ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 2068 by gezelter, Thu Mar 5 15:40:58 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #ifdef IS_MPI
42 + #include <mpi.h>
43 + #endif
44  
45   #include <cmath>
46 < #include "integrators/RNEMD.hpp"
46 > #include <sstream>
47 > #include <string>
48 >
49 > #include "rnemd/RNEMD.hpp"
50   #include "math/Vector3.hpp"
51   #include "math/Vector.hpp"
52   #include "math/SquareMatrix3.hpp"
# Line 49 | Line 55
55   #include "primitives/StuntDouble.hpp"
56   #include "utils/PhysicalConstants.hpp"
57   #include "utils/Tuple.hpp"
58 + #include "brains/Thermo.hpp"
59 + #include "math/ConvexHull.hpp"
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
56 < #include "math/ParallelRandNumGen.hpp"
57 < #include <mpi.h>
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
# Line 63 | Line 69 | namespace OpenMD {
69   namespace OpenMD {
70    
71    RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 +                                evaluatorA_(info), seleManA_(info),
73 +                                commonA_(info), evaluatorB_(info),
74 +                                seleManB_(info), commonB_(info),
75 +                                hasData_(false), hasDividingArea_(false),
76                                  usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78 +    trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    int seedValue;
83 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
86 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 <    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77 <    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
79 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
80 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
81 <    stringToEnumMap_["Px"] = rnemdPx;
82 <    stringToEnumMap_["Py"] = rnemdPy;
83 <    stringToEnumMap_["Pz"] = rnemdPz;
84 <    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85 <    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
85 >    doRNEMD_ = rnemdParams->getUseRNEMD();
86 >    if (!doRNEMD_) return;
87  
88 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 <    evaluator_.loadScriptString(rnemdObjectSelection_);
90 <    seleMan_.setSelectionSet(evaluator_.evaluate());
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91  
92 <    // do some sanity checking
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109 <    int selectionCount = seleMan_.getSelectionCount();
110 <    int nIntegrable = info->getNGlobalIntegrableObjects();
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111  
112 <    if (selectionCount > nIntegrable) {
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121        sprintf(painCave.errMsg,
122 <              "RNEMD: The current RNEMD_objectSelection,\n"
123 <              "\t\t%s\n"
124 <              "\thas resulted in %d selected objects.  However,\n"
125 <              "\tthe total number of integrable objects in the system\n"
126 <              "\tis only %d.  This is almost certainly not what you want\n"
127 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
128 <              "\tselector in the selection script!\n",
106 <              rnemdObjectSelection_.c_str(),
107 <              selectionCount, nIntegrable);
108 <      painCave.isFatal = 0;
109 <      painCave.severity = OPENMD_WARNING;
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129        simError();
130      }
131 +
132 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 +    bool hasOutputFields = rnemdParams->haveOutputFields();
147      
148 <    const string st = simParams->getRNEMD_exchangeType();
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162  
163 <    map<string, RNEMDTypeEnum>::iterator i;
164 <    i = stringToEnumMap_.find(st);
165 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
166 <    if (rnemdType_ == rnemdUnknown) {
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168        sprintf(painCave.errMsg,
169 <              "RNEMD: The current RNEMD_exchangeType,\n"
169 >              "RNEMD: The current fluxType,\n"
170                "\t\t%s\n"
171 <              "\tis not one of the recognized exchange types.\n",
172 <              st.c_str());
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173        painCave.isFatal = 1;
174        painCave.severity = OPENMD_ERROR;
175        simError();
176      }
128    
129    outputTemp_ = false;
130    if (simParams->haveRNEMD_outputTemperature()) {
131      outputTemp_ = simParams->getRNEMD_outputTemperature();
132    } else if ((rnemdType_ == rnemdKineticSwap) ||
133               (rnemdType_ == rnemdKineticScale) ||
134               (rnemdType_ == rnemdKineticScaleVAM) ||
135               (rnemdType_ == rnemdKineticScaleAM)) {
136      outputTemp_ = true;
137    }
138    outputVx_ = false;
139    if (simParams->haveRNEMD_outputVx()) {
140      outputVx_ = simParams->getRNEMD_outputVx();
141    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
142      outputVx_ = true;
143    }
144    outputVy_ = false;
145    if (simParams->haveRNEMD_outputVy()) {
146      outputVy_ = simParams->getRNEMD_outputVy();
147    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
148      outputVy_ = true;
149    }
150    output3DTemp_ = false;
151    if (simParams->haveRNEMD_outputXyzTemperature()) {
152      output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
153    }
154    outputRotTemp_ = false;
155    if (simParams->haveRNEMD_outputRotTemperature()) {
156      outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
157    }
177  
178 < #ifdef IS_MPI
179 <    if (worldRank == 0) {
180 < #endif
181 <
182 <      //may have rnemdWriter separately
183 <      string rnemdFileName;
184 <
185 <      if (outputTemp_) {
186 <        rnemdFileName = "temperature.log";
187 <        tempLog_.open(rnemdFileName.c_str());
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185 >        break;
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190 >        break;
191 >      default :
192 >        methodFluxMismatch = true;
193 >        break;
194        }
195 <      if (outputVx_) {
196 <        rnemdFileName = "velocityX.log";
197 <        vxzLog_.open(rnemdFileName.c_str());
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215        }
216 <      if (outputVy_) {
217 <        rnemdFileName = "velocityY.log";
218 <        vyzLog_.open(rnemdFileName.c_str());
219 <      }
220 <
221 <      if (output3DTemp_) {
222 <        rnemdFileName = "temperatureX.log";
223 <        xTempLog_.open(rnemdFileName.c_str());
224 <        rnemdFileName = "temperatureY.log";
225 <        yTempLog_.open(rnemdFileName.c_str());
226 <        rnemdFileName = "temperatureZ.log";
227 <        zTempLog_.open(rnemdFileName.c_str());
228 <      }
229 <      if (outputRotTemp_) {
230 <        rnemdFileName = "temperatureR.log";
231 <        rotTempLog_.open(rnemdFileName.c_str());
232 <      }
233 <
234 < #ifdef IS_MPI
235 <    }
236 < #endif
237 <
238 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
239 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
240 <    midBin_ = nBins_ / 2;
241 <    if (simParams->haveRNEMD_binShift()) {
242 <      if (simParams->getRNEMD_binShift()) {
243 <        zShift_ = 0.5 / (RealType)(nBins_);
244 <      } else {
245 <        zShift_ = 0.0;
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258        }
259 <    } else {
260 <      zShift_ = 0.0;
259 >    default:
260 >      break;
261      }
208    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
209    //shift slabs by half slab width, maybe useful in heterogeneous systems
210    //set to 0.0 if not using it; N/A in status output yet
211    if (simParams->haveRNEMD_logWidth()) {
212      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
213      /*arbitary rnemdLogWidth_, no checking;
214      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
215        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
216        cerr << "Automaically set back to default.\n";
217        rnemdLogWidth_ = nBins_;
218      }*/
219    } else {
220      set_RNEMD_logWidth(nBins_);
221    }
222    tempHist_.resize(rnemdLogWidth_, 0.0);
223    tempCount_.resize(rnemdLogWidth_, 0);
224    pxzHist_.resize(rnemdLogWidth_, 0.0);
225    //vxzCount_.resize(rnemdLogWidth_, 0);
226    pyzHist_.resize(rnemdLogWidth_, 0.0);
227    //vyzCount_.resize(rnemdLogWidth_, 0);
262  
263 <    mHist_.resize(rnemdLogWidth_, 0.0);
264 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
265 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
266 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
267 <    xyzTempCount_.resize(rnemdLogWidth_, 0);
268 <    rotTempHist_.resize(rnemdLogWidth_, 0.0);
269 <    rotTempCount_.resize(rnemdLogWidth_, 0);
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284  
285 <    set_RNEMD_exchange_total(0.0);
286 <    if (simParams->haveRNEMD_targetFlux()) {
287 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290      } else {
291 <      set_RNEMD_target_flux(0.0);
291 >      kineticFlux_ = 0.0;
292      }
293 <    if (simParams->haveRNEMD_targetJzKE()) {
294 <      set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
293 >    if (hasMomentumFluxVector) {
294 >      std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
295 >      if (mf.size() != 3) {
296 >          sprintf(painCave.errMsg,
297 >                  "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
298 >                  "\tthere should be 3 parameters, but %lu were specified.\n",
299 >                  mf.size());
300 >          painCave.isFatal = 1;
301 >          simError();      
302 >      }
303 >      momentumFluxVector_.x() = mf[0];
304 >      momentumFluxVector_.y() = mf[1];
305 >      momentumFluxVector_.z() = mf[2];
306      } else {
307 <      set_RNEMD_target_JzKE(0.0);
307 >      momentumFluxVector_ = V3Zero;
308 >      if (hasMomentumFlux) {
309 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
310 >        switch (rnemdFluxType_) {
311 >        case rnemdPx:
312 >          momentumFluxVector_.x() = momentumFlux;
313 >          break;
314 >        case rnemdPy:
315 >          momentumFluxVector_.y() = momentumFlux;
316 >          break;
317 >        case rnemdPz:
318 >          momentumFluxVector_.z() = momentumFlux;
319 >          break;
320 >        case rnemdKePx:
321 >          momentumFluxVector_.x() = momentumFlux;
322 >          break;
323 >        case rnemdKePy:
324 >          momentumFluxVector_.y() = momentumFlux;
325 >          break;
326 >        default:
327 >          break;
328 >        }
329 >      }
330      }
331 <    if (simParams->haveRNEMD_targetJzpx()) {
332 <      set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
331 >    if (hasAngularMomentumFluxVector) {
332 >      std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
333 >      if (amf.size() != 3) {
334 >        sprintf(painCave.errMsg,
335 >                "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
336 >                "\tthere should be 3 parameters, but %lu were specified.\n",
337 >                amf.size());
338 >        painCave.isFatal = 1;
339 >        simError();      
340 >      }
341 >      angularMomentumFluxVector_.x() = amf[0];
342 >      angularMomentumFluxVector_.y() = amf[1];
343 >      angularMomentumFluxVector_.z() = amf[2];
344      } else {
345 <      set_RNEMD_target_jzpx(0.0);
345 >      angularMomentumFluxVector_ = V3Zero;
346 >      if (hasAngularMomentumFlux) {
347 >        RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
348 >        switch (rnemdFluxType_) {
349 >        case rnemdLx:
350 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
351 >          break;
352 >        case rnemdLy:
353 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
354 >          break;
355 >        case rnemdLz:
356 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
357 >          break;
358 >        case rnemdKeLx:
359 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
360 >          break;
361 >        case rnemdKeLy:
362 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
363 >          break;
364 >        case rnemdKeLz:
365 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
366 >          break;
367 >        default:
368 >          break;
369 >        }
370 >      }        
371      }
372 <    jzp_.x() = targetJzpx_;
373 <    njzp_.x() = -targetJzpx_;
374 <    if (simParams->haveRNEMD_targetJzpy()) {
375 <      set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
372 >
373 >    if (hasCoordinateOrigin) {
374 >      std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
375 >      if (co.size() != 3) {
376 >        sprintf(painCave.errMsg,
377 >                "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
378 >                "\tthere should be 3 parameters, but %lu were specified.\n",
379 >                co.size());
380 >        painCave.isFatal = 1;
381 >        simError();      
382 >      }
383 >      coordinateOrigin_.x() = co[0];
384 >      coordinateOrigin_.y() = co[1];
385 >      coordinateOrigin_.z() = co[2];
386      } else {
387 <      set_RNEMD_target_jzpy(0.0);
387 >      coordinateOrigin_ = V3Zero;
388      }
389 <    jzp_.y() = targetJzpy_;
390 <    njzp_.y() = -targetJzpy_;
391 <    if (simParams->haveRNEMD_targetJzpz()) {
392 <      set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
393 <    } else {
394 <      set_RNEMD_target_jzpz(0.0);
389 >    
390 >    // do some sanity checking
391 >    
392 >    int selectionCount = seleMan_.getSelectionCount();    
393 >    int nIntegrable = info->getNGlobalIntegrableObjects();
394 >    if (selectionCount > nIntegrable) {
395 >      sprintf(painCave.errMsg,
396 >              "RNEMD: The current objectSelection,\n"
397 >              "\t\t%s\n"
398 >              "\thas resulted in %d selected objects.  However,\n"
399 >              "\tthe total number of integrable objects in the system\n"
400 >              "\tis only %d.  This is almost certainly not what you want\n"
401 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
402 >              "\tselector in the selection script!\n",
403 >              rnemdObjectSelection_.c_str(),
404 >              selectionCount, nIntegrable);
405 >      painCave.isFatal = 0;
406 >      painCave.severity = OPENMD_WARNING;
407 >      simError();
408 >    }
409 >    
410 >    areaAccumulator_ = new Accumulator();
411 >    
412 >    nBins_ = rnemdParams->getOutputBins();
413 >    binWidth_ = rnemdParams->getOutputBinWidth();
414 >    
415 >    data_.resize(RNEMD::ENDINDEX);
416 >    OutputData z;
417 >    z.units =  "Angstroms";
418 >    z.title =  "Z";
419 >    z.dataType = "RealType";
420 >    z.accumulator.reserve(nBins_);
421 >    for (int i = 0; i < nBins_; i++)
422 >      z.accumulator.push_back( new Accumulator() );
423 >    data_[Z] = z;
424 >    outputMap_["Z"] =  Z;
425 >    
426 >    OutputData r;
427 >    r.units =  "Angstroms";
428 >    r.title =  "R";
429 >    r.dataType = "RealType";
430 >    r.accumulator.reserve(nBins_);
431 >    for (int i = 0; i < nBins_; i++)
432 >      r.accumulator.push_back( new Accumulator() );
433 >    data_[R] = r;
434 >    outputMap_["R"] =  R;
435 >    
436 >    OutputData temperature;
437 >    temperature.units =  "K";
438 >    temperature.title =  "Temperature";
439 >    temperature.dataType = "RealType";
440 >    temperature.accumulator.reserve(nBins_);
441 >    for (int i = 0; i < nBins_; i++)
442 >      temperature.accumulator.push_back( new Accumulator() );
443 >    data_[TEMPERATURE] = temperature;
444 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
445 >    
446 >    OutputData velocity;
447 >    velocity.units = "angstroms/fs";
448 >    velocity.title =  "Velocity";  
449 >    velocity.dataType = "Vector3d";
450 >    velocity.accumulator.reserve(nBins_);
451 >    for (int i = 0; i < nBins_; i++)
452 >      velocity.accumulator.push_back( new VectorAccumulator() );
453 >    data_[VELOCITY] = velocity;
454 >    outputMap_["VELOCITY"] = VELOCITY;
455 >    
456 >    OutputData angularVelocity;
457 >    angularVelocity.units = "angstroms^2/fs";
458 >    angularVelocity.title =  "AngularVelocity";  
459 >    angularVelocity.dataType = "Vector3d";
460 >    angularVelocity.accumulator.reserve(nBins_);
461 >    for (int i = 0; i < nBins_; i++)
462 >      angularVelocity.accumulator.push_back( new VectorAccumulator() );
463 >    data_[ANGULARVELOCITY] = angularVelocity;
464 >    outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
465 >    
466 >    OutputData density;
467 >    density.units =  "g cm^-3";
468 >    density.title =  "Density";
469 >    density.dataType = "RealType";
470 >    density.accumulator.reserve(nBins_);
471 >    for (int i = 0; i < nBins_; i++)
472 >      density.accumulator.push_back( new Accumulator() );
473 >    data_[DENSITY] = density;
474 >    outputMap_["DENSITY"] =  DENSITY;
475 >    
476 >    if (hasOutputFields) {
477 >      parseOutputFileFormat(rnemdParams->getOutputFields());
478 >    } else {
479 >      if (usePeriodicBoundaryConditions_)
480 >        outputMask_.set(Z);
481 >      else
482 >        outputMask_.set(R);
483 >      switch (rnemdFluxType_) {
484 >      case rnemdKE:
485 >      case rnemdRotKE:
486 >      case rnemdFullKE:
487 >        outputMask_.set(TEMPERATURE);
488 >        break;
489 >      case rnemdPx:
490 >      case rnemdPy:
491 >        outputMask_.set(VELOCITY);
492 >        break;
493 >      case rnemdPz:        
494 >      case rnemdPvector:
495 >        outputMask_.set(VELOCITY);
496 >        outputMask_.set(DENSITY);
497 >        break;
498 >      case rnemdLx:
499 >      case rnemdLy:
500 >      case rnemdLz:
501 >      case rnemdLvector:
502 >        outputMask_.set(ANGULARVELOCITY);
503 >        break;
504 >      case rnemdKeLx:
505 >      case rnemdKeLy:
506 >      case rnemdKeLz:
507 >      case rnemdKeLvector:
508 >        outputMask_.set(TEMPERATURE);
509 >        outputMask_.set(ANGULARVELOCITY);
510 >        break;
511 >      case rnemdKePx:
512 >      case rnemdKePy:
513 >        outputMask_.set(TEMPERATURE);
514 >        outputMask_.set(VELOCITY);
515 >        break;
516 >      case rnemdKePvector:
517 >        outputMask_.set(TEMPERATURE);
518 >        outputMask_.set(VELOCITY);
519 >        outputMask_.set(DENSITY);        
520 >        break;
521 >      default:
522 >        break;
523 >      }
524      }
525 <    jzp_.z() = targetJzpz_;
526 <    njzp_.z() = -targetJzpz_;
527 <
528 < #ifndef IS_MPI
529 <    if (simParams->haveSeed()) {
530 <      seedValue = simParams->getSeed();
531 <      randNumGen_ = new SeqRandNumGen(seedValue);
532 <    }else {
533 <      randNumGen_ = new SeqRandNumGen();
534 <    }    
535 < #else
536 <    if (simParams->haveSeed()) {
537 <      seedValue = simParams->getSeed();
538 <      randNumGen_ = new ParallelRandNumGen(seedValue);
539 <    }else {
540 <      randNumGen_ = new ParallelRandNumGen();
541 <    }    
542 < #endif
525 >    
526 >    if (hasOutputFileName) {
527 >      rnemdFileName_ = rnemdParams->getOutputFileName();
528 >    } else {
529 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
530 >    }          
531 >    
532 >    exchangeTime_ = rnemdParams->getExchangeTime();
533 >    
534 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
535 >    // total exchange sums are zeroed out at the beginning:
536 >    
537 >    kineticExchange_ = 0.0;
538 >    momentumExchange_ = V3Zero;
539 >    angularMomentumExchange_ = V3Zero;
540 >    
541 >    std::ostringstream selectionAstream;
542 >    std::ostringstream selectionBstream;
543 >    
544 >    if (hasSelectionA_) {
545 >      selectionA_ = rnemdParams->getSelectionA();
546 >    } else {
547 >      if (usePeriodicBoundaryConditions_) {    
548 >        Mat3x3d hmat = currentSnap_->getHmat();
549 >        
550 >        if (hasSlabWidth)
551 >          slabWidth_ = rnemdParams->getSlabWidth();
552 >        else
553 >          slabWidth_ = hmat(2,2) / 10.0;
554 >        
555 >        if (hasSlabACenter)
556 >          slabACenter_ = rnemdParams->getSlabACenter();
557 >        else
558 >          slabACenter_ = 0.0;
559 >        
560 >        selectionAstream << "select wrappedz > "
561 >                         << slabACenter_ - 0.5*slabWidth_
562 >                         <<  " && wrappedz < "
563 >                         << slabACenter_ + 0.5*slabWidth_;
564 >        selectionA_ = selectionAstream.str();
565 >      } else {
566 >        if (hasSphereARadius)
567 >          sphereARadius_ = rnemdParams->getSphereARadius();
568 >        else {
569 >          // use an initial guess to the size of the inner slab to be 1/10 the
570 >          // radius of an approximately spherical hull:
571 >          Thermo thermo(info);
572 >          RealType hVol = thermo.getHullVolume();
573 >          sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
574 >        }
575 >        selectionAstream << "select r < " << sphereARadius_;
576 >        selectionA_ = selectionAstream.str();
577 >      }
578 >    }
579 >    
580 >    if (hasSelectionB_) {
581 >      selectionB_ = rnemdParams->getSelectionB();
582 >      
583 >    } else {
584 >      if (usePeriodicBoundaryConditions_) {    
585 >        Mat3x3d hmat = currentSnap_->getHmat();
586 >        
587 >        if (hasSlabWidth)
588 >          slabWidth_ = rnemdParams->getSlabWidth();
589 >        else
590 >          slabWidth_ = hmat(2,2) / 10.0;
591 >        
592 >        if (hasSlabBCenter)
593 >          slabBCenter_ = rnemdParams->getSlabBCenter();
594 >        else
595 >          slabBCenter_ = hmat(2,2) / 2.0;
596 >        
597 >        selectionBstream << "select wrappedz > "
598 >                         << slabBCenter_ - 0.5*slabWidth_
599 >                         <<  " && wrappedz < "
600 >                         << slabBCenter_ + 0.5*slabWidth_;
601 >        selectionB_ = selectionBstream.str();
602 >      } else {
603 >        if (hasSphereBRadius_) {
604 >          sphereBRadius_ = rnemdParams->getSphereBRadius();
605 >          selectionBstream << "select r > " << sphereBRadius_;
606 >          selectionB_ = selectionBstream.str();
607 >        } else {
608 >          selectionB_ = "select hull";
609 >          BisHull_ = true;
610 >          hasSelectionB_ = true;
611 >        }
612 >      }
613 >    }
614 >  
615 >  
616 >    // object evaluator:
617 >    evaluator_.loadScriptString(rnemdObjectSelection_);
618 >    seleMan_.setSelectionSet(evaluator_.evaluate());
619 >    evaluatorA_.loadScriptString(selectionA_);
620 >    evaluatorB_.loadScriptString(selectionB_);
621 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
622 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
623 >    commonA_ = seleManA_ & seleMan_;
624 >    commonB_ = seleManB_ & seleMan_;  
625    }
626    
287  RNEMD::~RNEMD() {
288    delete randNumGen_;
627      
628 +  RNEMD::~RNEMD() {
629 +    if (!doRNEMD_) return;
630   #ifdef IS_MPI
631      if (worldRank == 0) {
632   #endif
293      
294      sprintf(painCave.errMsg,
295              "RNEMD: total failed trials: %d\n",
296              failTrialCount_);
297      painCave.isFatal = 0;
298      painCave.severity = OPENMD_INFO;
299      simError();
633  
634 <      if (outputTemp_) tempLog_.close();
302 <      if (outputVx_)   vxzLog_.close();
303 <      if (outputVy_)   vyzLog_.close();
634 >      writeOutputFile();
635  
636 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
637 <          rnemdType_ == rnemdPyScale) {
307 <        sprintf(painCave.errMsg,
308 <                "RNEMD: total root-checking warnings: %d\n",
309 <                failRootCount_);
310 <        painCave.isFatal = 0;
311 <        painCave.severity = OPENMD_INFO;
312 <        simError();
313 <      }
314 <      if (output3DTemp_) {
315 <        xTempLog_.close();
316 <        yTempLog_.close();
317 <        zTempLog_.close();
318 <      }
319 <      if (outputRotTemp_) rotTempLog_.close();
320 <
636 >      rnemdFile_.close();
637 >      
638   #ifdef IS_MPI
639      }
640   #endif
641 +
642 +    // delete all of the objects we created:
643 +    delete areaAccumulator_;    
644 +    data_.clear();
645    }
646 +  
647 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
648 +    if (!doRNEMD_) return;
649 +    int selei;
650 +    int selej;
651  
326  void RNEMD::doSwap() {
327
652      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
653      Mat3x3d hmat = currentSnap_->getHmat();
654  
331    seleMan_.setSelectionSet(evaluator_.evaluate());
332
333    int selei;
655      StuntDouble* sd;
335    int idx;
656  
657 <    RealType min_val;
658 <    bool min_found = false;  
659 <    StuntDouble* min_sd;
657 >    RealType min_val(0.0);
658 >    int min_found = 0;  
659 >    StuntDouble* min_sd = NULL;
660  
661 <    RealType max_val;
662 <    bool max_found = false;
663 <    StuntDouble* max_sd;
661 >    RealType max_val(0.0);
662 >    int max_found = 0;
663 >    StuntDouble* max_sd = NULL;
664  
665 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
666 <         sd = seleMan_.nextSelected(selei)) {
665 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
666 >         sd = seleManA_.nextSelected(selei)) {
667  
348      idx = sd->getLocalIndex();
349
668        Vector3d pos = sd->getPos();
669 <
669 >      
670        // wrap the stuntdouble's position back into the box:
671 <
671 >      
672        if (usePeriodicBoundaryConditions_)
673          currentSnap_->wrapVector(pos);
674 <
675 <      // which bin is this stuntdouble in?
676 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
677 <
678 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
679 <
680 <
363 <      // if we're in bin 0 or the middleBin
364 <      if (binNo == 0 || binNo == midBin_) {
674 >      
675 >      RealType mass = sd->getMass();
676 >      Vector3d vel = sd->getVel();
677 >      RealType value;
678 >      
679 >      switch(rnemdFluxType_) {
680 >      case rnemdKE :
681          
682 <        RealType mass = sd->getMass();
683 <        Vector3d vel = sd->getVel();
684 <        RealType value;
685 <
686 <        switch(rnemdType_) {
371 <        case rnemdKineticSwap :
682 >        value = mass * vel.lengthSquare();
683 >        
684 >        if (sd->isDirectional()) {
685 >          Vector3d angMom = sd->getJ();
686 >          Mat3x3d I = sd->getI();
687            
688 <          value = mass * vel.lengthSquare();
689 <          
690 <          if (sd->isDirectional()) {
691 <            Vector3d angMom = sd->getJ();
692 <            Mat3x3d I = sd->getI();
693 <            
694 <            if (sd->isLinear()) {
695 <              int i = sd->linearAxis();
696 <              int j = (i + 1) % 3;
697 <              int k = (i + 2) % 3;
698 <              value += angMom[j] * angMom[j] / I(j, j) +
699 <                angMom[k] * angMom[k] / I(k, k);
700 <            } else {                        
701 <              value += angMom[0]*angMom[0]/I(0, 0)
702 <                + angMom[1]*angMom[1]/I(1, 1)
703 <                + angMom[2]*angMom[2]/I(2, 2);
704 <            }
705 <          } //angular momenta exchange enabled
706 <          //energyConvert temporarily disabled
707 <          //make exchangeSum_ comparable between swap & scale
708 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
709 <          value *= 0.5;
710 <          break;
711 <        case rnemdPx :
712 <          value = mass * vel[0];
713 <          break;
714 <        case rnemdPy :
715 <          value = mass * vel[1];
716 <          break;
717 <        case rnemdPz :
718 <          value = mass * vel[2];
719 <          break;
720 <        default :
721 <          break;
688 >          if (sd->isLinear()) {
689 >            int i = sd->linearAxis();
690 >            int j = (i + 1) % 3;
691 >            int k = (i + 2) % 3;
692 >            value += angMom[j] * angMom[j] / I(j, j) +
693 >              angMom[k] * angMom[k] / I(k, k);
694 >          } else {                        
695 >            value += angMom[0]*angMom[0]/I(0, 0)
696 >              + angMom[1]*angMom[1]/I(1, 1)
697 >              + angMom[2]*angMom[2]/I(2, 2);
698 >          }
699 >        } //angular momenta exchange enabled
700 >        value *= 0.5;
701 >        break;
702 >      case rnemdPx :
703 >        value = mass * vel[0];
704 >        break;
705 >      case rnemdPy :
706 >        value = mass * vel[1];
707 >        break;
708 >      case rnemdPz :
709 >        value = mass * vel[2];
710 >        break;
711 >      default :
712 >        break;
713 >      }
714 >      if (!max_found) {
715 >        max_val = value;
716 >        max_sd = sd;
717 >        max_found = 1;
718 >      } else {
719 >        if (max_val < value) {
720 >          max_val = value;
721 >          max_sd = sd;
722          }
723 +      }  
724 +    }
725          
726 <        if (binNo == 0) {
727 <          if (!min_found) {
728 <            min_val = value;
729 <            min_sd = sd;
730 <            min_found = true;
731 <          } else {
732 <            if (min_val > value) {
733 <              min_val = value;
734 <              min_sd = sd;
735 <            }
736 <          }
737 <        } else { //midBin_
738 <          if (!max_found) {
739 <            max_val = value;
740 <            max_sd = sd;
741 <            max_found = true;
742 <          } else {
743 <            if (max_val < value) {
744 <              max_val = value;
745 <              max_sd = sd;
746 <            }
747 <          }      
748 <        }
726 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
727 >         sd = seleManB_.nextSelected(selej)) {
728 >
729 >      Vector3d pos = sd->getPos();
730 >      
731 >      // wrap the stuntdouble's position back into the box:
732 >      
733 >      if (usePeriodicBoundaryConditions_)
734 >        currentSnap_->wrapVector(pos);
735 >      
736 >      RealType mass = sd->getMass();
737 >      Vector3d vel = sd->getVel();
738 >      RealType value;
739 >      
740 >      switch(rnemdFluxType_) {
741 >      case rnemdKE :
742 >        
743 >        value = mass * vel.lengthSquare();
744 >        
745 >        if (sd->isDirectional()) {
746 >          Vector3d angMom = sd->getJ();
747 >          Mat3x3d I = sd->getI();
748 >          
749 >          if (sd->isLinear()) {
750 >            int i = sd->linearAxis();
751 >            int j = (i + 1) % 3;
752 >            int k = (i + 2) % 3;
753 >            value += angMom[j] * angMom[j] / I(j, j) +
754 >              angMom[k] * angMom[k] / I(k, k);
755 >          } else {                        
756 >            value += angMom[0]*angMom[0]/I(0, 0)
757 >              + angMom[1]*angMom[1]/I(1, 1)
758 >              + angMom[2]*angMom[2]/I(2, 2);
759 >          }
760 >        } //angular momenta exchange enabled
761 >        value *= 0.5;
762 >        break;
763 >      case rnemdPx :
764 >        value = mass * vel[0];
765 >        break;
766 >      case rnemdPy :
767 >        value = mass * vel[1];
768 >        break;
769 >      case rnemdPz :
770 >        value = mass * vel[2];
771 >        break;
772 >      default :
773 >        break;
774        }
775 +      
776 +      if (!min_found) {
777 +        min_val = value;
778 +        min_sd = sd;
779 +        min_found = 1;
780 +      } else {
781 +        if (min_val > value) {
782 +          min_val = value;
783 +          min_sd = sd;
784 +        }
785 +      }
786      }
787 +    
788 + #ifdef IS_MPI    
789 +    int worldRank;
790 +    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
791 +        
792 +    int my_min_found = min_found;
793 +    int my_max_found = max_found;
794  
435 #ifdef IS_MPI
436    int nProc, worldRank;
437
438    nProc = MPI::COMM_WORLD.Get_size();
439    worldRank = MPI::COMM_WORLD.Get_rank();
440
441    bool my_min_found = min_found;
442    bool my_max_found = max_found;
443
795      // Even if we didn't find a minimum, did someone else?
796 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
796 >    MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
797 >                  MPI_COMM_WORLD);
798      // Even if we didn't find a maximum, did someone else?
799 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
799 >    MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
800 >                  MPI_COMM_WORLD);
801   #endif
802  
803      if (max_found && min_found) {
# Line 454 | Line 807 | namespace OpenMD {
807          RealType val;
808          int rank;
809        } max_vals, min_vals;
810 <    
810 >      
811        if (my_min_found) {
812          min_vals.val = min_val;
813        } else {
# Line 463 | Line 816 | namespace OpenMD {
816        min_vals.rank = worldRank;    
817        
818        // Who had the minimum?
819 <      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
820 <                                1, MPI::REALTYPE_INT, MPI::MINLOC);
819 >      MPI_Allreduce(&min_vals, &min_vals,
820 >                    1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
821        min_val = min_vals.val;
822        
823        if (my_max_found) {
# Line 475 | Line 828 | namespace OpenMD {
828        max_vals.rank = worldRank;    
829        
830        // Who had the maximum?
831 <      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
832 <                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
831 >      MPI_Allreduce(&max_vals, &max_vals,
832 >                    1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
833        max_val = max_vals.val;
834   #endif
835        
# Line 492 | Line 845 | namespace OpenMD {
845            Vector3d max_vel = max_sd->getVel();
846            RealType temp_vel;
847            
848 <          switch(rnemdType_) {
849 <          case rnemdKineticSwap :
848 >          switch(rnemdFluxType_) {
849 >          case rnemdKE :
850              min_sd->setVel(max_vel);
851              max_sd->setVel(min_vel);
852              if (min_sd->isDirectional() && max_sd->isDirectional()) {
# Line 536 | Line 889 | namespace OpenMD {
889            
890            Vector3d min_vel;
891            Vector3d max_vel = max_sd->getVel();
892 <          MPI::Status status;
892 >          MPI_Status status;
893  
894            // point-to-point swap of the velocity vector
895 <          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
896 <                                   min_vals.rank, 0,
897 <                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
898 <                                   min_vals.rank, 0, status);
895 >          MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
896 >                       min_vals.rank, 0,
897 >                       min_vel.getArrayPointer(), 3, MPI_REALTYPE,
898 >                       min_vals.rank, 0, MPI_COMM_WORLD, &status);
899            
900 <          switch(rnemdType_) {
901 <          case rnemdKineticSwap :
900 >          switch(rnemdFluxType_) {
901 >          case rnemdKE :
902              max_sd->setVel(min_vel);
903              //angular momenta exchange enabled
904              if (max_sd->isDirectional()) {
# Line 553 | Line 906 | namespace OpenMD {
906                Vector3d max_angMom = max_sd->getJ();
907                
908                // point-to-point swap of the angular momentum vector
909 <              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
910 <                                       MPI::REALTYPE, min_vals.rank, 1,
911 <                                       min_angMom.getArrayPointer(), 3,
912 <                                       MPI::REALTYPE, min_vals.rank, 1,
913 <                                       status);
909 >              MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
910 >                           MPI_REALTYPE, min_vals.rank, 1,
911 >                           min_angMom.getArrayPointer(), 3,
912 >                           MPI_REALTYPE, min_vals.rank, 1,
913 >                           MPI_COMM_WORLD, &status);
914                
915                max_sd->setJ(min_angMom);
916              }
# Line 582 | Line 935 | namespace OpenMD {
935            
936            Vector3d max_vel;
937            Vector3d min_vel = min_sd->getVel();
938 <          MPI::Status status;
938 >          MPI_Status status;
939            
940            // point-to-point swap of the velocity vector
941 <          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
942 <                                   max_vals.rank, 0,
943 <                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
944 <                                   max_vals.rank, 0, status);
941 >          MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
942 >                       max_vals.rank, 0,
943 >                       max_vel.getArrayPointer(), 3, MPI_REALTYPE,
944 >                       max_vals.rank, 0, MPI_COMM_WORLD, &status);
945            
946 <          switch(rnemdType_) {
947 <          case rnemdKineticSwap :
946 >          switch(rnemdFluxType_) {
947 >          case rnemdKE :
948              min_sd->setVel(max_vel);
949              //angular momenta exchange enabled
950              if (min_sd->isDirectional()) {
# Line 599 | Line 952 | namespace OpenMD {
952                Vector3d max_angMom;
953                
954                // point-to-point swap of the angular momentum vector
955 <              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
956 <                                       MPI::REALTYPE, max_vals.rank, 1,
957 <                                       max_angMom.getArrayPointer(), 3,
958 <                                       MPI::REALTYPE, max_vals.rank, 1,
959 <                                       status);
955 >              MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
956 >                           MPI_REALTYPE, max_vals.rank, 1,
957 >                           max_angMom.getArrayPointer(), 3,
958 >                           MPI_REALTYPE, max_vals.rank, 1,
959 >                           MPI_COMM_WORLD, &status);
960                
961                min_sd->setJ(max_angMom);
962              }
# Line 625 | Line 978 | namespace OpenMD {
978            }
979          }
980   #endif
981 <        exchangeSum_ += max_val - min_val;
981 >        
982 >        switch(rnemdFluxType_) {
983 >        case rnemdKE:
984 >          kineticExchange_ += max_val - min_val;
985 >          break;
986 >        case rnemdPx:
987 >          momentumExchange_.x() += max_val - min_val;
988 >          break;
989 >        case rnemdPy:
990 >          momentumExchange_.y() += max_val - min_val;
991 >          break;
992 >        case rnemdPz:
993 >          momentumExchange_.z() += max_val - min_val;
994 >          break;
995 >        default:
996 >          break;
997 >        }
998        } else {        
999          sprintf(painCave.errMsg,
1000 <                "RNEMD: exchange NOT performed because min_val > max_val\n");
1000 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
1001          painCave.isFatal = 0;
1002          painCave.severity = OPENMD_INFO;
1003          simError();        
# Line 636 | Line 1005 | namespace OpenMD {
1005        }
1006      } else {
1007        sprintf(painCave.errMsg,
1008 <              "RNEMD: exchange NOT performed because selected object\n"
1009 <              "\tnot present in at least one of the two slabs.\n");
1008 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
1009 >              "\twas not present in at least one of the two slabs.\n");
1010        painCave.isFatal = 0;
1011        painCave.severity = OPENMD_INFO;
1012        simError();        
1013        failTrialCount_++;
1014 <    }
646 <    
1014 >    }    
1015    }
1016    
1017 <  void RNEMD::doScale() {
1017 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1018 >    if (!doRNEMD_) return;
1019 >    int selei;
1020 >    int selej;
1021  
1022      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1023      Mat3x3d hmat = currentSnap_->getHmat();
1024  
654    seleMan_.setSelectionSet(evaluator_.evaluate());
655
656    int selei;
1025      StuntDouble* sd;
658    int idx;
1026  
1027      vector<StuntDouble*> hotBin, coldBin;
1028  
# Line 674 | Line 1041 | namespace OpenMD {
1041      RealType Kcz = 0.0;
1042      RealType Kcw = 0.0;
1043  
1044 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1045 <         sd = seleMan_.nextSelected(selei)) {
1044 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1045 >         sd = smanA.nextSelected(selei)) {
1046  
680      idx = sd->getLocalIndex();
681
1047        Vector3d pos = sd->getPos();
1048 <
1048 >      
1049        // wrap the stuntdouble's position back into the box:
1050 <
1050 >      
1051        if (usePeriodicBoundaryConditions_)
1052          currentSnap_->wrapVector(pos);
1053 +      
1054 +      
1055 +      RealType mass = sd->getMass();
1056 +      Vector3d vel = sd->getVel();
1057 +      
1058 +      hotBin.push_back(sd);
1059 +      Phx += mass * vel.x();
1060 +      Phy += mass * vel.y();
1061 +      Phz += mass * vel.z();
1062 +      Khx += mass * vel.x() * vel.x();
1063 +      Khy += mass * vel.y() * vel.y();
1064 +      Khz += mass * vel.z() * vel.z();
1065 +      if (sd->isDirectional()) {
1066 +        Vector3d angMom = sd->getJ();
1067 +        Mat3x3d I = sd->getI();
1068 +        if (sd->isLinear()) {
1069 +          int i = sd->linearAxis();
1070 +          int j = (i + 1) % 3;
1071 +          int k = (i + 2) % 3;
1072 +          Khw += angMom[j] * angMom[j] / I(j, j) +
1073 +            angMom[k] * angMom[k] / I(k, k);
1074 +        } else {
1075 +          Khw += angMom[0]*angMom[0]/I(0, 0)
1076 +            + angMom[1]*angMom[1]/I(1, 1)
1077 +            + angMom[2]*angMom[2]/I(2, 2);
1078 +        }
1079 +      }
1080 +    }
1081 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1082 +         sd = smanB.nextSelected(selej)) {
1083 +      Vector3d pos = sd->getPos();
1084 +      
1085 +      // wrap the stuntdouble's position back into the box:
1086 +      
1087 +      if (usePeriodicBoundaryConditions_)
1088 +        currentSnap_->wrapVector(pos);
1089 +            
1090 +      RealType mass = sd->getMass();
1091 +      Vector3d vel = sd->getVel();
1092  
1093 <      // which bin is this stuntdouble in?
1094 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1095 <
1096 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1097 <
1098 <      // if we're in bin 0 or the middleBin
1099 <      if (binNo == 0 || binNo == midBin_) {
1100 <        
1101 <        RealType mass = sd->getMass();
1102 <        Vector3d vel = sd->getVel();
1103 <      
1104 <        if (binNo == 0) {
1105 <          hotBin.push_back(sd);
1106 <          Phx += mass * vel.x();
1107 <          Phy += mass * vel.y();
1108 <          Phz += mass * vel.z();
1109 <          Khx += mass * vel.x() * vel.x();
1110 <          Khy += mass * vel.y() * vel.y();
1111 <          Khz += mass * vel.z() * vel.z();
1112 <          //if (rnemdType_ == rnemdKineticScaleVAM) {
1113 <          if (sd->isDirectional()) {
710 <            Vector3d angMom = sd->getJ();
711 <            Mat3x3d I = sd->getI();
712 <            if (sd->isLinear()) {
713 <              int i = sd->linearAxis();
714 <              int j = (i + 1) % 3;
715 <              int k = (i + 2) % 3;
716 <              Khw += angMom[j] * angMom[j] / I(j, j) +
717 <                angMom[k] * angMom[k] / I(k, k);
718 <            } else {
719 <              Khw += angMom[0]*angMom[0]/I(0, 0)
720 <                + angMom[1]*angMom[1]/I(1, 1)
721 <                + angMom[2]*angMom[2]/I(2, 2);
722 <            }
723 <          }
724 <          //}
725 <        } else { //midBin_
726 <          coldBin.push_back(sd);
727 <          Pcx += mass * vel.x();
728 <          Pcy += mass * vel.y();
729 <          Pcz += mass * vel.z();
730 <          Kcx += mass * vel.x() * vel.x();
731 <          Kcy += mass * vel.y() * vel.y();
732 <          Kcz += mass * vel.z() * vel.z();
733 <          //if (rnemdType_ == rnemdKineticScaleVAM) {
734 <          if (sd->isDirectional()) {
735 <            Vector3d angMom = sd->getJ();
736 <            Mat3x3d I = sd->getI();
737 <            if (sd->isLinear()) {
738 <              int i = sd->linearAxis();
739 <              int j = (i + 1) % 3;
740 <              int k = (i + 2) % 3;
741 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
742 <                angMom[k] * angMom[k] / I(k, k);
743 <            } else {
744 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
745 <                + angMom[1]*angMom[1]/I(1, 1)
746 <                + angMom[2]*angMom[2]/I(2, 2);
747 <            }
748 <          }
749 <          //}
750 <        }
1093 >      coldBin.push_back(sd);
1094 >      Pcx += mass * vel.x();
1095 >      Pcy += mass * vel.y();
1096 >      Pcz += mass * vel.z();
1097 >      Kcx += mass * vel.x() * vel.x();
1098 >      Kcy += mass * vel.y() * vel.y();
1099 >      Kcz += mass * vel.z() * vel.z();
1100 >      if (sd->isDirectional()) {
1101 >        Vector3d angMom = sd->getJ();
1102 >        Mat3x3d I = sd->getI();
1103 >        if (sd->isLinear()) {
1104 >          int i = sd->linearAxis();
1105 >          int j = (i + 1) % 3;
1106 >          int k = (i + 2) % 3;
1107 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1108 >            angMom[k] * angMom[k] / I(k, k);
1109 >        } else {
1110 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1111 >            + angMom[1]*angMom[1]/I(1, 1)
1112 >            + angMom[2]*angMom[2]/I(2, 2);
1113 >        }
1114        }
1115      }
1116      
# Line 760 | Line 1123 | namespace OpenMD {
1123      Kcz *= 0.5;
1124      Kcw *= 0.5;
1125  
763    std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
764              << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
765              << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
766    std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
767              << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
768
1126   #ifdef IS_MPI
1127 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1128 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1129 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1130 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1131 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1132 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1127 >    MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1128 >    MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1129 >    MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130 >    MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131 >    MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132 >    MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133  
1134 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1135 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1136 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1137 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1134 >    MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1135 >    MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1136 >    MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137 >    MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138  
1139 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1140 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1141 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1142 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1139 >    MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1140 >    MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1141 >    MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142 >    MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143   #endif
1144  
1145      //solve coldBin coeff's first
# Line 791 | Line 1148 | namespace OpenMD {
1148      RealType pz = Pcz / Phz;
1149      RealType c, x, y, z;
1150      bool successfulScale = false;
1151 <    if ((rnemdType_ == rnemdKineticScaleVAM) ||
1152 <        (rnemdType_ == rnemdKineticScaleAM)) {
1151 >    if ((rnemdFluxType_ == rnemdFullKE) ||
1152 >        (rnemdFluxType_ == rnemdRotKE)) {
1153        //may need sanity check Khw & Kcw > 0
1154  
1155 <      if (rnemdType_ == rnemdKineticScaleVAM) {
1156 <        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
1155 >      if (rnemdFluxType_ == rnemdFullKE) {
1156 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1157        } else {
1158 <        c = 1.0 - targetFlux_ / Kcw;
1158 >        c = 1.0 - kineticTarget_ / Kcw;
1159        }
1160  
1161        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1162          c = sqrt(c);
1163 <        std::cerr << "cold slab scaling coefficient: " << c << endl;
807 <        //now convert to hotBin coefficient
1163 >
1164          RealType w = 0.0;
1165 <        if (rnemdType_ ==  rnemdKineticScaleVAM) {
1165 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1166            x = 1.0 + px * (1.0 - c);
1167            y = 1.0 + py * (1.0 - c);
1168            z = 1.0 + pz * (1.0 - c);
# Line 820 | Line 1176 | namespace OpenMD {
1176            */
1177            if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1178                (fabs(z - 1.0) < 0.1)) {
1179 <            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1179 >            w = 1.0 + (kineticTarget_
1180 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1181                         + Khz * (1.0 - z * z)) / Khw;
1182            }//no need to calculate w if x, y or z is out of range
1183          } else {
1184 <          w = 1.0 + targetFlux_ / Khw;
1184 >          w = 1.0 + kineticTarget_ / Khw;
1185          }
1186          if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1187            //if w is in the right range, so should be x, y, z.
1188            vector<StuntDouble*>::iterator sdi;
1189            Vector3d vel;
1190 <          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1191 <            if (rnemdType_ == rnemdKineticScaleVAM) {
1190 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1191 >            if (rnemdFluxType_ == rnemdFullKE) {
1192                vel = (*sdi)->getVel() * c;
836              //vel.x() *= c;
837              //vel.y() *= c;
838              //vel.z() *= c;
1193                (*sdi)->setVel(vel);
1194              }
1195              if ((*sdi)->isDirectional()) {
1196                Vector3d angMom = (*sdi)->getJ() * c;
843              //angMom[0] *= c;
844              //angMom[1] *= c;
845              //angMom[2] *= c;
1197                (*sdi)->setJ(angMom);
1198              }
1199            }
1200            w = sqrt(w);
1201 <          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
1202 <                    << "\twh= " << w << endl;
852 <          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
853 <            if (rnemdType_ == rnemdKineticScaleVAM) {
1201 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1202 >            if (rnemdFluxType_ == rnemdFullKE) {
1203                vel = (*sdi)->getVel();
1204                vel.x() *= x;
1205                vel.y() *= y;
# Line 859 | Line 1208 | namespace OpenMD {
1208              }
1209              if ((*sdi)->isDirectional()) {
1210                Vector3d angMom = (*sdi)->getJ() * w;
862              //angMom[0] *= w;
863              //angMom[1] *= w;
864              //angMom[2] *= w;
1211                (*sdi)->setJ(angMom);
1212              }
1213            }
1214            successfulScale = true;
1215 <          exchangeSum_ += targetFlux_;
1215 >          kineticExchange_ += kineticTarget_;
1216          }
1217        }
1218      } else {
1219        RealType a000, a110, c0, a001, a111, b01, b11, c1;
1220 <      switch(rnemdType_) {
1221 <      case rnemdKineticScale :
1220 >      switch(rnemdFluxType_) {
1221 >      case rnemdKE :
1222          /* used hotBin coeff's & only scale x & y dimensions
1223             RealType px = Phx / Pcx;
1224             RealType py = Phy / Pcy;
1225             a110 = Khy;
1226 <           c0 = - Khx - Khy - targetFlux_;
1226 >           c0 = - Khx - Khy - kineticTarget_;
1227             a000 = Khx;
1228             a111 = Kcy * py * py;
1229             b11 = -2.0 * Kcy * py * (1.0 + py);
1230 <           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
1230 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1231             b01 = -2.0 * Kcx * px * (1.0 + px);
1232             a001 = Kcx * px * px;
1233          */
1234          //scale all three dimensions, let c_x = c_y
1235          a000 = Kcx + Kcy;
1236          a110 = Kcz;
1237 <        c0 = targetFlux_ - Kcx - Kcy - Kcz;
1237 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1238          a001 = Khx * px * px + Khy * py * py;
1239          a111 = Khz * pz * pz;
1240          b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1241          b11 = -2.0 * Khz * pz * (1.0 + pz);
1242          c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1243 <          + Khz * pz * (2.0 + pz) - targetFlux_;
1243 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1244          break;
1245 <      case rnemdPxScale :
1246 <        c = 1 - targetFlux_ / Pcx;
1245 >      case rnemdPx :
1246 >        c = 1 - momentumTarget_.x() / Pcx;
1247          a000 = Kcy;
1248          a110 = Kcz;
1249          c0 = Kcx * c * c - Kcx - Kcy - Kcz;
# Line 908 | Line 1254 | namespace OpenMD {
1254          c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1255            + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1256          break;
1257 <      case rnemdPyScale :
1258 <        c = 1 - targetFlux_ / Pcy;
1257 >      case rnemdPy :
1258 >        c = 1 - momentumTarget_.y() / Pcy;
1259          a000 = Kcx;
1260          a110 = Kcz;
1261          c0 = Kcy * c * c - Kcx - Kcy - Kcz;
# Line 920 | Line 1266 | namespace OpenMD {
1266          c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1267            + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1268          break;
1269 <      case rnemdPzScale ://we don't really do this, do we?
1270 <        c = 1 - targetFlux_ / Pcz;
1269 >      case rnemdPz ://we don't really do this, do we?
1270 >        c = 1 - momentumTarget_.z() / Pcz;
1271          a000 = Kcx;
1272          a110 = Kcy;
1273          c0 = Kcz * c * c - Kcx - Kcy - Kcz;
# Line 971 | Line 1317 | namespace OpenMD {
1317        vector<RealType>::iterator ri;
1318        RealType r1, r2, alpha0;
1319        vector<pair<RealType,RealType> > rps;
1320 <      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1320 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1321          r2 = *ri;
1322          //check if FindRealRoots() give the right answer
1323          if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
# Line 1003 | Line 1349 | namespace OpenMD {
1349          RealType diff;
1350          pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1351          vector<pair<RealType,RealType> >::iterator rpi;
1352 <        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1352 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1353            r1 = (*rpi).first;
1354            r2 = (*rpi).second;
1355 <          switch(rnemdType_) {
1356 <          case rnemdKineticScale :
1355 >          switch(rnemdFluxType_) {
1356 >          case rnemdKE :
1357              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1358                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1359                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1360              break;
1361 <          case rnemdPxScale :
1361 >          case rnemdPx :
1362              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1363                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1364              break;
1365 <          case rnemdPyScale :
1365 >          case rnemdPy :
1366              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1367                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1368              break;
1369 <          case rnemdPzScale :
1369 >          case rnemdPz :
1370              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1371                + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1372            default :
# Line 1034 | Line 1380 | namespace OpenMD {
1380   #ifdef IS_MPI
1381          if (worldRank == 0) {
1382   #endif
1383 <          sprintf(painCave.errMsg,
1384 <                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1385 <                  bestPair.first, bestPair.second);
1386 <          painCave.isFatal = 0;
1387 <          painCave.severity = OPENMD_INFO;
1388 <          simError();
1383 >          // sprintf(painCave.errMsg,
1384 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1385 >          //         bestPair.first, bestPair.second);
1386 >          // painCave.isFatal = 0;
1387 >          // painCave.severity = OPENMD_INFO;
1388 >          // simError();
1389   #ifdef IS_MPI
1390          }
1391   #endif
1392          
1393 <        switch(rnemdType_) {
1394 <        case rnemdKineticScale :
1393 >        switch(rnemdFluxType_) {
1394 >        case rnemdKE :
1395            x = bestPair.first;
1396            y = bestPair.first;
1397            z = bestPair.second;
1398            break;
1399 <        case rnemdPxScale :
1399 >        case rnemdPx :
1400            x = c;
1401            y = bestPair.first;
1402            z = bestPair.second;
1403            break;
1404 <        case rnemdPyScale :
1404 >        case rnemdPy :
1405            x = bestPair.first;
1406            y = c;
1407            z = bestPair.second;
1408            break;
1409 <        case rnemdPzScale :
1409 >        case rnemdPz :
1410            x = bestPair.first;
1411            y = bestPair.second;
1412            z = c;
# Line 1070 | Line 1416 | namespace OpenMD {
1416          }
1417          vector<StuntDouble*>::iterator sdi;
1418          Vector3d vel;
1419 <        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1419 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1420            vel = (*sdi)->getVel();
1421            vel.x() *= x;
1422            vel.y() *= y;
# Line 1081 | Line 1427 | namespace OpenMD {
1427          x = 1.0 + px * (1.0 - x);
1428          y = 1.0 + py * (1.0 - y);
1429          z = 1.0 + pz * (1.0 - z);
1430 <        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1430 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1431            vel = (*sdi)->getVel();
1432            vel.x() *= x;
1433            vel.y() *= y;
# Line 1089 | Line 1435 | namespace OpenMD {
1435            (*sdi)->setVel(vel);
1436          }
1437          successfulScale = true;
1438 <        exchangeSum_ += targetFlux_;
1438 >        switch(rnemdFluxType_) {
1439 >        case rnemdKE :
1440 >          kineticExchange_ += kineticTarget_;
1441 >          break;
1442 >        case rnemdPx :
1443 >        case rnemdPy :
1444 >        case rnemdPz :
1445 >          momentumExchange_ += momentumTarget_;
1446 >          break;          
1447 >        default :
1448 >          break;
1449 >        }      
1450        }
1451      }
1452      if (successfulScale != true) {
1453        sprintf(painCave.errMsg,
1454 <              "RNEMD: exchange NOT performed!\n");
1454 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1455 >              "\tthe constraint equations may not exist or there may be\n"
1456 >              "\tno selected objects in one or both slabs.\n");
1457        painCave.isFatal = 0;
1458        painCave.severity = OPENMD_INFO;
1459        simError();        
1460        failTrialCount_++;
1461      }
1462    }
1463 +  
1464 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1465 +    if (!doRNEMD_) return;
1466 +    int selei;
1467 +    int selej;
1468  
1105  void RNEMD::doShiftScale() {
1106
1469      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1470      Mat3x3d hmat = currentSnap_->getHmat();
1471  
1110    seleMan_.setSelectionSet(evaluator_.evaluate());
1111
1112    int selei;
1472      StuntDouble* sd;
1114    int idx;
1473  
1474      vector<StuntDouble*> hotBin, coldBin;
1475  
1476      Vector3d Ph(V3Zero);
1477 +    Vector3d Lh(V3Zero);
1478      RealType Mh = 0.0;
1479 +    Mat3x3d Ih(0.0);
1480      RealType Kh = 0.0;
1481      Vector3d Pc(V3Zero);
1482 +    Vector3d Lc(V3Zero);
1483      RealType Mc = 0.0;
1484 +    Mat3x3d Ic(0.0);
1485      RealType Kc = 0.0;
1486  
1487 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1488 <         sd = seleMan_.nextSelected(selei)) {
1487 >    // Constraints can be on only the linear or angular momentum, but
1488 >    // not both.  Usually, the user will specify which they want, but
1489 >    // in case they don't, the use of periodic boundaries should make
1490 >    // the choice for us.
1491 >    bool doLinearPart = false;
1492 >    bool doAngularPart = false;
1493  
1494 <      idx = sd->getLocalIndex();
1494 >    switch (rnemdFluxType_) {
1495 >    case rnemdPx:
1496 >    case rnemdPy:
1497 >    case rnemdPz:
1498 >    case rnemdPvector:
1499 >    case rnemdKePx:
1500 >    case rnemdKePy:
1501 >    case rnemdKePvector:
1502 >      doLinearPart = true;
1503 >      break;
1504 >    case rnemdLx:
1505 >    case rnemdLy:
1506 >    case rnemdLz:
1507 >    case rnemdLvector:
1508 >    case rnemdKeLx:
1509 >    case rnemdKeLy:
1510 >    case rnemdKeLz:
1511 >    case rnemdKeLvector:
1512 >      doAngularPart = true;
1513 >      break;
1514 >    case rnemdKE:
1515 >    case rnemdRotKE:
1516 >    case rnemdFullKE:
1517 >    default:
1518 >      if (usePeriodicBoundaryConditions_)
1519 >        doLinearPart = true;
1520 >      else
1521 >        doAngularPart = true;
1522 >      break;
1523 >    }
1524 >    
1525 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1526 >         sd = smanA.nextSelected(selei)) {
1527  
1528        Vector3d pos = sd->getPos();
1529  
1530        // wrap the stuntdouble's position back into the box:
1531 +      
1532 +      if (usePeriodicBoundaryConditions_)
1533 +        currentSnap_->wrapVector(pos);
1534 +      
1535 +      RealType mass = sd->getMass();
1536 +      Vector3d vel = sd->getVel();
1537 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1538 +      RealType r2;
1539 +      
1540 +      hotBin.push_back(sd);
1541 +      Ph += mass * vel;
1542 +      Mh += mass;
1543 +      Kh += mass * vel.lengthSquare();
1544 +      Lh += mass * cross(rPos, vel);
1545 +      Ih -= outProduct(rPos, rPos) * mass;
1546 +      r2 = rPos.lengthSquare();
1547 +      Ih(0, 0) += mass * r2;
1548 +      Ih(1, 1) += mass * r2;
1549 +      Ih(2, 2) += mass * r2;
1550 +      
1551 +      if (rnemdFluxType_ == rnemdFullKE) {
1552 +        if (sd->isDirectional()) {
1553 +          Vector3d angMom = sd->getJ();
1554 +          Mat3x3d I = sd->getI();
1555 +          if (sd->isLinear()) {
1556 +            int i = sd->linearAxis();
1557 +            int j = (i + 1) % 3;
1558 +            int k = (i + 2) % 3;
1559 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1560 +              angMom[k] * angMom[k] / I(k, k);
1561 +          } else {
1562 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1563 +              angMom[1] * angMom[1] / I(1, 1) +
1564 +              angMom[2] * angMom[2] / I(2, 2);
1565 +          }
1566 +        }
1567 +      }
1568 +    }
1569 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1570 +         sd = smanB.nextSelected(selej)) {
1571  
1572 +      Vector3d pos = sd->getPos();
1573 +      
1574 +      // wrap the stuntdouble's position back into the box:
1575 +      
1576        if (usePeriodicBoundaryConditions_)
1577          currentSnap_->wrapVector(pos);
1578 +      
1579 +      RealType mass = sd->getMass();
1580 +      Vector3d vel = sd->getVel();
1581 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1582 +      RealType r2;
1583  
1584 <      // which bin is this stuntdouble in?
1585 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1586 <
1587 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1588 <
1589 <      // if we're in bin 0 or the middleBin
1590 <      if (binNo == 0 || binNo == midBin_) {
1591 <        
1592 <        RealType mass = sd->getMass();
1593 <        Vector3d vel = sd->getVel();
1594 <      
1595 <        if (binNo == 0) {
1596 <          hotBin.push_back(sd);
1597 <          //std::cerr << "before, velocity = " << vel << endl;
1598 <          Ph += mass * vel;
1599 <          //std::cerr << "after, velocity = " << vel << endl;
1600 <          Mh += mass;
1601 <          Kh += mass * vel.lengthSquare();
1602 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1603 <            if (sd->isDirectional()) {
1604 <              Vector3d angMom = sd->getJ();
1605 <              Mat3x3d I = sd->getI();
1606 <              if (sd->isLinear()) {
1607 <                int i = sd->linearAxis();
1608 <                int j = (i + 1) % 3;
1609 <                int k = (i + 2) % 3;
1610 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1164 <                  angMom[k] * angMom[k] / I(k, k);
1165 <              } else {
1166 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1167 <                  angMom[1] * angMom[1] / I(1, 1) +
1168 <                  angMom[2] * angMom[2] / I(2, 2);
1169 <              }
1170 <            }
1171 <          }
1172 <        } else { //midBin_
1173 <          coldBin.push_back(sd);
1174 <          Pc += mass * vel;
1175 <          Mc += mass;
1176 <          Kc += mass * vel.lengthSquare();
1177 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1178 <            if (sd->isDirectional()) {
1179 <              Vector3d angMom = sd->getJ();
1180 <              Mat3x3d I = sd->getI();
1181 <              if (sd->isLinear()) {
1182 <                int i = sd->linearAxis();
1183 <                int j = (i + 1) % 3;
1184 <                int k = (i + 2) % 3;
1185 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1186 <                  angMom[k] * angMom[k] / I(k, k);
1187 <              } else {
1188 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1189 <                  angMom[1] * angMom[1] / I(1, 1) +
1190 <                  angMom[2] * angMom[2] / I(2, 2);
1191 <              }
1192 <            }
1193 <          }
1194 <        }
1584 >      coldBin.push_back(sd);
1585 >      Pc += mass * vel;
1586 >      Mc += mass;
1587 >      Kc += mass * vel.lengthSquare();
1588 >      Lc += mass * cross(rPos, vel);
1589 >      Ic -= outProduct(rPos, rPos) * mass;
1590 >      r2 = rPos.lengthSquare();
1591 >      Ic(0, 0) += mass * r2;
1592 >      Ic(1, 1) += mass * r2;
1593 >      Ic(2, 2) += mass * r2;
1594 >      
1595 >      if (rnemdFluxType_ == rnemdFullKE) {
1596 >        if (sd->isDirectional()) {
1597 >          Vector3d angMom = sd->getJ();
1598 >          Mat3x3d I = sd->getI();
1599 >          if (sd->isLinear()) {
1600 >            int i = sd->linearAxis();
1601 >            int j = (i + 1) % 3;
1602 >            int k = (i + 2) % 3;
1603 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1604 >              angMom[k] * angMom[k] / I(k, k);
1605 >          } else {
1606 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1607 >              angMom[1] * angMom[1] / I(1, 1) +
1608 >              angMom[2] * angMom[2] / I(2, 2);
1609 >          }
1610 >        }
1611        }
1612      }
1613      
1614      Kh *= 0.5;
1615      Kc *= 0.5;
1616 <
1201 <    std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1202 <              << "\tKc= " << Kc << endl;
1203 <    std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1204 <
1616 >    
1617   #ifdef IS_MPI
1618 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1619 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1620 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1621 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1622 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1623 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1618 >    MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1619 >                  MPI_COMM_WORLD);
1620 >    MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1621 >                  MPI_COMM_WORLD);
1622 >    MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1623 >                  MPI_COMM_WORLD);
1624 >    MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1625 >                  MPI_COMM_WORLD);
1626 >    MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1627 >    MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1628 >    MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1629 >    MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1630 >    MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1631 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632 >    MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1633 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634   #endif
1635 +    
1636  
1637 +    Vector3d ac, acrec, bc, bcrec;
1638 +    Vector3d ah, ahrec, bh, bhrec;
1639 +
1640      bool successfulExchange = false;
1641      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1642        Vector3d vc = Pc / Mc;
1643 <      Vector3d ac = njzp_ / Mc + vc;
1644 <      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1643 >      ac = -momentumTarget_ / Mc + vc;
1644 >      acrec = -momentumTarget_ / Mc;
1645 >      
1646 >      // We now need the inverse of the inertia tensor to calculate the
1647 >      // angular velocity of the cold slab;
1648 >      Mat3x3d Ici = Ic.inverse();
1649 >      Vector3d omegac = Ici * Lc;
1650 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1651 >      bcrec = bc - omegac;
1652 >      
1653 >      RealType cNumerator = Kc - kineticTarget_;
1654 >      if (doLinearPart)
1655 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1656 >      
1657 >      if (doAngularPart)
1658 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1659 >
1660        if (cNumerator > 0.0) {
1661 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1661 >        
1662 >        RealType cDenominator = Kc;
1663 >
1664 >        if (doLinearPart)
1665 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1666 >
1667 >        if (doAngularPart)
1668 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1669 >        
1670          if (cDenominator > 0.0) {
1671            RealType c = sqrt(cNumerator / cDenominator);
1672            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1673 +            
1674              Vector3d vh = Ph / Mh;
1675 <            Vector3d ah = jzp_ / Mh + vh;
1676 <            RealType hNumerator = Kh + targetJzKE_
1677 <              - 0.5 * Mh * ah.lengthSquare();
1678 <            if (hNumerator > 0.0) {
1679 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1675 >            ah = momentumTarget_ / Mh + vh;
1676 >            ahrec = momentumTarget_ / Mh;
1677 >            
1678 >            // We now need the inverse of the inertia tensor to
1679 >            // calculate the angular velocity of the hot slab;
1680 >            Mat3x3d Ihi = Ih.inverse();
1681 >            Vector3d omegah = Ihi * Lh;
1682 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1683 >            bhrec = bh - omegah;
1684 >            
1685 >            RealType hNumerator = Kh + kineticTarget_;
1686 >            if (doLinearPart)
1687 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1688 >            
1689 >            if (doAngularPart)
1690 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1691 >              
1692 >            if (hNumerator > 0.0) {
1693 >              
1694 >              RealType hDenominator = Kh;
1695 >              if (doLinearPart)
1696 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1697 >              if (doAngularPart)
1698 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1699 >              
1700                if (hDenominator > 0.0) {
1701                  RealType h = sqrt(hNumerator / hDenominator);
1702                  if ((h > 0.9) && (h < 1.1)) {
1703 <                  std::cerr << "cold slab scaling coefficient: " << c << "\n";
1234 <                  std::cerr << "hot slab scaling coefficient: " << h << "\n";
1703 >                  
1704                    vector<StuntDouble*>::iterator sdi;
1705                    Vector3d vel;
1706 <                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1706 >                  Vector3d rPos;
1707 >                  
1708 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1709                      //vel = (*sdi)->getVel();
1710 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1710 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1711 >                    if (doLinearPart)
1712 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1713 >                    if (doAngularPart)
1714 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1715 >
1716                      (*sdi)->setVel(vel);
1717 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1717 >                    if (rnemdFluxType_ == rnemdFullKE) {
1718                        if ((*sdi)->isDirectional()) {
1719                          Vector3d angMom = (*sdi)->getJ() * c;
1720                          (*sdi)->setJ(angMom);
1721                        }
1722                      }
1723                    }
1724 <                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1724 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1725                      //vel = (*sdi)->getVel();
1726 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1726 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1727 >                    if (doLinearPart)
1728 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1729 >                    if (doAngularPart)
1730 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1731 >
1732                      (*sdi)->setVel(vel);
1733 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1733 >                    if (rnemdFluxType_ == rnemdFullKE) {
1734                        if ((*sdi)->isDirectional()) {
1735                          Vector3d angMom = (*sdi)->getJ() * h;
1736                          (*sdi)->setJ(angMom);
# Line 1257 | Line 1738 | namespace OpenMD {
1738                      }
1739                    }
1740                    successfulExchange = true;
1741 <                  exchangeSum_ += targetFlux_;
1742 <                  // this is a redundant variable for doShiftScale() so that
1743 <                  // RNEMD can output one exchange quantity needed in a job.
1263 <                  // need a better way to do this.
1741 >                  kineticExchange_ += kineticTarget_;
1742 >                  momentumExchange_ += momentumTarget_;
1743 >                  angularMomentumExchange_ += angularMomentumTarget_;
1744                  }
1745                }
1746              }
# Line 1270 | Line 1750 | namespace OpenMD {
1750      }
1751      if (successfulExchange != true) {
1752        sprintf(painCave.errMsg,
1753 <              "RNEMD: exchange NOT performed!\n");
1753 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1754 >              "\tthe constraint equations may not exist or there may be\n"
1755 >              "\tno selected objects in one or both slabs.\n");
1756        painCave.isFatal = 0;
1757        painCave.severity = OPENMD_INFO;
1758        simError();        
# Line 1278 | Line 1760 | namespace OpenMD {
1760      }
1761    }
1762  
1763 <  void RNEMD::doRNEMD() {
1763 >  RealType RNEMD::getDividingArea() {
1764  
1765 <    switch(rnemdType_) {
1766 <    case rnemdKineticScale :
1767 <    case rnemdKineticScaleVAM :
1768 <    case rnemdKineticScaleAM :
1769 <    case rnemdPxScale :
1770 <    case rnemdPyScale :
1771 <    case rnemdPzScale :
1772 <      doScale();
1773 <      break;
1774 <    case rnemdKineticSwap :
1775 <    case rnemdPx :
1776 <    case rnemdPy :
1777 <    case rnemdPz :
1778 <      doSwap();
1779 <      break;
1780 <    case rnemdShiftScaleV :
1781 <    case rnemdShiftScaleVAM :
1782 <      doShiftScale();
1765 >    if (hasDividingArea_) return dividingArea_;
1766 >
1767 >    RealType areaA, areaB;
1768 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1769 >
1770 >    if (hasSelectionA_) {
1771 >
1772 >      if (evaluatorA_.hasSurfaceArea())
1773 >        areaA = evaluatorA_.getSurfaceArea();
1774 >      else {
1775 >        
1776 >        int isd;
1777 >        StuntDouble* sd;
1778 >        vector<StuntDouble*> aSites;
1779 >        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1780 >        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1781 >             sd = seleManA_.nextSelected(isd)) {
1782 >          aSites.push_back(sd);
1783 >        }
1784 > #if defined(HAVE_QHULL)
1785 >        ConvexHull* surfaceMeshA = new ConvexHull();
1786 >        surfaceMeshA->computeHull(aSites);
1787 >        areaA = surfaceMeshA->getArea();
1788 >        delete surfaceMeshA;
1789 > #else
1790 >        sprintf( painCave.errMsg,
1791 >               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1792 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1793 >        painCave.severity = OPENMD_ERROR;
1794 >        painCave.isFatal = 1;
1795 >        simError();
1796 > #endif
1797 >      }
1798 >
1799 >    } else {
1800 >      if (usePeriodicBoundaryConditions_) {
1801 >        // in periodic boundaries, the surface area is twice the x-y
1802 >        // area of the current box:
1803 >        areaA = 2.0 * snap->getXYarea();
1804 >      } else {
1805 >        // in non-periodic simulations, without explicitly setting
1806 >        // selections, the sphere radius sets the surface area of the
1807 >        // dividing surface:
1808 >        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1809 >      }
1810 >    }
1811 >
1812 >    if (hasSelectionB_) {
1813 >      if (evaluatorB_.hasSurfaceArea()) {
1814 >        areaB = evaluatorB_.getSurfaceArea();
1815 >      } else {
1816 >
1817 >        int isd;
1818 >        StuntDouble* sd;
1819 >        vector<StuntDouble*> bSites;
1820 >        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1821 >        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1822 >             sd = seleManB_.nextSelected(isd)) {
1823 >          bSites.push_back(sd);
1824 >        }
1825 >        
1826 > #if defined(HAVE_QHULL)
1827 >        ConvexHull* surfaceMeshB = new ConvexHull();    
1828 >        surfaceMeshB->computeHull(bSites);
1829 >        areaB = surfaceMeshB->getArea();
1830 >        delete surfaceMeshB;
1831 > #else
1832 >        sprintf( painCave.errMsg,
1833 >                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1834 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1835 >        painCave.severity = OPENMD_ERROR;
1836 >        painCave.isFatal = 1;
1837 >        simError();
1838 > #endif
1839 >      }
1840 >      
1841 >    } else {
1842 >      if (usePeriodicBoundaryConditions_) {
1843 >        // in periodic boundaries, the surface area is twice the x-y
1844 >        // area of the current box:
1845 >        areaB = 2.0 * snap->getXYarea();
1846 >      } else {
1847 >        // in non-periodic simulations, without explicitly setting
1848 >        // selections, but if a sphereBradius has been set, just use that:
1849 >        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1850 >      }
1851 >    }
1852 >      
1853 >    dividingArea_ = min(areaA, areaB);
1854 >    hasDividingArea_ = true;
1855 >    return dividingArea_;
1856 >  }
1857 >  
1858 >  void RNEMD::doRNEMD() {
1859 >    if (!doRNEMD_) return;
1860 >    trialCount_++;
1861 >
1862 >    // object evaluator:
1863 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1864 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1865 >
1866 >    evaluatorA_.loadScriptString(selectionA_);
1867 >    evaluatorB_.loadScriptString(selectionB_);
1868 >
1869 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1870 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1871 >
1872 >    commonA_ = seleManA_ & seleMan_;
1873 >    commonB_ = seleManB_ & seleMan_;
1874 >
1875 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1876 >    // dt = exchange time interval
1877 >    // flux = target flux
1878 >    // dividingArea = smallest dividing surface between the two regions
1879 >
1880 >    hasDividingArea_ = false;
1881 >    RealType area = getDividingArea();
1882 >
1883 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1884 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1885 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1886 >
1887 >    switch(rnemdMethod_) {
1888 >    case rnemdSwap:
1889 >      doSwap(commonA_, commonB_);
1890        break;
1891 <    case rnemdUnknown :
1891 >    case rnemdNIVS:
1892 >      doNIVS(commonA_, commonB_);
1893 >      break;
1894 >    case rnemdVSS:
1895 >      doVSS(commonA_, commonB_);
1896 >      break;
1897 >    case rnemdUnkownMethod:
1898      default :
1899        break;
1900      }
1901    }
1902  
1903    void RNEMD::collectData() {
1904 <
1904 >    if (!doRNEMD_) return;
1905      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1906 +
1907 +    // collectData can be called more frequently than the doRNEMD, so use the
1908 +    // computed area from the last exchange time:
1909 +    RealType area = getDividingArea();
1910 +    areaAccumulator_->add(area);
1911      Mat3x3d hmat = currentSnap_->getHmat();
1912 +    Vector3d u = angularMomentumFluxVector_;
1913 +    u.normalize();
1914  
1915      seleMan_.setSelectionSet(evaluator_.evaluate());
1916  
1917 <    int selei;
1917 >    int selei(0);
1918      StuntDouble* sd;
1919 <    int idx;
1919 >    int binNo;
1920 >    RealType mass;
1921 >    Vector3d vel;
1922 >    Vector3d rPos;
1923 >    RealType KE;
1924 >    Vector3d L;
1925 >    Mat3x3d I;
1926 >    RealType r2;
1927  
1928 +    vector<RealType> binMass(nBins_, 0.0);
1929 +    vector<Vector3d> binP(nBins_, V3Zero);
1930 +    vector<RealType> binOmega(nBins_, 0.0);
1931 +    vector<Vector3d> binL(nBins_, V3Zero);
1932 +    vector<Mat3x3d>  binI(nBins_);
1933 +    vector<RealType> binKE(nBins_, 0.0);
1934 +    vector<int> binDOF(nBins_, 0);
1935 +    vector<int> binCount(nBins_, 0);
1936 +
1937      // alternative approach, track all molecules instead of only those
1938      // selected for scaling/swapping:
1939      /*
1940 <    SimInfo::MoleculeIterator miter;
1941 <    vector<StuntDouble*>::iterator iiter;
1942 <    Molecule* mol;
1943 <    StuntDouble* integrableObject;
1944 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1945 <         mol = info_->nextMolecule(miter))
1946 <      integrableObject is essentially sd
1947 <        for (integrableObject = mol->beginIntegrableObject(iiter);
1948 <             integrableObject != NULL;
1949 <             integrableObject = mol->nextIntegrableObject(iiter))
1940 >      SimInfo::MoleculeIterator miter;
1941 >      vector<StuntDouble*>::iterator iiter;
1942 >      Molecule* mol;
1943 >      StuntDouble* sd;
1944 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1945 >      mol = info_->nextMolecule(miter))
1946 >      sd is essentially sd
1947 >      for (sd = mol->beginIntegrableObject(iiter);
1948 >      sd != NULL;
1949 >      sd = mol->nextIntegrableObject(iiter))
1950      */
1951 +
1952      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1953 <         sd = seleMan_.nextSelected(selei)) {
1954 <      
1336 <      idx = sd->getLocalIndex();
1337 <      
1953 >         sd = seleMan_.nextSelected(selei)) {    
1954 >    
1955        Vector3d pos = sd->getPos();
1956  
1957        // wrap the stuntdouble's position back into the box:
1958        
1959 <      if (usePeriodicBoundaryConditions_)
1959 >      if (usePeriodicBoundaryConditions_) {
1960          currentSnap_->wrapVector(pos);
1961 <      
1962 <      // which bin is this stuntdouble in?
1963 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1964 <      
1965 <      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1966 <        rnemdLogWidth_;
1967 <      // no symmetrization allowed due to arbitary rnemdLogWidth_
1968 <      /*
1969 <      if (rnemdLogWidth_ == midBin_ + 1)
1970 <        if (binNo > midBin_)
1354 <          binNo = nBins_ - binNo;
1355 <      */
1356 <      RealType mass = sd->getMass();
1357 <      mHist_[binNo] += mass;
1358 <      Vector3d vel = sd->getVel();
1359 <      RealType value;
1360 <      //RealType xVal, yVal, zVal;
1961 >        // which bin is this stuntdouble in?
1962 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1963 >        // Shift molecules by half a box to have bins start at 0
1964 >        // The modulo operator is used to wrap the case when we are
1965 >        // beyond the end of the bins back to the beginning.
1966 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1967 >      } else {
1968 >        Vector3d rPos = pos - coordinateOrigin_;
1969 >        binNo = int(rPos.length() / binWidth_);
1970 >      }
1971  
1972 <      if (outputTemp_) {
1973 <        value = mass * vel.lengthSquare();
1974 <        tempCount_[binNo] += 3;
1975 <        if (sd->isDirectional()) {
1976 <          Vector3d angMom = sd->getJ();
1977 <          Mat3x3d I = sd->getI();
1978 <          if (sd->isLinear()) {
1979 <            int i = sd->linearAxis();
1980 <            int j = (i + 1) % 3;
1981 <            int k = (i + 2) % 3;
1982 <            value += angMom[j] * angMom[j] / I(j, j) +
1983 <              angMom[k] * angMom[k] / I(k, k);
1984 <            tempCount_[binNo] +=2;
1985 <          } else {
1986 <            value += angMom[0] * angMom[0] / I(0, 0) +
1987 <              angMom[1]*angMom[1]/I(1, 1) +
1988 <              angMom[2]*angMom[2]/I(2, 2);
1989 <            tempCount_[binNo] +=3;
1990 <          }
1991 <        }
1992 <        value = value / PhysicalConstants::energyConvert
1993 <          / PhysicalConstants::kb;//may move to getStatus()
1994 <        tempHist_[binNo] += value;
1972 >      mass = sd->getMass();
1973 >      vel = sd->getVel();
1974 >      rPos = sd->getPos() - coordinateOrigin_;
1975 >      KE = 0.5 * mass * vel.lengthSquare();
1976 >      L = mass * cross(rPos, vel);
1977 >      I = outProduct(rPos, rPos) * mass;
1978 >      r2 = rPos.lengthSquare();
1979 >      I(0, 0) += mass * r2;
1980 >      I(1, 1) += mass * r2;
1981 >      I(2, 2) += mass * r2;
1982 >
1983 >      // Project the relative position onto a plane perpendicular to
1984 >      // the angularMomentumFluxVector:
1985 >      // Vector3d rProj = rPos - dot(rPos, u) * u;
1986 >      // Project the velocity onto a plane perpendicular to the
1987 >      // angularMomentumFluxVector:
1988 >      // Vector3d vProj = vel  - dot(vel, u) * u;
1989 >      // Compute angular velocity vector (should be nearly parallel to
1990 >      // angularMomentumFluxVector
1991 >      // Vector3d aVel = cross(rProj, vProj);
1992 >
1993 >      if (binNo >= 0 && binNo < nBins_)  {
1994 >        binCount[binNo]++;
1995 >        binMass[binNo] += mass;
1996 >        binP[binNo] += mass*vel;
1997 >        binKE[binNo] += KE;
1998 >        binI[binNo] += I;
1999 >        binL[binNo] += L;
2000 >        binDOF[binNo] += 3;
2001 >        
2002 >        if (sd->isDirectional()) {
2003 >          Vector3d angMom = sd->getJ();
2004 >          Mat3x3d Ia = sd->getI();
2005 >          if (sd->isLinear()) {
2006 >            int i = sd->linearAxis();
2007 >            int j = (i + 1) % 3;
2008 >            int k = (i + 2) % 3;
2009 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2010 >                                   angMom[k] * angMom[k] / Ia(k, k));
2011 >            binDOF[binNo] += 2;
2012 >          } else {
2013 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2014 >                                   angMom[1] * angMom[1] / Ia(1, 1) +
2015 >                                   angMom[2] * angMom[2] / Ia(2, 2));
2016 >            binDOF[binNo] += 3;
2017 >          }
2018 >        }
2019        }
2020 <      if (outputVx_) {
1387 <        value = mass * vel[0];
1388 <        //vxzCount_[binNo]++;
1389 <        pxzHist_[binNo] += value;
1390 <      }
1391 <      if (outputVy_) {
1392 <        value = mass * vel[1];
1393 <        //vyzCount_[binNo]++;
1394 <        pyzHist_[binNo] += value;
1395 <      }
2020 >    }
2021  
2022 <      if (output3DTemp_) {
2023 <        value = mass * vel.x() * vel.x();
2024 <        xTempHist_[binNo] += value;
2025 <        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
2026 <          / PhysicalConstants::kb;
2027 <        yTempHist_[binNo] += value;
2028 <        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
2029 <          / PhysicalConstants::kb;
2030 <        zTempHist_[binNo] += value;
2031 <        xyzTempCount_[binNo]++;
2022 > #ifdef IS_MPI
2023 >
2024 >    for (int i = 0; i < nBins_; i++) {
2025 >      
2026 >      MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2027 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2028 >      MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2029 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2030 >      MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2031 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2032 >      MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2033 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 >      MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2035 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 >      MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2037 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038 >      MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2039 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2040 >      //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2041 >      //                          1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2042 >    }
2043 >    
2044 > #endif
2045 >
2046 >    Vector3d omega;
2047 >    RealType den;
2048 >    RealType temp;
2049 >    RealType z;
2050 >    RealType r;
2051 >    for (int i = 0; i < nBins_; i++) {
2052 >      if (usePeriodicBoundaryConditions_) {
2053 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2054 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2055 >          / currentSnap_->getVolume() ;
2056 >      } else {
2057 >        r = (((RealType)i + 0.5) * binWidth_);
2058 >        RealType rinner = (RealType)i * binWidth_;
2059 >        RealType router = (RealType)(i+1) * binWidth_;
2060 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2061 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2062        }
2063 <      if (outputRotTemp_) {
1409 <        if (sd->isDirectional()) {
1410 <          Vector3d angMom = sd->getJ();
1411 <          Mat3x3d I = sd->getI();
1412 <          if (sd->isLinear()) {
1413 <            int i = sd->linearAxis();
1414 <            int j = (i + 1) % 3;
1415 <            int k = (i + 2) % 3;
1416 <            value = angMom[j] * angMom[j] / I(j, j) +
1417 <              angMom[k] * angMom[k] / I(k, k);
1418 <            rotTempCount_[binNo] +=2;
1419 <          } else {
1420 <            value = angMom[0] * angMom[0] / I(0, 0) +
1421 <              angMom[1] * angMom[1] / I(1, 1) +
1422 <              angMom[2] * angMom[2] / I(2, 2);
1423 <            rotTempCount_[binNo] +=3;
1424 <          }
1425 <        }
1426 <        value = value / PhysicalConstants::energyConvert
1427 <          / PhysicalConstants::kb;//may move to getStatus()
1428 <        rotTempHist_[binNo] += value;
1429 <      }
2063 >      vel = binP[i] / binMass[i];
2064  
2065 +      omega = binI[i].inverse() * binL[i];
2066 +
2067 +      // omega = binOmega[i] / binCount[i];
2068 +
2069 +      if (binCount[i] > 0) {
2070 +        // only add values if there are things to add
2071 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2072 +                                 PhysicalConstants::energyConvert);
2073 +        
2074 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2075 +          if(outputMask_[j]) {
2076 +            switch(j) {
2077 +            case Z:
2078 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2079 +              break;
2080 +            case R:
2081 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2082 +              break;
2083 +            case TEMPERATURE:
2084 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2085 +              break;
2086 +            case VELOCITY:
2087 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2088 +              break;
2089 +            case ANGULARVELOCITY:  
2090 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2091 +              break;
2092 +            case DENSITY:
2093 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2094 +              break;
2095 +            }
2096 +          }
2097 +        }
2098 +      }
2099      }
2100 +    hasData_ = true;
2101    }
2102  
2103    void RNEMD::getStarted() {
2104 +    if (!doRNEMD_) return;
2105 +    hasDividingArea_ = false;
2106      collectData();
2107 <    /*now can output profile in step 0, but might not be useful;
1437 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1438 <    Stats& stat = currentSnap_->statData;
1439 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1440 <    */
1441 <    //may output a header for the log file here
1442 <    getStatus();
2107 >    writeOutputFile();
2108    }
2109  
2110 <  void RNEMD::getStatus() {
2111 <
2112 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2113 <    Stats& stat = currentSnap_->statData;
2114 <    RealType time = currentSnap_->getTime();
2115 <
2116 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2117 <    //or to be more meaningful, define another item as exchangeSum_ / time
2118 <    int j;
2119 <
2120 < #ifdef IS_MPI
2121 <
2122 <    // all processors have the same number of bins, and STL vectors pack their
2123 <    // arrays, so in theory, this should be safe:
2124 <
2125 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
2126 <                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2127 <    if (outputTemp_) {
1463 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1464 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1465 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1466 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1467 <    }
1468 <    if (outputVx_) {
1469 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1470 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1471 <      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1472 <      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1473 <    }
1474 <    if (outputVy_) {
1475 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1476 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1477 <      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1478 <      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
2110 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2111 >    if (!doRNEMD_) return;
2112 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2113 >    
2114 >    while(tokenizer.hasMoreTokens()) {
2115 >      std::string token(tokenizer.nextToken());
2116 >      toUpper(token);
2117 >      OutputMapType::iterator i = outputMap_.find(token);
2118 >      if (i != outputMap_.end()) {
2119 >        outputMask_.set(i->second);
2120 >      } else {
2121 >        sprintf( painCave.errMsg,
2122 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2123 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2124 >        painCave.isFatal = 0;
2125 >        painCave.severity = OPENMD_ERROR;
2126 >        simError();            
2127 >      }
2128      }
2129 <    if (output3DTemp_) {
2130 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
2131 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2132 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
2133 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2134 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
2135 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1487 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1488 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1489 <    }
1490 <    if (outputRotTemp_) {
1491 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1492 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1493 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1494 <                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1495 <    }
1496 <
2129 >  }
2130 >  
2131 >  void RNEMD::writeOutputFile() {
2132 >    if (!doRNEMD_) return;
2133 >    if (!hasData_) return;
2134 >    
2135 > #ifdef IS_MPI
2136      // If we're the root node, should we print out the results
2137 <    int worldRank = MPI::COMM_WORLD.Get_rank();
2137 >    int worldRank;
2138 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2139 >
2140      if (worldRank == 0) {
2141   #endif
2142 +      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2143 +      
2144 +      if( !rnemdFile_ ){        
2145 +        sprintf( painCave.errMsg,
2146 +                 "Could not open \"%s\" for RNEMD output.\n",
2147 +                 rnemdFileName_.c_str());
2148 +        painCave.isFatal = 1;
2149 +        simError();
2150 +      }
2151  
2152 <      if (outputTemp_) {
2153 <        tempLog_ << time;
2154 <        for (j = 0; j < rnemdLogWidth_; j++) {
2155 <          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
2156 <        }
2157 <        tempLog_ << endl;
2152 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2153 >
2154 >      RealType time = currentSnap_->getTime();
2155 >      RealType avgArea;
2156 >      areaAccumulator_->getAverage(avgArea);
2157 >
2158 >      RealType Jz(0.0);
2159 >      Vector3d JzP(V3Zero);
2160 >      Vector3d JzL(V3Zero);
2161 >      if (time >= info_->getSimParams()->getDt()) {
2162 >        Jz = kineticExchange_ / (time * avgArea)
2163 >          / PhysicalConstants::energyConvert;
2164 >        JzP = momentumExchange_ / (time * avgArea);
2165 >        JzL = angularMomentumExchange_ / (time * avgArea);
2166        }
2167 <      if (outputVx_) {
2168 <        vxzLog_ << time;
2169 <        for (j = 0; j < rnemdLogWidth_; j++) {
2170 <          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
2171 <        }
2172 <        vxzLog_ << endl;
2167 >
2168 >      rnemdFile_ << "#######################################################\n";
2169 >      rnemdFile_ << "# RNEMD {\n";
2170 >
2171 >      map<string, RNEMDMethod>::iterator mi;
2172 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2173 >        if ( (*mi).second == rnemdMethod_)
2174 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2175        }
2176 <      if (outputVy_) {
2177 <        vyzLog_ << time;
2178 <        for (j = 0; j < rnemdLogWidth_; j++) {
2179 <          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1520 <        }
1521 <        vyzLog_ << endl;
2176 >      map<string, RNEMDFluxType>::iterator fi;
2177 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2178 >        if ( (*fi).second == rnemdFluxType_)
2179 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2180        }
2181 +      
2182 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2183  
2184 <      if (output3DTemp_) {
2185 <        RealType temp;
2186 <        xTempLog_ << time;
2187 <        for (j = 0; j < rnemdLogWidth_; j++) {
2188 <          if (outputVx_)
2189 <            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
2190 <          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
2191 <            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
2192 <          xTempLog_ << "\t" << temp;
2184 >      rnemdFile_ << "#    objectSelection = \""
2185 >                 << rnemdObjectSelection_ << "\";\n";
2186 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2187 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2188 >      rnemdFile_ << "# }\n";
2189 >      rnemdFile_ << "#######################################################\n";
2190 >      rnemdFile_ << "# RNEMD report:\n";      
2191 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2192 >      rnemdFile_ << "# Target flux:\n";
2193 >      rnemdFile_ << "#           kinetic = "
2194 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2195 >                 << " (kcal/mol/A^2/fs)\n";
2196 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2197 >                 << " (amu/A/fs^2)\n";
2198 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2199 >                 << " (amu/A^2/fs^2)\n";
2200 >      rnemdFile_ << "# Target one-time exchanges:\n";
2201 >      rnemdFile_ << "#          kinetic = "
2202 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2203 >                 << " (kcal/mol)\n";
2204 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2205 >                 << " (amu*A/fs)\n";
2206 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2207 >                 << " (amu*A^2/fs)\n";
2208 >      rnemdFile_ << "# Actual exchange totals:\n";
2209 >      rnemdFile_ << "#          kinetic = "
2210 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2211 >                 << " (kcal/mol)\n";
2212 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2213 >                 << " (amu*A/fs)\n";      
2214 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2215 >                 << " (amu*A^2/fs)\n";      
2216 >      rnemdFile_ << "# Actual flux:\n";
2217 >      rnemdFile_ << "#          kinetic = " << Jz
2218 >                 << " (kcal/mol/A^2/fs)\n";
2219 >      rnemdFile_ << "#          momentum = " << JzP
2220 >                 << " (amu/A/fs^2)\n";
2221 >      rnemdFile_ << "#  angular momentum = " << JzL
2222 >                 << " (amu/A^2/fs^2)\n";
2223 >      rnemdFile_ << "# Exchange statistics:\n";
2224 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2225 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2226 >      if (rnemdMethod_ == rnemdNIVS) {
2227 >        rnemdFile_ << "#  NIVS root-check errors = "
2228 >                   << failRootCount_ << "\n";
2229 >      }
2230 >      rnemdFile_ << "#######################################################\n";
2231 >      
2232 >      
2233 >      
2234 >      //write title
2235 >      rnemdFile_ << "#";
2236 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2237 >        if (outputMask_[i]) {
2238 >          rnemdFile_ << "\t" << data_[i].title <<
2239 >            "(" << data_[i].units << ")";
2240 >          // add some extra tabs for column alignment
2241 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2242          }
1534        xTempLog_ << endl;
1535        yTempLog_ << time;
1536        for (j = 0; j < rnemdLogWidth_; j++) {
1537          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1538        }
1539        yTempLog_ << endl;
1540        zTempLog_ << time;
1541        for (j = 0; j < rnemdLogWidth_; j++) {
1542          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1543        }
1544        zTempLog_ << endl;
2243        }
2244 <      if (outputRotTemp_) {
2245 <        rotTempLog_ << time;
2246 <        for (j = 0; j < rnemdLogWidth_; j++) {
2247 <          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
2248 <        }
2249 <        rotTempLog_ << endl;
2250 <      }
2244 >      rnemdFile_ << std::endl;
2245 >      
2246 >      rnemdFile_.precision(8);
2247 >      
2248 >      for (int j = 0; j < nBins_; j++) {        
2249 >        
2250 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2251 >          if (outputMask_[i]) {
2252 >            if (data_[i].dataType == "RealType")
2253 >              writeReal(i,j);
2254 >            else if (data_[i].dataType == "Vector3d")
2255 >              writeVector(i,j);
2256 >            else {
2257 >              sprintf( painCave.errMsg,
2258 >                       "RNEMD found an unknown data type for: %s ",
2259 >                       data_[i].title.c_str());
2260 >              painCave.isFatal = 1;
2261 >              simError();
2262 >            }
2263 >          }
2264 >        }
2265 >        rnemdFile_ << std::endl;
2266 >        
2267 >      }        
2268  
2269 +      rnemdFile_ << "#######################################################\n";
2270 +      rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2271 +      rnemdFile_ << "#######################################################\n";
2272 +
2273 +
2274 +      for (int j = 0; j < nBins_; j++) {        
2275 +        rnemdFile_ << "#";
2276 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2277 +          if (outputMask_[i]) {
2278 +            if (data_[i].dataType == "RealType")
2279 +              writeRealErrorBars(i,j);
2280 +            else if (data_[i].dataType == "Vector3d")
2281 +              writeVectorErrorBars(i,j);
2282 +            else {
2283 +              sprintf( painCave.errMsg,
2284 +                       "RNEMD found an unknown data type for: %s ",
2285 +                       data_[i].title.c_str());
2286 +              painCave.isFatal = 1;
2287 +              simError();
2288 +            }
2289 +          }
2290 +        }
2291 +        rnemdFile_ << std::endl;
2292 +        
2293 +      }        
2294 +      
2295 +      rnemdFile_.flush();
2296 +      rnemdFile_.close();
2297 +      
2298   #ifdef IS_MPI
2299      }
2300   #endif
2301 +    
2302 +  }
2303 +  
2304 +  void RNEMD::writeReal(int index, unsigned int bin) {
2305 +    if (!doRNEMD_) return;
2306 +    assert(index >=0 && index < ENDINDEX);
2307 +    assert(int(bin) < nBins_);
2308 +    RealType s;
2309 +    int count;
2310 +    
2311 +    count = data_[index].accumulator[bin]->count();
2312 +    if (count == 0) return;
2313 +    
2314 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2315 +    
2316 +    if (! isinf(s) && ! isnan(s)) {
2317 +      rnemdFile_ << "\t" << s;
2318 +    } else{
2319 +      sprintf( painCave.errMsg,
2320 +               "RNEMD detected a numerical error writing: %s for bin %u",
2321 +               data_[index].title.c_str(), bin);
2322 +      painCave.isFatal = 1;
2323 +      simError();
2324 +    }    
2325 +  }
2326 +  
2327 +  void RNEMD::writeVector(int index, unsigned int bin) {
2328 +    if (!doRNEMD_) return;
2329 +    assert(index >=0 && index < ENDINDEX);
2330 +    assert(int(bin) < nBins_);
2331 +    Vector3d s;
2332 +    int count;
2333 +    
2334 +    count = data_[index].accumulator[bin]->count();
2335  
2336 <    for (j = 0; j < rnemdLogWidth_; j++) {
2337 <      mHist_[j] = 0.0;
2336 >    if (count == 0) return;
2337 >
2338 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2339 >    if (isinf(s[0]) || isnan(s[0]) ||
2340 >        isinf(s[1]) || isnan(s[1]) ||
2341 >        isinf(s[2]) || isnan(s[2]) ) {      
2342 >      sprintf( painCave.errMsg,
2343 >               "RNEMD detected a numerical error writing: %s for bin %u",
2344 >               data_[index].title.c_str(), bin);
2345 >      painCave.isFatal = 1;
2346 >      simError();
2347 >    } else {
2348 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2349      }
2350 <    if (outputTemp_)
1562 <      for (j = 0; j < rnemdLogWidth_; j++) {
1563 <        tempCount_[j] = 0;
1564 <        tempHist_[j] = 0.0;
1565 <      }
1566 <    if (outputVx_)
1567 <      for (j = 0; j < rnemdLogWidth_; j++) {
1568 <        //pxzCount_[j] = 0;
1569 <        pxzHist_[j] = 0.0;
1570 <      }
1571 <    if (outputVy_)
1572 <      for (j = 0; j < rnemdLogWidth_; j++) {
1573 <        //pyzCount_[j] = 0;
1574 <        pyzHist_[j] = 0.0;
1575 <      }
2350 >  }  
2351  
2352 <    if (output3DTemp_)
2353 <      for (j = 0; j < rnemdLogWidth_; j++) {
2354 <        xTempHist_[j] = 0.0;
2355 <        yTempHist_[j] = 0.0;
2356 <        zTempHist_[j] = 0.0;
2357 <        xyzTempCount_[j] = 0;
2358 <      }
2359 <    if (outputRotTemp_)
2360 <      for (j = 0; j < rnemdLogWidth_; j++) {
2361 <        rotTempCount_[j] = 0;
2362 <        rotTempHist_[j] = 0.0;
2363 <      }
2352 >  void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2353 >    if (!doRNEMD_) return;
2354 >    assert(index >=0 && index < ENDINDEX);
2355 >    assert(int(bin) < nBins_);
2356 >    RealType s;
2357 >    int count;
2358 >    
2359 >    count = data_[index].accumulator[bin]->count();
2360 >    if (count == 0) return;
2361 >    
2362 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2363 >    
2364 >    if (! isinf(s) && ! isnan(s)) {
2365 >      rnemdFile_ << "\t" << s;
2366 >    } else{
2367 >      sprintf( painCave.errMsg,
2368 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2369 >               data_[index].title.c_str(), bin);
2370 >      painCave.isFatal = 1;
2371 >      simError();
2372 >    }    
2373    }
2374 +  
2375 +  void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2376 +    if (!doRNEMD_) return;
2377 +    assert(index >=0 && index < ENDINDEX);
2378 +    assert(int(bin) < nBins_);
2379 +    Vector3d s;
2380 +    int count;
2381 +    
2382 +    count = data_[index].accumulator[bin]->count();
2383 +    if (count == 0) return;
2384 +
2385 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2386 +    if (isinf(s[0]) || isnan(s[0]) ||
2387 +        isinf(s[1]) || isnan(s[1]) ||
2388 +        isinf(s[2]) || isnan(s[2]) ) {      
2389 +      sprintf( painCave.errMsg,
2390 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2391 +               data_[index].title.c_str(), bin);
2392 +      painCave.isFatal = 1;
2393 +      simError();
2394 +    } else {
2395 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2396 +    }
2397 +  }  
2398   }
2399  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines