sprintf( painCave.errMsg,
1835 >                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1836 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1837 >        painCave.severity = OPENMD_ERROR;
1838 >        painCave.isFatal = 1;
1839 >        simError();
1840 > #endif
1841 >      }
1842 >      
1843 >    } else {
1844 >      if (usePeriodicBoundaryConditions_) {
1845 >        // in periodic boundaries, the surface area is twice the x-y
1846 >        // area of the current box:
1847 >        areaB = 2.0 * snap->getXYarea();
1848 >      } else {
1849 >        // in non-periodic simulations, without explicitly setting
1850 >        // selections, but if a sphereBradius has been set, just use that:
1851 >        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1852 >      }
1853 >    }
1854 >      
1855 >    dividingArea_ = min(areaA, areaB);
1856 >    hasDividingArea_ = true;
1857 >    return dividingArea_;
1858 >  }
1859 >  
1860 >  void RNEMD::doRNEMD() {
1861 >    if (!doRNEMD_) return;
1862 >    trialCount_++;
1863 >
1864 >    // object evaluator:
1865 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1866 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1867 >
1868 >    evaluatorA_.loadScriptString(selectionA_);
1869 >    evaluatorB_.loadScriptString(selectionB_);
1870 >
1871 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1872 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1873 >
1874 >    commonA_ = seleManA_ & seleMan_;
1875 >    commonB_ = seleManB_ & seleMan_;
1876 >
1877 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1878 >    // dt = exchange time interval
1879 >    // flux = target flux
1880 >    // dividingArea = smallest dividing surface between the two regions
1881 >
1882 >    hasDividingArea_ = false;
1883 >    RealType area = getDividingArea();
1884 >
1885 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1886 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1887 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1888 >
1889 >    switch(rnemdMethod_) {
1890 >    case rnemdSwap:
1891 >      doSwap(commonA_, commonB_);
1892        break;
1893 <    case rnemdUnknown :
1893 >    case rnemdNIVS:
1894 >      doNIVS(commonA_, commonB_);
1895 >      break;
1896 >    case rnemdVSS:
1897 >      doVSS(commonA_, commonB_);
1898 >      break;
1899 >    case rnemdUnkownMethod:
1900      default :
1901        break;
1902      }
1903    }
1904  
1905    void RNEMD::collectData() {
1906 <
1906 >    if (!doRNEMD_) return;
1907      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1908 +
1909 +    // collectData can be called more frequently than the doRNEMD, so use the
1910 +    // computed area from the last exchange time:
1911 +    RealType area = getDividingArea();
1912 +    areaAccumulator_->add(area);
1913      Mat3x3d hmat = currentSnap_->getHmat();
1914 +    Vector3d u = angularMomentumFluxVector_;
1915 +    u.normalize();
1916  
1917      seleMan_.setSelectionSet(evaluator_.evaluate());
1918  
1919 <    int selei;
1919 >    int selei(0);
1920      StuntDouble* sd;
1921 <    int idx;
1921 >    int binNo;
1922 >    RealType mass;
1923 >    Vector3d vel;
1924 >    Vector3d rPos;
1925 >    RealType KE;
1926 >    Vector3d L;
1927 >    Mat3x3d I;
1928 >    RealType r2;
1929  
1930 +    vector<RealType> binMass(nBins_, 0.0);
1931 +    vector<Vector3d> binP(nBins_, V3Zero);
1932 +    vector<RealType> binOmega(nBins_, 0.0);
1933 +    vector<Vector3d> binL(nBins_, V3Zero);
1934 +    vector<Mat3x3d>  binI(nBins_);
1935 +    vector<RealType> binKE(nBins_, 0.0);
1936 +    vector<int> binDOF(nBins_, 0);
1937 +    vector<int> binCount(nBins_, 0);
1938 +
1939      // alternative approach, track all molecules instead of only those
1940      // selected for scaling/swapping:
1941      /*
1942 <    SimInfo::MoleculeIterator miter;
1943 <    vector<StuntDouble*>::iterator iiter;
1944 <    Molecule* mol;
1945 <    StuntDouble* integrableObject;
1946 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1947 <         mol = info_->nextMolecule(miter))
1948 <      integrableObject is essentially sd
1949 <        for (integrableObject = mol->beginIntegrableObject(iiter);
1950 <             integrableObject != NULL;
1951 <             integrableObject = mol->nextIntegrableObject(iiter))
1942 >      SimInfo::MoleculeIterator miter;
1943 >      vector<StuntDouble*>::iterator iiter;
1944 >      Molecule* mol;
1945 >      StuntDouble* sd;
1946 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1947 >      mol = info_->nextMolecule(miter))
1948 >      sd is essentially sd
1949 >      for (sd = mol->beginIntegrableObject(iiter);
1950 >      sd != NULL;
1951 >      sd = mol->nextIntegrableObject(iiter))
1952      */
1953 +
1954      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1955 <         sd = seleMan_.nextSelected(selei)) {
1956 <      
1336 <      idx = sd->getLocalIndex();
1337 <      
1955 >         sd = seleMan_.nextSelected(selei)) {    
1956 >    
1957        Vector3d pos = sd->getPos();
1958  
1959        // wrap the stuntdouble's position back into the box:
1960        
1961 <      if (usePeriodicBoundaryConditions_)
1961 >      if (usePeriodicBoundaryConditions_) {
1962          currentSnap_->wrapVector(pos);
1963 <      
1964 <      // which bin is this stuntdouble in?
1965 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1966 <      
1967 <      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1968 <        rnemdLogWidth_;
1969 <      // no symmetrization allowed due to arbitary rnemdLogWidth_
1970 <      /*
1971 <      if (rnemdLogWidth_ == midBin_ + 1)
1972 <        if (binNo > midBin_)
1354 <          binNo = nBins_ - binNo;
1355 <      */
1356 <      RealType mass = sd->getMass();
1357 <      mHist_[binNo] += mass;
1358 <      Vector3d vel = sd->getVel();
1359 <      RealType value;
1360 <      //RealType xVal, yVal, zVal;
1963 >        // which bin is this stuntdouble in?
1964 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1965 >        // Shift molecules by half a box to have bins start at 0
1966 >        // The modulo operator is used to wrap the case when we are
1967 >        // beyond the end of the bins back to the beginning.
1968 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1969 >      } else {
1970 >        Vector3d rPos = pos - coordinateOrigin_;
1971 >        binNo = int(rPos.length() / binWidth_);
1972 >      }
1973  
1974 <      if (outputTemp_) {
1975 <        value = mass * vel.lengthSquare();
1976 <        tempCount_[binNo] += 3;
1977 <        if (sd->isDirectional()) {
1978 <          Vector3d angMom = sd->getJ();
1979 <          Mat3x3d I = sd->getI();
1980 <          if (sd->isLinear()) {
1981 <            int i = sd->linearAxis();
1982 <            int j = (i + 1) % 3;
1983 <            int k = (i + 2) % 3;
1984 <            value += angMom[j] * angMom[j] / I(j, j) +
1985 <              angMom[k] * angMom[k] / I(k, k);
1986 <            tempCount_[binNo] +=2;
1987 <          } else {
1988 <            value += angMom[0] * angMom[0] / I(0, 0) +
1989 <              angMom[1]*angMom[1]/I(1, 1) +
1990 <              angMom[2]*angMom[2]/I(2, 2);
1991 <            tempCount_[binNo] +=3;
1992 <          }
1993 <        }
1994 <        value = value / PhysicalConstants::energyConvert
1995 <          / PhysicalConstants::kb;//may move to getStatus()
1996 <        tempHist_[binNo] += value;
1974 >      mass = sd->getMass();
1975 >      vel = sd->getVel();
1976 >      rPos = sd->getPos() - coordinateOrigin_;
1977 >      KE = 0.5 * mass * vel.lengthSquare();
1978 >      L = mass * cross(rPos, vel);
1979 >      I = outProduct(rPos, rPos) * mass;
1980 >      r2 = rPos.lengthSquare();
1981 >      I(0, 0) += mass * r2;
1982 >      I(1, 1) += mass * r2;
1983 >      I(2, 2) += mass * r2;
1984 >
1985 >      // Project the relative position onto a plane perpendicular to
1986 >      // the angularMomentumFluxVector:
1987 >      // Vector3d rProj = rPos - dot(rPos, u) * u;
1988 >      // Project the velocity onto a plane perpendicular to the
1989 >      // angularMomentumFluxVector:
1990 >      // Vector3d vProj = vel  - dot(vel, u) * u;
1991 >      // Compute angular velocity vector (should be nearly parallel to
1992 >      // angularMomentumFluxVector
1993 >      // Vector3d aVel = cross(rProj, vProj);
1994 >
1995 >      if (binNo >= 0 && binNo < nBins_)  {
1996 >        binCount[binNo]++;
1997 >        binMass[binNo] += mass;
1998 >        binP[binNo] += mass*vel;
1999 >        binKE[binNo] += KE;
2000 >        binI[binNo] += I;
2001 >        binL[binNo] += L;
2002 >        binDOF[binNo] += 3;
2003 >        
2004 >        if (sd->isDirectional()) {
2005 >          Vector3d angMom = sd->getJ();
2006 >          Mat3x3d Ia = sd->getI();
2007 >          if (sd->isLinear()) {
2008 >            int i = sd->linearAxis();
2009 >            int j = (i + 1) % 3;
2010 >            int k = (i + 2) % 3;
2011 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2012 >                                   angMom[k] * angMom[k] / Ia(k, k));
2013 >            binDOF[binNo] += 2;
2014 >          } else {
2015 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2016 >                                   angMom[1] * angMom[1] / Ia(1, 1) +
2017 >                                   angMom[2] * angMom[2] / Ia(2, 2));
2018 >            binDOF[binNo] += 3;
2019 >          }
2020 >        }
2021        }
2022 <      if (outputVx_) {
1387 <        value = mass * vel[0];
1388 <        //vxzCount_[binNo]++;
1389 <        pxzHist_[binNo] += value;
1390 <      }
1391 <      if (outputVy_) {
1392 <        value = mass * vel[1];
1393 <        //vyzCount_[binNo]++;
1394 <        pyzHist_[binNo] += value;
1395 <      }
2022 >    }
2023  
2024 <      if (output3DTemp_) {
2025 <        value = mass * vel.x() * vel.x();
2026 <        xTempHist_[binNo] += value;
2027 <        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
2028 <          / PhysicalConstants::kb;
2029 <        yTempHist_[binNo] += value;
2030 <        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
2031 <          / PhysicalConstants::kb;
2032 <        zTempHist_[binNo] += value;
2033 <        xyzTempCount_[binNo]++;
2024 > #ifdef IS_MPI
2025 >
2026 >    for (int i = 0; i < nBins_; i++) {
2027 >      
2028 >      MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2029 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2030 >      MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2031 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2032 >      MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2033 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 >      MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2035 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 >      MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2037 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038 >      MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2039 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2040 >      MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2041 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2042 >      //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2043 >      //                          1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2044 >    }
2045 >    
2046 > #endif
2047 >
2048 >    Vector3d omega;
2049 >    RealType den;
2050 >    RealType temp;
2051 >    RealType z;
2052 >    RealType r;
2053 >    for (int i = 0; i < nBins_; i++) {
2054 >      if (usePeriodicBoundaryConditions_) {
2055 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2056 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2057 >          / currentSnap_->getVolume() ;
2058 >      } else {
2059 >        r = (((RealType)i + 0.5) * binWidth_);
2060 >        RealType rinner = (RealType)i * binWidth_;
2061 >        RealType router = (RealType)(i+1) * binWidth_;
2062 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2063 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2064        }
2065 <      if (outputRotTemp_) {
1409 <        if (sd->isDirectional()) {
1410 <          Vector3d angMom = sd->getJ();
1411 <          Mat3x3d I = sd->getI();
1412 <          if (sd->isLinear()) {
1413 <            int i = sd->linearAxis();
1414 <            int j = (i + 1) % 3;
1415 <            int k = (i + 2) % 3;
1416 <            value = angMom[j] * angMom[j] / I(j, j) +
1417 <              angMom[k] * angMom[k] / I(k, k);
1418 <            rotTempCount_[binNo] +=2;
1419 <          } else {
1420 <            value = angMom[0] * angMom[0] / I(0, 0) +
1421 <              angMom[1] * angMom[1] / I(1, 1) +
1422 <              angMom[2] * angMom[2] / I(2, 2);
1423 <            rotTempCount_[binNo] +=3;
1424 <          }
1425 <        }
1426 <        value = value / PhysicalConstants::energyConvert
1427 <          / PhysicalConstants::kb;//may move to getStatus()
1428 <        rotTempHist_[binNo] += value;
1429 <      }
2065 >      vel = binP[i] / binMass[i];
2066  
2067 +      omega = binI[i].inverse() * binL[i];
2068 +
2069 +      // omega = binOmega[i] / binCount[i];
2070 +
2071 +      if (binCount[i] > 0) {
2072 +        // only add values if there are things to add
2073 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2074 +                                 PhysicalConstants::energyConvert);
2075 +        
2076 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2077 +          if(outputMask_[j]) {
2078 +            switch(j) {
2079 +            case Z:
2080 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2081 +              break;
2082 +            case R:
2083 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2084 +              break;
2085 +            case TEMPERATURE:
2086 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2087 +              break;
2088 +            case VELOCITY:
2089 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2090 +              break;
2091 +            case ANGULARVELOCITY:  
2092 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2093 +              break;
2094 +            case DENSITY:
2095 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2096 +              break;
2097 +            }
2098 +          }
2099 +        }
2100 +      }
2101      }
2102 +    hasData_ = true;
2103    }
2104  
2105    void RNEMD::getStarted() {
2106 +    if (!doRNEMD_) return;
2107 +    hasDividingArea_ = false;
2108      collectData();
2109 <    /*now can output profile in step 0, but might not be useful;
1437 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1438 <    Stats& stat = currentSnap_->statData;
1439 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1440 <    */
1441 <    //may output a header for the log file here
1442 <    getStatus();
2109 >    writeOutputFile();
2110    }
2111  
2112 <  void RNEMD::getStatus() {
2113 <
2114 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2115 <    Stats& stat = currentSnap_->statData;
2116 <    RealType time = currentSnap_->getTime();
2117 <
2118 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2119 <    //or to be more meaningful, define another item as exchangeSum_ / time
2120 <    int j;
2121 <
2122 < #ifdef IS_MPI
2123 <
2124 <    // all processors have the same number of bins, and STL vectors pack their
2125 <    // arrays, so in theory, this should be safe:
2126 <
2127 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
2128 <                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2129 <    if (outputTemp_) {
1463 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1464 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1465 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1466 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1467 <    }
1468 <    if (outputVx_) {
1469 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1470 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1471 <      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1472 <      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1473 <    }
1474 <    if (outputVy_) {
1475 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1476 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1477 <      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1478 <      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
2112 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2113 >    if (!doRNEMD_) return;
2114 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2115 >    
2116 >    while(tokenizer.hasMoreTokens()) {
2117 >      std::string token(tokenizer.nextToken());
2118 >      toUpper(token);
2119 >      OutputMapType::iterator i = outputMap_.find(token);
2120 >      if (i != outputMap_.end()) {
2121 >        outputMask_.set(i->second);
2122 >      } else {
2123 >        sprintf( painCave.errMsg,
2124 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2125 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2126 >        painCave.isFatal = 0;
2127 >        painCave.severity = OPENMD_ERROR;
2128 >        simError();            
2129 >      }
2130      }
2131 <    if (output3DTemp_) {
2132 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
2133 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2134 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
2135 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2136 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
2137 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1487 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1488 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1489 <    }
1490 <    if (outputRotTemp_) {
1491 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1492 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1493 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1494 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1495 <    }
1496 <
2131 >  }
2132 >  
2133 >  void RNEMD::writeOutputFile() {
2134 >    if (!doRNEMD_) return;
2135 >    if (!hasData_) return;
2136 >    
2137 > #ifdef IS_MPI
2138      // If we're the root node, should we print out the results
2139 <    int worldRank = MPI::COMM_WORLD.Get_rank();
2139 >    int worldRank;
2140 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2141 >
2142      if (worldRank == 0) {
2143   #endif
2144 +      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2145 +      
2146 +      if( !rnemdFile_ ){        
2147 +        sprintf( painCave.errMsg,
2148 +                 "Could not open \"%s\" for RNEMD output.\n",
2149 +                 rnemdFileName_.c_str());
2150 +        painCave.isFatal = 1;
2151 +        simError();
2152 +      }
2153  
2154 <      if (outputTemp_) {
2155 <        tempLog_ << time;
2156 <        for (j = 0; j < rnemdLogWidth_; j++) {
2157 <          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
2158 <        }
2159 <        tempLog_ << endl;
2154 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2155 >
2156 >      RealType time = currentSnap_->getTime();
2157 >      RealType avgArea;
2158 >      areaAccumulator_->getAverage(avgArea);
2159 >
2160 >      RealType Jz(0.0);
2161 >      Vector3d JzP(V3Zero);
2162 >      Vector3d JzL(V3Zero);
2163 >      if (time >= info_->getSimParams()->getDt()) {
2164 >        Jz = kineticExchange_ / (time * avgArea)
2165 >          / PhysicalConstants::energyConvert;
2166 >        JzP = momentumExchange_ / (time * avgArea);
2167 >        JzL = angularMomentumExchange_ / (time * avgArea);
2168        }
2169 <      if (outputVx_) {
2170 <        vxzLog_ << time;
2171 <        for (j = 0; j < rnemdLogWidth_; j++) {
2172 <          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
2173 <        }
2174 <        vxzLog_ << endl;
2169 >
2170 >      rnemdFile_ << "#######################################################\n";
2171 >      rnemdFile_ << "# RNEMD {\n";
2172 >
2173 >      map<string, RNEMDMethod>::iterator mi;
2174 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2175 >        if ( (*mi).second == rnemdMethod_)
2176 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2177        }
2178 <      if (outputVy_) {
2179 <        vyzLog_ << time;
2180 <        for (j = 0; j < rnemdLogWidth_; j++) {
2181 <          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1520 <        }
1521 <        vyzLog_ << endl;
2178 >      map<string, RNEMDFluxType>::iterator fi;
2179 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2180 >        if ( (*fi).second == rnemdFluxType_)
2181 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2182        }
2183 +      
2184 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2185  
2186 <      if (output3DTemp_) {
2187 <        RealType temp;
2188 <        xTempLog_ << time;
2189 <        for (j = 0; j < rnemdLogWidth_; j++) {
2190 <          if (outputVx_)
2191 <            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
2192 <          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
2193 <            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
2194 <          xTempLog_ << "\t" << temp;
2186 >      rnemdFile_ << "#    objectSelection = \""
2187 >                 << rnemdObjectSelection_ << "\";\n";
2188 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2189 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2190 >      rnemdFile_ << "# }\n";
2191 >      rnemdFile_ << "#######################################################\n";
2192 >      rnemdFile_ << "# RNEMD report:\n";      
2193 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2194 >      rnemdFile_ << "# Target flux:\n";
2195 >      rnemdFile_ << "#           kinetic = "
2196 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2197 >                 << " (kcal/mol/A^2/fs)\n";
2198 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2199 >                 << " (amu/A/fs^2)\n";
2200 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2201 >                 << " (amu/A^2/fs^2)\n";
2202 >      rnemdFile_ << "# Target one-time exchanges:\n";
2203 >      rnemdFile_ << "#          kinetic = "
2204 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2205 >                 << " (kcal/mol)\n";
2206 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2207 >                 << " (amu*A/fs)\n";
2208 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2209 >                 << " (amu*A^2/fs)\n";
2210 >      rnemdFile_ << "# Actual exchange totals:\n";
2211 >      rnemdFile_ << "#          kinetic = "
2212 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2213 >                 << " (kcal/mol)\n";
2214 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2215 >                 << " (amu*A/fs)\n";      
2216 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2217 >                 << " (amu*A^2/fs)\n";      
2218 >      rnemdFile_ << "# Actual flux:\n";
2219 >      rnemdFile_ << "#          kinetic = " << Jz
2220 >                 << " (kcal/mol/A^2/fs)\n";
2221 >      rnemdFile_ << "#          momentum = " << JzP
2222 >                 << " (amu/A/fs^2)\n";
2223 >      rnemdFile_ << "#  angular momentum = " << JzL
2224 >                 << " (amu/A^2/fs^2)\n";
2225 >      rnemdFile_ << "# Exchange statistics:\n";
2226 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2227 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2228 >      if (rnemdMethod_ == rnemdNIVS) {
2229 >        rnemdFile_ << "#  NIVS root-check errors = "
2230 >                   << failRootCount_ << "\n";
2231 >      }
2232 >      rnemdFile_ << "#######################################################\n";
2233 >      
2234 >      
2235 >      
2236 >      //write title
2237 >      rnemdFile_ << "#";
2238 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2239 >        if (outputMask_[i]) {
2240 >          rnemdFile_ << "\t" << data_[i].title <<
2241 >            "(" << data_[i].units << ")";
2242 >          // add some extra tabs for column alignment
2243 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2244          }
1534        xTempLog_ << endl;
1535        yTempLog_ << time;
1536        for (j = 0; j < rnemdLogWidth_; j++) {
1537          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1538        }
1539        yTempLog_ << endl;
1540        zTempLog_ << time;
1541        for (j = 0; j < rnemdLogWidth_; j++) {
1542          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1543        }
1544        zTempLog_ << endl;
2245        }
2246 <      if (outputRotTemp_) {
2247 <        rotTempLog_ << time;
2248 <        for (j = 0; j < rnemdLogWidth_; j++) {
2249 <          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
2250 <        }
2251 <        rotTempLog_ << endl;
2252 <      }
2246 >      rnemdFile_ << std::endl;
2247 >      
2248 >      rnemdFile_.precision(8);
2249 >      
2250 >      for (int j = 0; j < nBins_; j++) {        
2251 >        
2252 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2253 >          if (outputMask_[i]) {
2254 >            if (data_[i].dataType == "RealType")
2255 >              writeReal(i,j);
2256 >            else if (data_[i].dataType == "Vector3d")
2257 >              writeVector(i,j);
2258 >            else {
2259 >              sprintf( painCave.errMsg,
2260 >                       "RNEMD found an unknown data type for: %s ",
2261 >                       data_[i].title.c_str());
2262 >              painCave.isFatal = 1;
2263 >              simError();
2264 >            }
2265 >          }
2266 >        }
2267 >        rnemdFile_ << std::endl;
2268 >        
2269 >      }        
2270  
2271 +      rnemdFile_ << "#######################################################\n";
2272 +      rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2273 +      rnemdFile_ << "#######################################################\n";
2274 +
2275 +
2276 +      for (int j = 0; j < nBins_; j++) {        
2277 +        rnemdFile_ << "#";
2278 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2279 +          if (outputMask_[i]) {
2280 +            if (data_[i].dataType == "RealType")
2281 +              writeRealErrorBars(i,j);
2282 +            else if (data_[i].dataType == "Vector3d")
2283 +              writeVectorErrorBars(i,j);
2284 +            else {
2285 +              sprintf( painCave.errMsg,
2286 +                       "RNEMD found an unknown data type for: %s ",
2287 +                       data_[i].title.c_str());
2288 +              painCave.isFatal = 1;
2289 +              simError();
2290 +            }
2291 +          }
2292 +        }
2293 +        rnemdFile_ << std::endl;
2294 +        
2295 +      }        
2296 +      
2297 +      rnemdFile_.flush();
2298 +      rnemdFile_.close();
2299 +      
2300   #ifdef IS_MPI
2301      }
2302   #endif
2303 +    
2304 +  }
2305 +  
2306 +  void RNEMD::writeReal(int index, unsigned int bin) {
2307 +    if (!doRNEMD_) return;
2308 +    assert(index >=0 && index < ENDINDEX);
2309 +    assert(int(bin) < nBins_);
2310 +    RealType s;
2311 +    int count;
2312 +    
2313 +    count = data_[index].accumulator[bin]->count();
2314 +    if (count == 0) return;
2315 +    
2316 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2317 +    
2318 +    if (! isinf(s) && ! isnan(s)) {
2319 +      rnemdFile_ << "\t" << s;
2320 +    } else{
2321 +      sprintf( painCave.errMsg,
2322 +               "RNEMD detected a numerical error writing: %s for bin %u",
2323 +               data_[index].title.c_str(), bin);
2324 +      painCave.isFatal = 1;
2325 +      simError();
2326 +    }    
2327 +  }
2328 +  
2329 +  void RNEMD::writeVector(int index, unsigned int bin) {
2330 +    if (!doRNEMD_) return;
2331 +    assert(index >=0 && index < ENDINDEX);
2332 +    assert(int(bin) < nBins_);
2333 +    Vector3d s;
2334 +    int count;
2335 +    
2336 +    count = data_[index].accumulator[bin]->count();
2337  
2338 <    for (j = 0; j < rnemdLogWidth_; j++) {
2339 <      mHist_[j] = 0.0;
2338 >    if (count == 0) return;
2339 >
2340 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2341 >    if (isinf(s[0]) || isnan(s[0]) ||
2342 >        isinf(s[1]) || isnan(s[1]) ||
2343 >        isinf(s[2]) || isnan(s[2]) ) {      
2344 >      sprintf( painCave.errMsg,
2345 >               "RNEMD detected a numerical error writing: %s for bin %u",
2346 >               data_[index].title.c_str(), bin);
2347 >      painCave.isFatal = 1;
2348 >      simError();
2349 >    } else {
2350 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2351      }
2352 <    if (outputTemp_)
1562 <      for (j = 0; j < rnemdLogWidth_; j++) {
1563 <        tempCount_[j] = 0;
1564 <        tempHist_[j] = 0.0;
1565 <      }
1566 <    if (outputVx_)
1567 <      for (j = 0; j < rnemdLogWidth_; j++) {
1568 <        //pxzCount_[j] = 0;
1569 <        pxzHist_[j] = 0.0;
1570 <      }
1571 <    if (outputVy_)
1572 <      for (j = 0; j < rnemdLogWidth_; j++) {
1573 <        //pyzCount_[j] = 0;
1574 <        pyzHist_[j] = 0.0;
1575 <      }
2352 >  }  
2353  
2354 <    if (output3DTemp_)
2355 <      for (j = 0; j < rnemdLogWidth_; j++) {
2356 <        xTempHist_[j] = 0.0;
2357 <        yTempHist_[j] = 0.0;
2358 <        zTempHist_[j] = 0.0;
2359 <        xyzTempCount_[j] = 0;
2360 <      }
2361 <    if (outputRotTemp_)
2362 <      for (j = 0; j < rnemdLogWidth_; j++) {
2363 <        rotTempCount_[j] = 0;
2364 <        rotTempHist_[j] = 0.0;
2365 <      }
2354 >  void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2355 >    if (!doRNEMD_) return;
2356 >    assert(index >=0 && index < ENDINDEX);
2357 >    assert(int(bin) < nBins_);
2358 >    RealType s;
2359 >    int count;
2360 >    
2361 >    count = data_[index].accumulator[bin]->count();
2362 >    if (count == 0) return;
2363 >    
2364 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2365 >    
2366 >    if (! isinf(s) && ! isnan(s)) {
2367 >      rnemdFile_ << "\t" << s;
2368 >    } else{
2369 >      sprintf( painCave.errMsg,
2370 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2371 >               data_[index].title.c_str(), bin);
2372 >      painCave.isFatal = 1;
2373 >      simError();
2374 >    }    
2375    }
2376 +  
2377 +  void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2378 +    if (!doRNEMD_) return;
2379 +    assert(index >=0 && index < ENDINDEX);
2380 +    assert(int(bin) < nBins_);
2381 +    Vector3d s;
2382 +    int count;
2383 +    
2384 +    count = data_[index].accumulator[bin]->count();
2385 +    if (count == 0) return;
2386 +
2387 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2388 +    if (isinf(s[0]) || isnan(s[0]) ||
2389 +        isinf(s[1]) || isnan(s[1]) ||
2390 +        isinf(s[2]) || isnan(s[2]) ) {      
2391 +      sprintf( painCave.errMsg,
2392 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2393 +               data_[index].title.c_str(), bin);
2394 +      painCave.isFatal = 1;
2395 +      simError();
2396 +    } else {
2397 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2398 +    }
2399 +  }  
2400   }
2401  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines