ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 2056 by gezelter, Fri Feb 20 15:12:07 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #ifdef IS_MPI
42 + #include <mpi.h>
43 + #endif
44  
45   #include <cmath>
46 < #include "integrators/RNEMD.hpp"
46 > #include <sstream>
47 > #include <string>
48 >
49 > #include "rnemd/RNEMD.hpp"
50   #include "math/Vector3.hpp"
51 + #include "math/Vector.hpp"
52   #include "math/SquareMatrix3.hpp"
53   #include "math/Polynomial.hpp"
54   #include "primitives/Molecule.hpp"
55   #include "primitives/StuntDouble.hpp"
56   #include "utils/PhysicalConstants.hpp"
57   #include "utils/Tuple.hpp"
58 + #include "brains/Thermo.hpp"
59 + #include "math/ConvexHull.hpp"
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
55 < #include <mpi.h>
56 < #include "math/ParallelRandNumGen.hpp"
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68 + using namespace std;
69   namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                hasData_(false), hasDividingArea_(false),
76 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78 +    trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    int seedValue;
83 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
86 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
74 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
75 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
76 <    stringToEnumMap_["Px"] = rnemdPx;
77 <    stringToEnumMap_["Py"] = rnemdPy;
78 <    stringToEnumMap_["Pz"] = rnemdPz;
79 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
85 >    doRNEMD_ = rnemdParams->getUseRNEMD();
86 >    if (!doRNEMD_) return;
87  
88 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 <    evaluator_.loadScriptString(rnemdObjectSelection_);
90 <    seleMan_.setSelectionSet(evaluator_.evaluate());
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91  
92 <    // do some sanity checking
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109 <    int selectionCount = seleMan_.getSelectionCount();
110 <    int nIntegrable = info->getNGlobalIntegrableObjects();
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111  
112 <    if (selectionCount > nIntegrable) {
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121        sprintf(painCave.errMsg,
122 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
123 <              "\t\t%s\n"
124 <              "\thas resulted in %d selected objects.  However,\n"
125 <              "\tthe total number of integrable objects in the system\n"
126 <              "\tis only %d.  This is almost certainly not what you want\n"
127 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
128 <              "\tselector in the selection script!\n",
99 <              rnemdObjectSelection_.c_str(),
100 <              selectionCount, nIntegrable);
101 <      painCave.isFatal = 0;
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129        simError();
103
130      }
131 +
132 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 +    bool hasOutputFields = rnemdParams->haveOutputFields();
147      
148 <    const std::string st = simParams->getRNEMD_exchangeType();
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162  
163 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
164 <    i = stringToEnumMap_.find(st);
165 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
166 <    if (rnemdType_ == rnemdUnknown) {
167 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168 >      sprintf(painCave.errMsg,
169 >              "RNEMD: The current fluxType,\n"
170 >              "\t\t%s\n"
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173 >      painCave.isFatal = 1;
174 >      painCave.severity = OPENMD_ERROR;
175 >      simError();
176      }
177  
178 < #ifdef IS_MPI
179 <    if (worldRank == 0) {
180 < #endif
181 <
182 <      std::string rnemdFileName;
183 <      std::string xTempFileName;
184 <      std::string yTempFileName;
122 <      std::string zTempFileName;
123 <      switch(rnemdType_) {
124 <      case rnemdKineticSwap :
125 <      case rnemdKineticScale :
126 <        rnemdFileName = "temperature.log";
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185          break;
186 <      case rnemdPx :
187 <      case rnemdPxScale :
188 <      case rnemdPy :
189 <      case rnemdPyScale :
132 <        rnemdFileName = "momemtum.log";
133 <        xTempFileName = "temperatureX.log";
134 <        yTempFileName = "temperatureY.log";
135 <        zTempFileName = "temperatureZ.log";
136 <        xTempLog_.open(xTempFileName.c_str());
137 <        yTempLog_.open(yTempFileName.c_str());
138 <        zTempLog_.open(zTempFileName.c_str());
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190          break;
140      case rnemdPz :
141      case rnemdPzScale :
142      case rnemdUnknown :
191        default :
192 <        rnemdFileName = "rnemd.log";
192 >        methodFluxMismatch = true;
193          break;
194        }
195 <      rnemdLog_.open(rnemdFileName.c_str());
196 <
197 < #ifdef IS_MPI
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215 >      }
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258 >      }
259 >    default:
260 >      break;
261      }
151 #endif
262  
263 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
264 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
265 <    midBin_ = nBins_ / 2;
266 <    if (simParams->haveRNEMD_logWidth()) {
267 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
268 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
269 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
270 <        std::cerr << "Automaically set back to default.\n";
271 <        rnemdLogWidth_ = nBins_;
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284 >
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290 >    } else {
291 >      kineticFlux_ = 0.0;
292 >    }
293 >    if (hasMomentumFluxVector) {
294 >      std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
295 >      if (mf.size() != 3) {
296 >          sprintf(painCave.errMsg,
297 >                  "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
298 >                  "\tthere should be 3 parameters, but %lu were specified.\n",
299 >                  mf.size());
300 >          painCave.isFatal = 1;
301 >          simError();      
302        }
303 +      momentumFluxVector_.x() = mf[0];
304 +      momentumFluxVector_.y() = mf[1];
305 +      momentumFluxVector_.z() = mf[2];
306      } else {
307 <      rnemdLogWidth_ = nBins_;
307 >      momentumFluxVector_ = V3Zero;
308 >      if (hasMomentumFlux) {
309 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
310 >        switch (rnemdFluxType_) {
311 >        case rnemdPx:
312 >          momentumFluxVector_.x() = momentumFlux;
313 >          break;
314 >        case rnemdPy:
315 >          momentumFluxVector_.y() = momentumFlux;
316 >          break;
317 >        case rnemdPz:
318 >          momentumFluxVector_.z() = momentumFlux;
319 >          break;
320 >        case rnemdKePx:
321 >          momentumFluxVector_.x() = momentumFlux;
322 >          break;
323 >        case rnemdKePy:
324 >          momentumFluxVector_.y() = momentumFlux;
325 >          break;
326 >        default:
327 >          break;
328 >        }
329 >      }
330      }
331 <    valueHist_.resize(rnemdLogWidth_, 0.0);
332 <    valueCount_.resize(rnemdLogWidth_, 0);
333 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
334 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
335 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
331 >    if (hasAngularMomentumFluxVector) {
332 >      std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
333 >      if (amf.size() != 3) {
334 >        sprintf(painCave.errMsg,
335 >                "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
336 >                "\tthere should be 3 parameters, but %lu were specified.\n",
337 >                amf.size());
338 >        painCave.isFatal = 1;
339 >        simError();      
340 >      }
341 >      angularMomentumFluxVector_.x() = amf[0];
342 >      angularMomentumFluxVector_.y() = amf[1];
343 >      angularMomentumFluxVector_.z() = amf[2];
344 >    } else {
345 >      angularMomentumFluxVector_ = V3Zero;
346 >      if (hasAngularMomentumFlux) {
347 >        RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
348 >        switch (rnemdFluxType_) {
349 >        case rnemdLx:
350 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
351 >          break;
352 >        case rnemdLy:
353 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
354 >          break;
355 >        case rnemdLz:
356 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
357 >          break;
358 >        case rnemdKeLx:
359 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
360 >          break;
361 >        case rnemdKeLy:
362 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
363 >          break;
364 >        case rnemdKeLz:
365 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
366 >          break;
367 >        default:
368 >          break;
369 >        }
370 >      }        
371 >    }
372  
373 <    set_RNEMD_exchange_total(0.0);
374 <    if (simParams->haveRNEMD_targetFlux()) {
375 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
373 >    if (hasCoordinateOrigin) {
374 >      std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
375 >      if (co.size() != 3) {
376 >        sprintf(painCave.errMsg,
377 >                "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
378 >                "\tthere should be 3 parameters, but %lu were specified.\n",
379 >                co.size());
380 >        painCave.isFatal = 1;
381 >        simError();      
382 >      }
383 >      coordinateOrigin_.x() = co[0];
384 >      coordinateOrigin_.y() = co[1];
385 >      coordinateOrigin_.z() = co[2];
386      } else {
387 <      set_RNEMD_target_flux(0.0);
387 >      coordinateOrigin_ = V3Zero;
388 >    }
389 >    
390 >    // do some sanity checking
391 >    
392 >    int selectionCount = seleMan_.getSelectionCount();    
393 >    int nIntegrable = info->getNGlobalIntegrableObjects();
394 >    if (selectionCount > nIntegrable) {
395 >      sprintf(painCave.errMsg,
396 >              "RNEMD: The current objectSelection,\n"
397 >              "\t\t%s\n"
398 >              "\thas resulted in %d selected objects.  However,\n"
399 >              "\tthe total number of integrable objects in the system\n"
400 >              "\tis only %d.  This is almost certainly not what you want\n"
401 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
402 >              "\tselector in the selection script!\n",
403 >              rnemdObjectSelection_.c_str(),
404 >              selectionCount, nIntegrable);
405 >      painCave.isFatal = 0;
406 >      painCave.severity = OPENMD_WARNING;
407 >      simError();
408 >    }
409 >    
410 >    areaAccumulator_ = new Accumulator();
411 >    
412 >    nBins_ = rnemdParams->getOutputBins();
413 >    binWidth_ = rnemdParams->getOutputBinWidth();
414 >    
415 >    data_.resize(RNEMD::ENDINDEX);
416 >    OutputData z;
417 >    z.units =  "Angstroms";
418 >    z.title =  "Z";
419 >    z.dataType = "RealType";
420 >    z.accumulator.reserve(nBins_);
421 >    for (int i = 0; i < nBins_; i++)
422 >      z.accumulator.push_back( new Accumulator() );
423 >    data_[Z] = z;
424 >    outputMap_["Z"] =  Z;
425 >    
426 >    OutputData r;
427 >    r.units =  "Angstroms";
428 >    r.title =  "R";
429 >    r.dataType = "RealType";
430 >    r.accumulator.reserve(nBins_);
431 >    for (int i = 0; i < nBins_; i++)
432 >      r.accumulator.push_back( new Accumulator() );
433 >    data_[R] = r;
434 >    outputMap_["R"] =  R;
435 >    
436 >    OutputData temperature;
437 >    temperature.units =  "K";
438 >    temperature.title =  "Temperature";
439 >    temperature.dataType = "RealType";
440 >    temperature.accumulator.reserve(nBins_);
441 >    for (int i = 0; i < nBins_; i++)
442 >      temperature.accumulator.push_back( new Accumulator() );
443 >    data_[TEMPERATURE] = temperature;
444 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
445 >    
446 >    OutputData velocity;
447 >    velocity.units = "angstroms/fs";
448 >    velocity.title =  "Velocity";  
449 >    velocity.dataType = "Vector3d";
450 >    velocity.accumulator.reserve(nBins_);
451 >    for (int i = 0; i < nBins_; i++)
452 >      velocity.accumulator.push_back( new VectorAccumulator() );
453 >    data_[VELOCITY] = velocity;
454 >    outputMap_["VELOCITY"] = VELOCITY;
455 >    
456 >    OutputData angularVelocity;
457 >    angularVelocity.units = "angstroms^2/fs";
458 >    angularVelocity.title =  "AngularVelocity";  
459 >    angularVelocity.dataType = "Vector3d";
460 >    angularVelocity.accumulator.reserve(nBins_);
461 >    for (int i = 0; i < nBins_; i++)
462 >      angularVelocity.accumulator.push_back( new VectorAccumulator() );
463 >    data_[ANGULARVELOCITY] = angularVelocity;
464 >    outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
465 >    
466 >    OutputData density;
467 >    density.units =  "g cm^-3";
468 >    density.title =  "Density";
469 >    density.dataType = "RealType";
470 >    density.accumulator.reserve(nBins_);
471 >    for (int i = 0; i < nBins_; i++)
472 >      density.accumulator.push_back( new Accumulator() );
473 >    data_[DENSITY] = density;
474 >    outputMap_["DENSITY"] =  DENSITY;
475 >    
476 >    if (hasOutputFields) {
477 >      parseOutputFileFormat(rnemdParams->getOutputFields());
478 >    } else {
479 >      if (usePeriodicBoundaryConditions_)
480 >        outputMask_.set(Z);
481 >      else
482 >        outputMask_.set(R);
483 >      switch (rnemdFluxType_) {
484 >      case rnemdKE:
485 >      case rnemdRotKE:
486 >      case rnemdFullKE:
487 >        outputMask_.set(TEMPERATURE);
488 >        break;
489 >      case rnemdPx:
490 >      case rnemdPy:
491 >        outputMask_.set(VELOCITY);
492 >        break;
493 >      case rnemdPz:        
494 >      case rnemdPvector:
495 >        outputMask_.set(VELOCITY);
496 >        outputMask_.set(DENSITY);
497 >        break;
498 >      case rnemdLx:
499 >      case rnemdLy:
500 >      case rnemdLz:
501 >      case rnemdLvector:
502 >        outputMask_.set(ANGULARVELOCITY);
503 >        break;
504 >      case rnemdKeLx:
505 >      case rnemdKeLy:
506 >      case rnemdKeLz:
507 >      case rnemdKeLvector:
508 >        outputMask_.set(TEMPERATURE);
509 >        outputMask_.set(ANGULARVELOCITY);
510 >        break;
511 >      case rnemdKePx:
512 >      case rnemdKePy:
513 >        outputMask_.set(TEMPERATURE);
514 >        outputMask_.set(VELOCITY);
515 >        break;
516 >      case rnemdKePvector:
517 >        outputMask_.set(TEMPERATURE);
518 >        outputMask_.set(VELOCITY);
519 >        outputMask_.set(DENSITY);        
520 >        break;
521 >      default:
522 >        break;
523 >      }
524 >    }
525 >    
526 >    if (hasOutputFileName) {
527 >      rnemdFileName_ = rnemdParams->getOutputFileName();
528 >    } else {
529 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
530 >    }          
531 >    
532 >    exchangeTime_ = rnemdParams->getExchangeTime();
533 >    
534 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
535 >    // total exchange sums are zeroed out at the beginning:
536 >    
537 >    kineticExchange_ = 0.0;
538 >    momentumExchange_ = V3Zero;
539 >    angularMomentumExchange_ = V3Zero;
540 >    
541 >    std::ostringstream selectionAstream;
542 >    std::ostringstream selectionBstream;
543 >    
544 >    if (hasSelectionA_) {
545 >      selectionA_ = rnemdParams->getSelectionA();
546 >    } else {
547 >      if (usePeriodicBoundaryConditions_) {    
548 >        Mat3x3d hmat = currentSnap_->getHmat();
549 >        
550 >        if (hasSlabWidth)
551 >          slabWidth_ = rnemdParams->getSlabWidth();
552 >        else
553 >          slabWidth_ = hmat(2,2) / 10.0;
554 >        
555 >        if (hasSlabACenter)
556 >          slabACenter_ = rnemdParams->getSlabACenter();
557 >        else
558 >          slabACenter_ = 0.0;
559 >        
560 >        selectionAstream << "select wrappedz > "
561 >                         << slabACenter_ - 0.5*slabWidth_
562 >                         <<  " && wrappedz < "
563 >                         << slabACenter_ + 0.5*slabWidth_;
564 >        selectionA_ = selectionAstream.str();
565 >      } else {
566 >        if (hasSphereARadius)
567 >          sphereARadius_ = rnemdParams->getSphereARadius();
568 >        else {
569 >          // use an initial guess to the size of the inner slab to be 1/10 the
570 >          // radius of an approximately spherical hull:
571 >          Thermo thermo(info);
572 >          RealType hVol = thermo.getHullVolume();
573 >          sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
574 >        }
575 >        selectionAstream << "select r < " << sphereARadius_;
576 >        selectionA_ = selectionAstream.str();
577 >      }
578      }
579 <
580 < #ifndef IS_MPI
581 <    if (simParams->haveSeed()) {
582 <      seedValue = simParams->getSeed();
583 <      randNumGen_ = new SeqRandNumGen(seedValue);
584 <    }else {
585 <      randNumGen_ = new SeqRandNumGen();
586 <    }    
587 < #else
588 <    if (simParams->haveSeed()) {
589 <      seedValue = simParams->getSeed();
590 <      randNumGen_ = new ParallelRandNumGen(seedValue);
591 <    }else {
592 <      randNumGen_ = new ParallelRandNumGen();
593 <    }    
594 < #endif
579 >    
580 >    if (hasSelectionB_) {
581 >      selectionB_ = rnemdParams->getSelectionB();
582 >      
583 >    } else {
584 >      if (usePeriodicBoundaryConditions_) {    
585 >        Mat3x3d hmat = currentSnap_->getHmat();
586 >        
587 >        if (hasSlabWidth)
588 >          slabWidth_ = rnemdParams->getSlabWidth();
589 >        else
590 >          slabWidth_ = hmat(2,2) / 10.0;
591 >        
592 >        if (hasSlabBCenter)
593 >          slabBCenter_ = rnemdParams->getSlabBCenter();
594 >        else
595 >          slabBCenter_ = hmat(2,2) / 2.0;
596 >        
597 >        selectionBstream << "select wrappedz > "
598 >                         << slabBCenter_ - 0.5*slabWidth_
599 >                         <<  " && wrappedz < "
600 >                         << slabBCenter_ + 0.5*slabWidth_;
601 >        selectionB_ = selectionBstream.str();
602 >      } else {
603 >        if (hasSphereBRadius_) {
604 >          sphereBRadius_ = rnemdParams->getSphereBRadius();
605 >          selectionBstream << "select r > " << sphereBRadius_;
606 >          selectionB_ = selectionBstream.str();
607 >        } else {
608 >          selectionB_ = "select hull";
609 >          BisHull_ = true;
610 >          hasSelectionB_ = true;
611 >        }
612 >      }
613 >    }
614 >  
615 >  
616 >    // object evaluator:
617 >    evaluator_.loadScriptString(rnemdObjectSelection_);
618 >    seleMan_.setSelectionSet(evaluator_.evaluate());
619 >    evaluatorA_.loadScriptString(selectionA_);
620 >    evaluatorB_.loadScriptString(selectionB_);
621 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
622 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
623 >    commonA_ = seleManA_ & seleMan_;
624 >    commonB_ = seleManB_ & seleMan_;  
625    }
626    
196  RNEMD::~RNEMD() {
197    delete randNumGen_;
627      
628 +  RNEMD::~RNEMD() {
629 +    if (!doRNEMD_) return;
630   #ifdef IS_MPI
631      if (worldRank == 0) {
632   #endif
633 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
634 <      rnemdLog_.close();
635 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
636 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
637 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207 <        xTempLog_.close();
208 <        yTempLog_.close();
209 <        zTempLog_.close();
210 <      }
633 >
634 >      writeOutputFile();
635 >
636 >      rnemdFile_.close();
637 >      
638   #ifdef IS_MPI
639      }
640   #endif
641 +
642 +    // delete all of the objects we created:
643 +    delete areaAccumulator_;    
644 +    data_.clear();
645    }
646 +  
647 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
648 +    if (!doRNEMD_) return;
649 +    int selei;
650 +    int selej;
651  
216  void RNEMD::doSwap() {
217
652      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
653      Mat3x3d hmat = currentSnap_->getHmat();
654  
221    seleMan_.setSelectionSet(evaluator_.evaluate());
222
223    int selei;
655      StuntDouble* sd;
225    int idx;
656  
657      RealType min_val;
658 <    bool min_found = false;  
658 >    int min_found = 0;  
659      StuntDouble* min_sd;
660  
661      RealType max_val;
662 <    bool max_found = false;
662 >    int max_found = 0;
663      StuntDouble* max_sd;
664  
665 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
666 <         sd = seleMan_.nextSelected(selei)) {
665 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
666 >         sd = seleManA_.nextSelected(selei)) {
667  
238      idx = sd->getLocalIndex();
239
668        Vector3d pos = sd->getPos();
669 <
669 >      
670        // wrap the stuntdouble's position back into the box:
671 <
671 >      
672        if (usePeriodicBoundaryConditions_)
673          currentSnap_->wrapVector(pos);
674 <
675 <      // which bin is this stuntdouble in?
676 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
677 <
678 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
679 <
680 <
253 <      // if we're in bin 0 or the middleBin
254 <      if (binNo == 0 || binNo == midBin_) {
674 >      
675 >      RealType mass = sd->getMass();
676 >      Vector3d vel = sd->getVel();
677 >      RealType value;
678 >      
679 >      switch(rnemdFluxType_) {
680 >      case rnemdKE :
681          
682 <        RealType mass = sd->getMass();
683 <        Vector3d vel = sd->getVel();
684 <        RealType value;
685 <
686 <        switch(rnemdType_) {
261 <        case rnemdKineticSwap :
682 >        value = mass * vel.lengthSquare();
683 >        
684 >        if (sd->isDirectional()) {
685 >          Vector3d angMom = sd->getJ();
686 >          Mat3x3d I = sd->getI();
687            
688 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
689 <                          vel[2]*vel[2]);
690 <          if (sd->isDirectional()) {
691 <            Vector3d angMom = sd->getJ();
692 <            Mat3x3d I = sd->getI();
693 <            
694 <            if (sd->isLinear()) {
695 <              int i = sd->linearAxis();
696 <              int j = (i + 1) % 3;
697 <              int k = (i + 2) % 3;
273 <              value += angMom[j] * angMom[j] / I(j, j) +
274 <                angMom[k] * angMom[k] / I(k, k);
275 <            } else {                        
276 <              value += angMom[0]*angMom[0]/I(0, 0)
277 <                + angMom[1]*angMom[1]/I(1, 1)
278 <                + angMom[2]*angMom[2]/I(2, 2);
279 <            }
688 >          if (sd->isLinear()) {
689 >            int i = sd->linearAxis();
690 >            int j = (i + 1) % 3;
691 >            int k = (i + 2) % 3;
692 >            value += angMom[j] * angMom[j] / I(j, j) +
693 >              angMom[k] * angMom[k] / I(k, k);
694 >          } else {                        
695 >            value += angMom[0]*angMom[0]/I(0, 0)
696 >              + angMom[1]*angMom[1]/I(1, 1)
697 >              + angMom[2]*angMom[2]/I(2, 2);
698            }
699 <          //make exchangeSum_ comparable between swap & scale
700 <          //temporarily without using energyConvert
701 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
702 <          value *= 0.5;
703 <          break;
704 <        case rnemdPx :
705 <          value = mass * vel[0];
706 <          break;
707 <        case rnemdPy :
708 <          value = mass * vel[1];
709 <          break;
710 <        case rnemdPz :
711 <          value = mass * vel[2];
712 <          break;
713 <        default :
714 <          break;
699 >        } //angular momenta exchange enabled
700 >        value *= 0.5;
701 >        break;
702 >      case rnemdPx :
703 >        value = mass * vel[0];
704 >        break;
705 >      case rnemdPy :
706 >        value = mass * vel[1];
707 >        break;
708 >      case rnemdPz :
709 >        value = mass * vel[2];
710 >        break;
711 >      default :
712 >        break;
713 >      }
714 >      if (!max_found) {
715 >        max_val = value;
716 >        max_sd = sd;
717 >        max_found = 1;
718 >      } else {
719 >        if (max_val < value) {
720 >          max_val = value;
721 >          max_sd = sd;
722          }
723 +      }  
724 +    }
725          
726 <        if (binNo == 0) {
727 <          if (!min_found) {
728 <            min_val = value;
729 <            min_sd = sd;
730 <            min_found = true;
731 <          } else {
732 <            if (min_val > value) {
733 <              min_val = value;
734 <              min_sd = sd;
735 <            }
736 <          }
737 <        } else { //midBin_
738 <          if (!max_found) {
739 <            max_val = value;
740 <            max_sd = sd;
741 <            max_found = true;
742 <          } else {
743 <            if (max_val < value) {
744 <              max_val = value;
745 <              max_sd = sd;
746 <            }
747 <          }      
748 <        }
726 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
727 >         sd = seleManB_.nextSelected(selej)) {
728 >
729 >      Vector3d pos = sd->getPos();
730 >      
731 >      // wrap the stuntdouble's position back into the box:
732 >      
733 >      if (usePeriodicBoundaryConditions_)
734 >        currentSnap_->wrapVector(pos);
735 >      
736 >      RealType mass = sd->getMass();
737 >      Vector3d vel = sd->getVel();
738 >      RealType value;
739 >      
740 >      switch(rnemdFluxType_) {
741 >      case rnemdKE :
742 >        
743 >        value = mass * vel.lengthSquare();
744 >        
745 >        if (sd->isDirectional()) {
746 >          Vector3d angMom = sd->getJ();
747 >          Mat3x3d I = sd->getI();
748 >          
749 >          if (sd->isLinear()) {
750 >            int i = sd->linearAxis();
751 >            int j = (i + 1) % 3;
752 >            int k = (i + 2) % 3;
753 >            value += angMom[j] * angMom[j] / I(j, j) +
754 >              angMom[k] * angMom[k] / I(k, k);
755 >          } else {                        
756 >            value += angMom[0]*angMom[0]/I(0, 0)
757 >              + angMom[1]*angMom[1]/I(1, 1)
758 >              + angMom[2]*angMom[2]/I(2, 2);
759 >          }
760 >        } //angular momenta exchange enabled
761 >        value *= 0.5;
762 >        break;
763 >      case rnemdPx :
764 >        value = mass * vel[0];
765 >        break;
766 >      case rnemdPy :
767 >        value = mass * vel[1];
768 >        break;
769 >      case rnemdPz :
770 >        value = mass * vel[2];
771 >        break;
772 >      default :
773 >        break;
774        }
775 +      
776 +      if (!min_found) {
777 +        min_val = value;
778 +        min_sd = sd;
779 +        min_found = 1;
780 +      } else {
781 +        if (min_val > value) {
782 +          min_val = value;
783 +          min_sd = sd;
784 +        }
785 +      }
786      }
787 +    
788 + #ifdef IS_MPI    
789 +    int worldRank;
790 +    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
791 +        
792 +    int my_min_found = min_found;
793 +    int my_max_found = max_found;
794  
325 #ifdef IS_MPI
326    int nProc, worldRank;
327
328    nProc = MPI::COMM_WORLD.Get_size();
329    worldRank = MPI::COMM_WORLD.Get_rank();
330
331    bool my_min_found = min_found;
332    bool my_max_found = max_found;
333
795      // Even if we didn't find a minimum, did someone else?
796 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
797 <                              1, MPI::BOOL, MPI::LAND);
337 <    
796 >    MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
797 >                  MPI_COMM_WORLD);
798      // Even if we didn't find a maximum, did someone else?
799 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
800 <                              1, MPI::BOOL, MPI::LAND);
801 <    
802 <    struct {
803 <      RealType val;
804 <      int rank;
805 <    } max_vals, min_vals;
806 <    
807 <    if (min_found) {
808 <      if (my_min_found)
799 >    MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
800 >                  MPI_COMM_WORLD);
801 > #endif
802 >
803 >    if (max_found && min_found) {
804 >
805 > #ifdef IS_MPI
806 >      struct {
807 >        RealType val;
808 >        int rank;
809 >      } max_vals, min_vals;
810 >      
811 >      if (my_min_found) {
812          min_vals.val = min_val;
813 <      else
813 >      } else {
814          min_vals.val = HONKING_LARGE_VALUE;
815 <      
815 >      }
816        min_vals.rank = worldRank;    
817        
818        // Who had the minimum?
819 <      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
820 <                                1, MPI::REALTYPE_INT, MPI::MINLOC);
819 >      MPI_Allreduce(&min_vals, &min_vals,
820 >                    1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
821        min_val = min_vals.val;
359    }
822        
823 <    if (max_found) {
362 <      if (my_max_found)
823 >      if (my_max_found) {
824          max_vals.val = max_val;
825 <      else
825 >      } else {
826          max_vals.val = -HONKING_LARGE_VALUE;
827 <      
827 >      }
828        max_vals.rank = worldRank;    
829        
830        // Who had the maximum?
831 <      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
832 <                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
831 >      MPI_Allreduce(&max_vals, &max_vals,
832 >                    1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
833        max_val = max_vals.val;
373    }
834   #endif
835 <
836 <    if (max_found && min_found) {
837 <      if (min_val< max_val) {
378 <
835 >      
836 >      if (min_val < max_val) {
837 >        
838   #ifdef IS_MPI      
839          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
840            // I have both maximum and minimum, so proceed like a single
841            // processor version:
842   #endif
843 <          // objects to be swapped: velocity & angular velocity
843 >
844            Vector3d min_vel = min_sd->getVel();
845            Vector3d max_vel = max_sd->getVel();
846            RealType temp_vel;
847            
848 <          switch(rnemdType_) {
849 <          case rnemdKineticSwap :
848 >          switch(rnemdFluxType_) {
849 >          case rnemdKE :
850              min_sd->setVel(max_vel);
851              max_sd->setVel(min_vel);
852 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
852 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
853                Vector3d min_angMom = min_sd->getJ();
854                Vector3d max_angMom = max_sd->getJ();
855                min_sd->setJ(max_angMom);
856                max_sd->setJ(min_angMom);
857 <            }
857 >            }//angular momenta exchange enabled
858 >            //assumes same rigid body identity
859              break;
860            case rnemdPx :
861              temp_vel = min_vel.x();
# Line 421 | Line 881 | namespace OpenMD {
881            default :
882              break;
883            }
884 +
885   #ifdef IS_MPI
886            // the rest of the cases only apply in parallel simulations:
887          } else if (max_vals.rank == worldRank) {
# Line 428 | Line 889 | namespace OpenMD {
889            
890            Vector3d min_vel;
891            Vector3d max_vel = max_sd->getVel();
892 <          MPI::Status status;
892 >          MPI_Status status;
893  
894            // point-to-point swap of the velocity vector
895 <          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
896 <                                   min_vals.rank, 0,
897 <                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
898 <                                   min_vals.rank, 0, status);
895 >          MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
896 >                       min_vals.rank, 0,
897 >                       min_vel.getArrayPointer(), 3, MPI_REALTYPE,
898 >                       min_vals.rank, 0, MPI_COMM_WORLD, &status);
899            
900 <          switch(rnemdType_) {
901 <          case rnemdKineticSwap :
900 >          switch(rnemdFluxType_) {
901 >          case rnemdKE :
902              max_sd->setVel(min_vel);
903 <            
903 >            //angular momenta exchange enabled
904              if (max_sd->isDirectional()) {
905                Vector3d min_angMom;
906                Vector3d max_angMom = max_sd->getJ();
907 <
907 >              
908                // point-to-point swap of the angular momentum vector
909 <              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
910 <                                       MPI::REALTYPE, min_vals.rank, 1,
911 <                                       min_angMom.getArrayPointer(), 3,
912 <                                       MPI::REALTYPE, min_vals.rank, 1,
913 <                                       status);
914 <
909 >              MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
910 >                           MPI_REALTYPE, min_vals.rank, 1,
911 >                           min_angMom.getArrayPointer(), 3,
912 >                           MPI_REALTYPE, min_vals.rank, 1,
913 >                           MPI_COMM_WORLD, &status);
914 >              
915                max_sd->setJ(min_angMom);
916 <            }
916 >            }
917              break;
918            case rnemdPx :
919              max_vel.x() = min_vel.x();
# Line 474 | Line 935 | namespace OpenMD {
935            
936            Vector3d max_vel;
937            Vector3d min_vel = min_sd->getVel();
938 <          MPI::Status status;
938 >          MPI_Status status;
939            
940            // point-to-point swap of the velocity vector
941 <          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
942 <                                   max_vals.rank, 0,
943 <                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
944 <                                   max_vals.rank, 0, status);
941 >          MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
942 >                       max_vals.rank, 0,
943 >                       max_vel.getArrayPointer(), 3, MPI_REALTYPE,
944 >                       max_vals.rank, 0, MPI_COMM_WORLD, &status);
945            
946 <          switch(rnemdType_) {
947 <          case rnemdKineticSwap :
946 >          switch(rnemdFluxType_) {
947 >          case rnemdKE :
948              min_sd->setVel(max_vel);
949 <            
949 >            //angular momenta exchange enabled
950              if (min_sd->isDirectional()) {
951                Vector3d min_angMom = min_sd->getJ();
952                Vector3d max_angMom;
953 <
953 >              
954                // point-to-point swap of the angular momentum vector
955 <              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
956 <                                       MPI::REALTYPE, max_vals.rank, 1,
957 <                                       max_angMom.getArrayPointer(), 3,
958 <                                       MPI::REALTYPE, max_vals.rank, 1,
959 <                                       status);
960 <
955 >              MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
956 >                           MPI_REALTYPE, max_vals.rank, 1,
957 >                           max_angMom.getArrayPointer(), 3,
958 >                           MPI_REALTYPE, max_vals.rank, 1,
959 >                           MPI_COMM_WORLD, &status);
960 >              
961                min_sd->setJ(max_angMom);
962              }
963              break;
# Line 517 | Line 978 | namespace OpenMD {
978            }
979          }
980   #endif
981 <        exchangeSum_ += max_val - min_val;
982 <      } else {
983 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
984 <        failTrialCount_++;
985 <      }
986 <    } else {
987 <      std::cerr << "exchange NOT performed!\n";
988 <      std::cerr << "at least one of the two slabs empty.\n";
989 <      failTrialCount_++;
990 <    }
991 <    
992 <  }
981 >        
982 >        switch(rnemdFluxType_) {
983 >        case rnemdKE:
984 >          kineticExchange_ += max_val - min_val;
985 >          break;
986 >        case rnemdPx:
987 >          momentumExchange_.x() += max_val - min_val;
988 >          break;
989 >        case rnemdPy:
990 >          momentumExchange_.y() += max_val - min_val;
991 >          break;
992 >        case rnemdPz:
993 >          momentumExchange_.z() += max_val - min_val;
994 >          break;
995 >        default:
996 >          break;
997 >        }
998 >      } else {        
999 >        sprintf(painCave.errMsg,
1000 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
1001 >        painCave.isFatal = 0;
1002 >        painCave.severity = OPENMD_INFO;
1003 >        simError();        
1004 >        failTrialCount_++;
1005 >      }
1006 >    } else {
1007 >      sprintf(painCave.errMsg,
1008 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
1009 >              "\twas not present in at least one of the two slabs.\n");
1010 >      painCave.isFatal = 0;
1011 >      painCave.severity = OPENMD_INFO;
1012 >      simError();        
1013 >      failTrialCount_++;
1014 >    }    
1015 >  }
1016    
1017 <  void RNEMD::doScale() {
1017 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1018 >    if (!doRNEMD_) return;
1019 >    int selei;
1020 >    int selej;
1021  
1022      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1023 +    RealType time = currentSnap_->getTime();    
1024      Mat3x3d hmat = currentSnap_->getHmat();
1025  
538    seleMan_.setSelectionSet(evaluator_.evaluate());
539
540    int selei;
1026      StuntDouble* sd;
542    int idx;
1027  
1028 <    std::vector<StuntDouble*> hotBin, coldBin;
1028 >    vector<StuntDouble*> hotBin, coldBin;
1029  
1030      RealType Phx = 0.0;
1031      RealType Phy = 0.0;
# Line 549 | Line 1033 | namespace OpenMD {
1033      RealType Khx = 0.0;
1034      RealType Khy = 0.0;
1035      RealType Khz = 0.0;
1036 +    RealType Khw = 0.0;
1037      RealType Pcx = 0.0;
1038      RealType Pcy = 0.0;
1039      RealType Pcz = 0.0;
1040      RealType Kcx = 0.0;
1041      RealType Kcy = 0.0;
1042      RealType Kcz = 0.0;
1043 +    RealType Kcw = 0.0;
1044  
1045 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1046 <         sd = seleMan_.nextSelected(selei)) {
1045 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1046 >         sd = smanA.nextSelected(selei)) {
1047  
562      idx = sd->getLocalIndex();
563
1048        Vector3d pos = sd->getPos();
1049 <
1049 >      
1050        // wrap the stuntdouble's position back into the box:
1051 <
1051 >      
1052        if (usePeriodicBoundaryConditions_)
1053          currentSnap_->wrapVector(pos);
1054 <
1055 <      // which bin is this stuntdouble in?
1056 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1057 <
1058 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1059 <
1060 <      // if we're in bin 0 or the middleBin
1061 <      if (binNo == 0 || binNo == midBin_) {
1062 <        
1063 <        RealType mass = sd->getMass();
1064 <        Vector3d vel = sd->getVel();
1065 <      
1066 <        if (binNo == 0) {
1067 <          hotBin.push_back(sd);
1068 <          Phx += mass * vel.x();
1069 <          Phy += mass * vel.y();
1070 <          Phz += mass * vel.z();
1071 <          Khx += mass * vel.x() * vel.x();
1072 <          Khy += mass * vel.y() * vel.y();
1073 <          Khz += mass * vel.z() * vel.z();
1074 <        } else { //midBin_
1075 <          coldBin.push_back(sd);
1076 <          Pcx += mass * vel.x();
1077 <          Pcy += mass * vel.y();
1078 <          Pcz += mass * vel.z();
1079 <          Kcx += mass * vel.x() * vel.x();
596 <          Kcy += mass * vel.y() * vel.y();
597 <          Kcz += mass * vel.z() * vel.z();
598 <        }
1054 >      
1055 >      
1056 >      RealType mass = sd->getMass();
1057 >      Vector3d vel = sd->getVel();
1058 >      
1059 >      hotBin.push_back(sd);
1060 >      Phx += mass * vel.x();
1061 >      Phy += mass * vel.y();
1062 >      Phz += mass * vel.z();
1063 >      Khx += mass * vel.x() * vel.x();
1064 >      Khy += mass * vel.y() * vel.y();
1065 >      Khz += mass * vel.z() * vel.z();
1066 >      if (sd->isDirectional()) {
1067 >        Vector3d angMom = sd->getJ();
1068 >        Mat3x3d I = sd->getI();
1069 >        if (sd->isLinear()) {
1070 >          int i = sd->linearAxis();
1071 >          int j = (i + 1) % 3;
1072 >          int k = (i + 2) % 3;
1073 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1074 >            angMom[k] * angMom[k] / I(k, k);
1075 >        } else {
1076 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1077 >            + angMom[1]*angMom[1]/I(1, 1)
1078 >            + angMom[2]*angMom[2]/I(2, 2);
1079 >        }
1080        }
1081      }
1082 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1083 +         sd = smanB.nextSelected(selej)) {
1084 +      Vector3d pos = sd->getPos();
1085 +      
1086 +      // wrap the stuntdouble's position back into the box:
1087 +      
1088 +      if (usePeriodicBoundaryConditions_)
1089 +        currentSnap_->wrapVector(pos);
1090 +            
1091 +      RealType mass = sd->getMass();
1092 +      Vector3d vel = sd->getVel();
1093  
1094 +      coldBin.push_back(sd);
1095 +      Pcx += mass * vel.x();
1096 +      Pcy += mass * vel.y();
1097 +      Pcz += mass * vel.z();
1098 +      Kcx += mass * vel.x() * vel.x();
1099 +      Kcy += mass * vel.y() * vel.y();
1100 +      Kcz += mass * vel.z() * vel.z();
1101 +      if (sd->isDirectional()) {
1102 +        Vector3d angMom = sd->getJ();
1103 +        Mat3x3d I = sd->getI();
1104 +        if (sd->isLinear()) {
1105 +          int i = sd->linearAxis();
1106 +          int j = (i + 1) % 3;
1107 +          int k = (i + 2) % 3;
1108 +          Kcw += angMom[j] * angMom[j] / I(j, j) +
1109 +            angMom[k] * angMom[k] / I(k, k);
1110 +        } else {
1111 +          Kcw += angMom[0]*angMom[0]/I(0, 0)
1112 +            + angMom[1]*angMom[1]/I(1, 1)
1113 +            + angMom[2]*angMom[2]/I(2, 2);
1114 +        }
1115 +      }
1116 +    }
1117 +    
1118      Khx *= 0.5;
1119      Khy *= 0.5;
1120      Khz *= 0.5;
1121 +    Khw *= 0.5;
1122      Kcx *= 0.5;
1123      Kcy *= 0.5;
1124      Kcz *= 0.5;
1125 +    Kcw *= 0.5;
1126  
1127   #ifdef IS_MPI
1128 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1129 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1130 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1131 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1132 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1133 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1128 >    MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1129 >    MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130 >    MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131 >    MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132 >    MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133 >    MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1134  
1135 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1136 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1137 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1138 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1139 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1140 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1135 >    MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1136 >    MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137 >    MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138 >    MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1139 >
1140 >    MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1141 >    MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142 >    MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143 >    MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1144   #endif
1145  
1146 <    //use coldBin coeff's
1146 >    //solve coldBin coeff's first
1147      RealType px = Pcx / Phx;
1148      RealType py = Pcy / Phy;
1149      RealType pz = Pcz / Phz;
1150 +    RealType c, x, y, z;
1151 +    bool successfulScale = false;
1152 +    if ((rnemdFluxType_ == rnemdFullKE) ||
1153 +        (rnemdFluxType_ == rnemdRotKE)) {
1154 +      //may need sanity check Khw & Kcw > 0
1155  
1156 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
1157 <    switch(rnemdType_) {
1158 <    case rnemdKineticScale :
1159 <    /*used hotBin coeff's & only scale x & y dimensions
1160 <      RealType px = Phx / Pcx;
635 <      RealType py = Phy / Pcy;
636 <      a110 = Khy;
637 <      c0 = - Khx - Khy - targetFlux_;
638 <      a000 = Khx;
639 <      a111 = Kcy * py * py
640 <      b11 = -2.0 * Kcy * py * (1.0 + py);
641 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642 <      b01 = -2.0 * Kcx * px * (1.0 + px);
643 <      a001 = Kcx * px * px;
644 <    */
1156 >      if (rnemdFluxType_ == rnemdFullKE) {
1157 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1158 >      } else {
1159 >        c = 1.0 - kineticTarget_ / Kcw;
1160 >      }
1161  
1162 <      //scale all three dimensions, let c_x = c_y
1163 <      a000 = Kcx + Kcy;
1164 <      a110 = Kcz;
1165 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
1166 <      a001 = Khx * px * px + Khy * py * py;
1167 <      a111 = Khz * pz * pz;
1168 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1169 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1170 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1171 <         + Khz * pz * (2.0 + pz) - targetFlux_;
1172 <      break;
1173 <    case rnemdPxScale :
1174 <      c = 1 - targetFlux_ / Pcx;
1175 <      a000 = Kcy;
1176 <      a110 = Kcz;
1177 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1178 <      a001 = py * py * Khy;
1179 <      a111 = pz * pz * Khz;
1180 <      b01 = -2.0 * Khy * py * (1.0 + py);
1181 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1182 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1183 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1184 <      break;
1185 <    case rnemdPyScale :
1186 <      c = 1 - targetFlux_ / Pcy;
1187 <      a000 = Kcx;
1188 <      a110 = Kcz;
1189 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1190 <      a001 = px * px * Khx;
1191 <      a111 = pz * pz * Khz;
1192 <      b01 = -2.0 * Khx * px * (1.0 + px);
1193 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1194 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1195 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1162 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1163 >        c = sqrt(c);
1164 >
1165 >        RealType w = 0.0;
1166 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1167 >          x = 1.0 + px * (1.0 - c);
1168 >          y = 1.0 + py * (1.0 - c);
1169 >          z = 1.0 + pz * (1.0 - c);
1170 >          /* more complicated way
1171 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1172 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1173 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1174 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1175 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1176 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1177 >          */
1178 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1179 >              (fabs(z - 1.0) < 0.1)) {
1180 >            w = 1.0 + (kineticTarget_
1181 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1182 >                       + Khz * (1.0 - z * z)) / Khw;
1183 >          }//no need to calculate w if x, y or z is out of range
1184 >        } else {
1185 >          w = 1.0 + kineticTarget_ / Khw;
1186 >        }
1187 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1188 >          //if w is in the right range, so should be x, y, z.
1189 >          vector<StuntDouble*>::iterator sdi;
1190 >          Vector3d vel;
1191 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1192 >            if (rnemdFluxType_ == rnemdFullKE) {
1193 >              vel = (*sdi)->getVel() * c;
1194 >              (*sdi)->setVel(vel);
1195 >            }
1196 >            if ((*sdi)->isDirectional()) {
1197 >              Vector3d angMom = (*sdi)->getJ() * c;
1198 >              (*sdi)->setJ(angMom);
1199 >            }
1200 >          }
1201 >          w = sqrt(w);
1202 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1203 >            if (rnemdFluxType_ == rnemdFullKE) {
1204 >              vel = (*sdi)->getVel();
1205 >              vel.x() *= x;
1206 >              vel.y() *= y;
1207 >              vel.z() *= z;
1208 >              (*sdi)->setVel(vel);
1209 >            }
1210 >            if ((*sdi)->isDirectional()) {
1211 >              Vector3d angMom = (*sdi)->getJ() * w;
1212 >              (*sdi)->setJ(angMom);
1213 >            }
1214 >          }
1215 >          successfulScale = true;
1216 >          kineticExchange_ += kineticTarget_;
1217 >        }
1218 >      }
1219 >    } else {
1220 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1221 >      switch(rnemdFluxType_) {
1222 >      case rnemdKE :
1223 >        /* used hotBin coeff's & only scale x & y dimensions
1224 >           RealType px = Phx / Pcx;
1225 >           RealType py = Phy / Pcy;
1226 >           a110 = Khy;
1227 >           c0 = - Khx - Khy - kineticTarget_;
1228 >           a000 = Khx;
1229 >           a111 = Kcy * py * py;
1230 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1231 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1232 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1233 >           a001 = Kcx * px * px;
1234 >        */
1235 >        //scale all three dimensions, let c_x = c_y
1236 >        a000 = Kcx + Kcy;
1237 >        a110 = Kcz;
1238 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1239 >        a001 = Khx * px * px + Khy * py * py;
1240 >        a111 = Khz * pz * pz;
1241 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1242 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1243 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1244 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1245 >        break;
1246 >      case rnemdPx :
1247 >        c = 1 - momentumTarget_.x() / Pcx;
1248 >        a000 = Kcy;
1249 >        a110 = Kcz;
1250 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1251 >        a001 = py * py * Khy;
1252 >        a111 = pz * pz * Khz;
1253 >        b01 = -2.0 * Khy * py * (1.0 + py);
1254 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1255 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1256 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1257 >        break;
1258 >      case rnemdPy :
1259 >        c = 1 - momentumTarget_.y() / Pcy;
1260 >        a000 = Kcx;
1261 >        a110 = Kcz;
1262 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1263 >        a001 = px * px * Khx;
1264 >        a111 = pz * pz * Khz;
1265 >        b01 = -2.0 * Khx * px * (1.0 + px);
1266 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1267 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1268 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1269 >        break;
1270 >      case rnemdPz ://we don't really do this, do we?
1271 >        c = 1 - momentumTarget_.z() / Pcz;
1272 >        a000 = Kcx;
1273 >        a110 = Kcy;
1274 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1275 >        a001 = px * px * Khx;
1276 >        a111 = py * py * Khy;
1277 >        b01 = -2.0 * Khx * px * (1.0 + px);
1278 >        b11 = -2.0 * Khy * py * (1.0 + py);
1279 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1280 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1281 >        break;
1282 >      default :
1283 >        break;
1284 >      }
1285 >      
1286 >      RealType v1 = a000 * a111 - a001 * a110;
1287 >      RealType v2 = a000 * b01;
1288 >      RealType v3 = a000 * b11;
1289 >      RealType v4 = a000 * c1 - a001 * c0;
1290 >      RealType v8 = a110 * b01;
1291 >      RealType v10 = - b01 * c0;
1292 >      
1293 >      RealType u0 = v2 * v10 - v4 * v4;
1294 >      RealType u1 = -2.0 * v3 * v4;
1295 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1296 >      RealType u3 = -2.0 * v1 * v3;
1297 >      RealType u4 = - v1 * v1;
1298 >      //rescale coefficients
1299 >      RealType maxAbs = fabs(u0);
1300 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1301 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1302 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1303 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1304 >      u0 /= maxAbs;
1305 >      u1 /= maxAbs;
1306 >      u2 /= maxAbs;
1307 >      u3 /= maxAbs;
1308 >      u4 /= maxAbs;
1309 >      //max_element(start, end) is also available.
1310 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1311 >      poly.setCoefficient(4, u4);
1312 >      poly.setCoefficient(3, u3);
1313 >      poly.setCoefficient(2, u2);
1314 >      poly.setCoefficient(1, u1);
1315 >      poly.setCoefficient(0, u0);
1316 >      vector<RealType> realRoots = poly.FindRealRoots();
1317 >      
1318 >      vector<RealType>::iterator ri;
1319 >      RealType r1, r2, alpha0;
1320 >      vector<pair<RealType,RealType> > rps;
1321 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1322 >        r2 = *ri;
1323 >        //check if FindRealRoots() give the right answer
1324 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1325 >          sprintf(painCave.errMsg,
1326 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1327 >          painCave.isFatal = 0;
1328 >          simError();
1329 >          failRootCount_++;
1330 >        }
1331 >        //might not be useful w/o rescaling coefficients
1332 >        alpha0 = -c0 - a110 * r2 * r2;
1333 >        if (alpha0 >= 0.0) {
1334 >          r1 = sqrt(alpha0 / a000);
1335 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1336 >              < 1e-6)
1337 >            { rps.push_back(make_pair(r1, r2)); }
1338 >          if (r1 > 1e-6) { //r1 non-negative
1339 >            r1 = -r1;
1340 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1341 >                < 1e-6)
1342 >              { rps.push_back(make_pair(r1, r2)); }
1343 >          }
1344 >        }
1345 >      }
1346 >      // Consider combining together the solving pair part w/ the searching
1347 >      // best solution part so that we don't need the pairs vector
1348 >      if (!rps.empty()) {
1349 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1350 >        RealType diff;
1351 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1352 >        vector<pair<RealType,RealType> >::iterator rpi;
1353 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1354 >          r1 = (*rpi).first;
1355 >          r2 = (*rpi).second;
1356 >          switch(rnemdFluxType_) {
1357 >          case rnemdKE :
1358 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1359 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1360 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1361 >            break;
1362 >          case rnemdPx :
1363 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1364 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1365 >            break;
1366 >          case rnemdPy :
1367 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1368 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1369 >            break;
1370 >          case rnemdPz :
1371 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1372 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1373 >          default :
1374 >            break;
1375 >          }
1376 >          if (diff < smallestDiff) {
1377 >            smallestDiff = diff;
1378 >            bestPair = *rpi;
1379 >          }
1380 >        }
1381 > #ifdef IS_MPI
1382 >        if (worldRank == 0) {
1383 > #endif
1384 >          // sprintf(painCave.errMsg,
1385 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1386 >          //         bestPair.first, bestPair.second);
1387 >          // painCave.isFatal = 0;
1388 >          // painCave.severity = OPENMD_INFO;
1389 >          // simError();
1390 > #ifdef IS_MPI
1391 >        }
1392 > #endif
1393 >        
1394 >        switch(rnemdFluxType_) {
1395 >        case rnemdKE :
1396 >          x = bestPair.first;
1397 >          y = bestPair.first;
1398 >          z = bestPair.second;
1399 >          break;
1400 >        case rnemdPx :
1401 >          x = c;
1402 >          y = bestPair.first;
1403 >          z = bestPair.second;
1404 >          break;
1405 >        case rnemdPy :
1406 >          x = bestPair.first;
1407 >          y = c;
1408 >          z = bestPair.second;
1409 >          break;
1410 >        case rnemdPz :
1411 >          x = bestPair.first;
1412 >          y = bestPair.second;
1413 >          z = c;
1414 >          break;          
1415 >        default :
1416 >          break;
1417 >        }
1418 >        vector<StuntDouble*>::iterator sdi;
1419 >        Vector3d vel;
1420 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1421 >          vel = (*sdi)->getVel();
1422 >          vel.x() *= x;
1423 >          vel.y() *= y;
1424 >          vel.z() *= z;
1425 >          (*sdi)->setVel(vel);
1426 >        }
1427 >        //convert to hotBin coefficient
1428 >        x = 1.0 + px * (1.0 - x);
1429 >        y = 1.0 + py * (1.0 - y);
1430 >        z = 1.0 + pz * (1.0 - z);
1431 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1432 >          vel = (*sdi)->getVel();
1433 >          vel.x() *= x;
1434 >          vel.y() *= y;
1435 >          vel.z() *= z;
1436 >          (*sdi)->setVel(vel);
1437 >        }
1438 >        successfulScale = true;
1439 >        switch(rnemdFluxType_) {
1440 >        case rnemdKE :
1441 >          kineticExchange_ += kineticTarget_;
1442 >          break;
1443 >        case rnemdPx :
1444 >        case rnemdPy :
1445 >        case rnemdPz :
1446 >          momentumExchange_ += momentumTarget_;
1447 >          break;          
1448 >        default :
1449 >          break;
1450 >        }      
1451 >      }
1452 >    }
1453 >    if (successfulScale != true) {
1454 >      sprintf(painCave.errMsg,
1455 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1456 >              "\tthe constraint equations may not exist or there may be\n"
1457 >              "\tno selected objects in one or both slabs.\n");
1458 >      painCave.isFatal = 0;
1459 >      painCave.severity = OPENMD_INFO;
1460 >      simError();        
1461 >      failTrialCount_++;
1462 >    }
1463 >  }
1464 >  
1465 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1466 >    if (!doRNEMD_) return;
1467 >    int selei;
1468 >    int selej;
1469 >
1470 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1471 >    RealType time = currentSnap_->getTime();    
1472 >    Mat3x3d hmat = currentSnap_->getHmat();
1473 >
1474 >    StuntDouble* sd;
1475 >
1476 >    vector<StuntDouble*> hotBin, coldBin;
1477 >
1478 >    Vector3d Ph(V3Zero);
1479 >    Vector3d Lh(V3Zero);
1480 >    RealType Mh = 0.0;
1481 >    Mat3x3d Ih(0.0);
1482 >    RealType Kh = 0.0;
1483 >    Vector3d Pc(V3Zero);
1484 >    Vector3d Lc(V3Zero);
1485 >    RealType Mc = 0.0;
1486 >    Mat3x3d Ic(0.0);
1487 >    RealType Kc = 0.0;
1488 >
1489 >    // Constraints can be on only the linear or angular momentum, but
1490 >    // not both.  Usually, the user will specify which they want, but
1491 >    // in case they don't, the use of periodic boundaries should make
1492 >    // the choice for us.
1493 >    bool doLinearPart = false;
1494 >    bool doAngularPart = false;
1495 >
1496 >    switch (rnemdFluxType_) {
1497 >    case rnemdPx:
1498 >    case rnemdPy:
1499 >    case rnemdPz:
1500 >    case rnemdPvector:
1501 >    case rnemdKePx:
1502 >    case rnemdKePy:
1503 >    case rnemdKePvector:
1504 >      doLinearPart = true;
1505        break;
1506 <    case rnemdPzScale ://we don't really do this, do we?
1507 <      c = 1 - targetFlux_ / Pcz;
1508 <      a000 = Kcx;
1509 <      a110 = Kcy;
1510 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1511 <      a001 = px * px * Khx;
1512 <      a111 = py * py * Khy;
1513 <      b01 = -2.0 * Khx * px * (1.0 + px);
1514 <      b11 = -2.0 * Khy * py * (1.0 + py);
690 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
691 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
692 <      break;      
693 <    default :
1506 >    case rnemdLx:
1507 >    case rnemdLy:
1508 >    case rnemdLz:
1509 >    case rnemdLvector:
1510 >    case rnemdKeLx:
1511 >    case rnemdKeLy:
1512 >    case rnemdKeLz:
1513 >    case rnemdKeLvector:
1514 >      doAngularPart = true;
1515        break;
1516 +    case rnemdKE:
1517 +    case rnemdRotKE:
1518 +    case rnemdFullKE:
1519 +    default:
1520 +      if (usePeriodicBoundaryConditions_)
1521 +        doLinearPart = true;
1522 +      else
1523 +        doAngularPart = true;
1524 +      break;
1525      }
1526 +    
1527 +    for (sd = smanA.beginSelected(selei); sd != NULL;
1528 +         sd = smanA.nextSelected(selei)) {
1529  
1530 <    RealType v1 = a000 * a111 - a001 * a110;
698 <    RealType v2 = a000 * b01;
699 <    RealType v3 = a000 * b11;
700 <    RealType v4 = a000 * c1 - a001 * c0;
701 <    RealType v8 = a110 * b01;
702 <    RealType v10 = - b01 * c0;
1530 >      Vector3d pos = sd->getPos();
1531  
1532 <    RealType u0 = v2 * v10 - v4 * v4;
1533 <    RealType u1 = -2.0 * v3 * v4;
1534 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1535 <    RealType u3 = -2.0 * v1 * v3;
1536 <    RealType u4 = - v1 * v1;
1537 <    //rescale coefficients
1538 <    RealType maxAbs = fabs(u0);
1539 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1540 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1541 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1542 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1543 <    u0 /= maxAbs;
1544 <    u1 /= maxAbs;
1545 <    u2 /= maxAbs;
1546 <    u3 /= maxAbs;
1547 <    u4 /= maxAbs;
1548 <    //max_element(start, end) is also available.
1549 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
1550 <    poly.setCoefficient(4, u4);
1551 <    poly.setCoefficient(3, u3);
1552 <    poly.setCoefficient(2, u2);
1553 <    poly.setCoefficient(1, u1);
1554 <    poly.setCoefficient(0, u0);
1555 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1556 <
1557 <    std::vector<RealType>::iterator ri;
1558 <    RealType r1, r2, alpha0;
1559 <    std::vector<std::pair<RealType,RealType> > rps;
1560 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1561 <      r2 = *ri;
1562 <      //check if FindRealRoots() give the right answer
1563 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1564 <        sprintf(painCave.errMsg,
1565 <                "RNEMD Warning: polynomial solve seems to have an error!");
1566 <        painCave.isFatal = 0;
1567 <        simError();
740 <        failRootCount_++;
741 <      }
742 <      //might not be useful w/o rescaling coefficients
743 <      alpha0 = -c0 - a110 * r2 * r2;
744 <      if (alpha0 >= 0.0) {
745 <        r1 = sqrt(alpha0 / a000);
746 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
747 <          { rps.push_back(std::make_pair(r1, r2)); }
748 <        if (r1 > 1e-6) { //r1 non-negative
749 <          r1 = -r1;
750 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
751 <            { rps.push_back(std::make_pair(r1, r2)); }
1532 >      // wrap the stuntdouble's position back into the box:
1533 >      
1534 >      if (usePeriodicBoundaryConditions_)
1535 >        currentSnap_->wrapVector(pos);
1536 >      
1537 >      RealType mass = sd->getMass();
1538 >      Vector3d vel = sd->getVel();
1539 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1540 >      RealType r2;
1541 >      
1542 >      hotBin.push_back(sd);
1543 >      Ph += mass * vel;
1544 >      Mh += mass;
1545 >      Kh += mass * vel.lengthSquare();
1546 >      Lh += mass * cross(rPos, vel);
1547 >      Ih -= outProduct(rPos, rPos) * mass;
1548 >      r2 = rPos.lengthSquare();
1549 >      Ih(0, 0) += mass * r2;
1550 >      Ih(1, 1) += mass * r2;
1551 >      Ih(2, 2) += mass * r2;
1552 >      
1553 >      if (rnemdFluxType_ == rnemdFullKE) {
1554 >        if (sd->isDirectional()) {
1555 >          Vector3d angMom = sd->getJ();
1556 >          Mat3x3d I = sd->getI();
1557 >          if (sd->isLinear()) {
1558 >            int i = sd->linearAxis();
1559 >            int j = (i + 1) % 3;
1560 >            int k = (i + 2) % 3;
1561 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1562 >              angMom[k] * angMom[k] / I(k, k);
1563 >          } else {
1564 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1565 >              angMom[1] * angMom[1] / I(1, 1) +
1566 >              angMom[2] * angMom[2] / I(2, 2);
1567 >          }
1568          }
1569        }
1570      }
1571 <    // Consider combininig together the solving pair part w/ the searching
1572 <    // best solution part so that we don't need the pairs vector
1573 <    if (!rps.empty()) {
1574 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1575 <      RealType diff;
1576 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1577 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1578 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1579 <        r1 = (*rpi).first;
1580 <        r2 = (*rpi).second;
1581 <        switch(rnemdType_) {
1582 <        case rnemdKineticScale :
1583 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1584 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1585 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1586 <          break;
1587 <        case rnemdPxScale :
1588 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1589 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1590 <          break;
1591 <        case rnemdPyScale :
1592 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1593 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1594 <          break;
1595 <        case rnemdPzScale :
1596 <        default :
1597 <          break;
1571 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1572 >         sd = smanB.nextSelected(selej)) {
1573 >
1574 >      Vector3d pos = sd->getPos();
1575 >      
1576 >      // wrap the stuntdouble's position back into the box:
1577 >      
1578 >      if (usePeriodicBoundaryConditions_)
1579 >        currentSnap_->wrapVector(pos);
1580 >      
1581 >      RealType mass = sd->getMass();
1582 >      Vector3d vel = sd->getVel();
1583 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1584 >      RealType r2;
1585 >
1586 >      coldBin.push_back(sd);
1587 >      Pc += mass * vel;
1588 >      Mc += mass;
1589 >      Kc += mass * vel.lengthSquare();
1590 >      Lc += mass * cross(rPos, vel);
1591 >      Ic -= outProduct(rPos, rPos) * mass;
1592 >      r2 = rPos.lengthSquare();
1593 >      Ic(0, 0) += mass * r2;
1594 >      Ic(1, 1) += mass * r2;
1595 >      Ic(2, 2) += mass * r2;
1596 >      
1597 >      if (rnemdFluxType_ == rnemdFullKE) {
1598 >        if (sd->isDirectional()) {
1599 >          Vector3d angMom = sd->getJ();
1600 >          Mat3x3d I = sd->getI();
1601 >          if (sd->isLinear()) {
1602 >            int i = sd->linearAxis();
1603 >            int j = (i + 1) % 3;
1604 >            int k = (i + 2) % 3;
1605 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1606 >              angMom[k] * angMom[k] / I(k, k);
1607 >          } else {
1608 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1609 >              angMom[1] * angMom[1] / I(1, 1) +
1610 >              angMom[2] * angMom[2] / I(2, 2);
1611 >          }
1612          }
783        if (diff < smallestDiff) {
784          smallestDiff = diff;
785          bestPair = *rpi;
786        }
1613        }
1614 +    }
1615 +    
1616 +    Kh *= 0.5;
1617 +    Kc *= 0.5;
1618 +    
1619   #ifdef IS_MPI
1620 <      if (worldRank == 0) {
1620 >    MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1621 >                  MPI_COMM_WORLD);
1622 >    MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1623 >                  MPI_COMM_WORLD);
1624 >    MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1625 >                  MPI_COMM_WORLD);
1626 >    MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1627 >                  MPI_COMM_WORLD);
1628 >    MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1629 >    MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1630 >    MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1631 >    MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632 >    MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1633 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634 >    MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1635 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1636   #endif
1637 <        std::cerr << "we choose r1 = " << bestPair.first
792 <                  << " and r2 = " << bestPair.second << "\n";
793 < #ifdef IS_MPI
794 <      }
795 < #endif
1637 >    
1638  
1639 <      RealType x, y, z;
1640 <        switch(rnemdType_) {
1641 <        case rnemdKineticScale :
1642 <          x = bestPair.first;
1643 <          y = bestPair.first;
1644 <          z = bestPair.second;
1645 <          break;
1646 <        case rnemdPxScale :
1647 <          x = c;
1648 <          y = bestPair.first;
1649 <          z = bestPair.second;
1650 <          break;
1651 <        case rnemdPyScale :
1652 <          x = bestPair.first;
1653 <          y = c;
1654 <          z = bestPair.second;
1655 <          break;
1656 <        case rnemdPzScale :
1657 <          x = bestPair.first;
1658 <          y = bestPair.second;
1659 <          z = c;
1660 <          break;          
1661 <        default :
1662 <          break;
1663 <        }
1664 <      std::vector<StuntDouble*>::iterator sdi;
1665 <      Vector3d vel;
1666 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1667 <        vel = (*sdi)->getVel();
1668 <        vel.x() *= x;
1669 <        vel.y() *= y;
1670 <        vel.z() *= z;
1671 <        (*sdi)->setVel(vel);
1672 <      }
1673 <      //convert to hotBin coefficient
1674 <      x = 1.0 + px * (1.0 - x);
1675 <      y = 1.0 + py * (1.0 - y);
1676 <      z = 1.0 + pz * (1.0 - z);
1677 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1678 <        vel = (*sdi)->getVel();
1679 <        vel.x() *= x;
1680 <        vel.y() *= y;
1681 <        vel.z() *= z;
1682 <        (*sdi)->setVel(vel);
1639 >    Vector3d ac, acrec, bc, bcrec;
1640 >    Vector3d ah, ahrec, bh, bhrec;
1641 >
1642 >    bool successfulExchange = false;
1643 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1644 >      Vector3d vc = Pc / Mc;
1645 >      ac = -momentumTarget_ / Mc + vc;
1646 >      acrec = -momentumTarget_ / Mc;
1647 >      
1648 >      // We now need the inverse of the inertia tensor to calculate the
1649 >      // angular velocity of the cold slab;
1650 >      Mat3x3d Ici = Ic.inverse();
1651 >      Vector3d omegac = Ici * Lc;
1652 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1653 >      bcrec = bc - omegac;
1654 >      
1655 >      RealType cNumerator = Kc - kineticTarget_;
1656 >      if (doLinearPart)
1657 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1658 >      
1659 >      if (doAngularPart)
1660 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1661 >
1662 >      if (cNumerator > 0.0) {
1663 >        
1664 >        RealType cDenominator = Kc;
1665 >
1666 >        if (doLinearPart)
1667 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1668 >
1669 >        if (doAngularPart)
1670 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1671 >        
1672 >        if (cDenominator > 0.0) {
1673 >          RealType c = sqrt(cNumerator / cDenominator);
1674 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1675 >            
1676 >            Vector3d vh = Ph / Mh;
1677 >            ah = momentumTarget_ / Mh + vh;
1678 >            ahrec = momentumTarget_ / Mh;
1679 >            
1680 >            // We now need the inverse of the inertia tensor to
1681 >            // calculate the angular velocity of the hot slab;
1682 >            Mat3x3d Ihi = Ih.inverse();
1683 >            Vector3d omegah = Ihi * Lh;
1684 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1685 >            bhrec = bh - omegah;
1686 >            
1687 >            RealType hNumerator = Kh + kineticTarget_;
1688 >            if (doLinearPart)
1689 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1690 >            
1691 >            if (doAngularPart)
1692 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1693 >              
1694 >            if (hNumerator > 0.0) {
1695 >              
1696 >              RealType hDenominator = Kh;
1697 >              if (doLinearPart)
1698 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1699 >              if (doAngularPart)
1700 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1701 >              
1702 >              if (hDenominator > 0.0) {
1703 >                RealType h = sqrt(hNumerator / hDenominator);
1704 >                if ((h > 0.9) && (h < 1.1)) {
1705 >                  
1706 >                  vector<StuntDouble*>::iterator sdi;
1707 >                  Vector3d vel;
1708 >                  Vector3d rPos;
1709 >                  
1710 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1711 >                    //vel = (*sdi)->getVel();
1712 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1713 >                    if (doLinearPart)
1714 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1715 >                    if (doAngularPart)
1716 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1717 >
1718 >                    (*sdi)->setVel(vel);
1719 >                    if (rnemdFluxType_ == rnemdFullKE) {
1720 >                      if ((*sdi)->isDirectional()) {
1721 >                        Vector3d angMom = (*sdi)->getJ() * c;
1722 >                        (*sdi)->setJ(angMom);
1723 >                      }
1724 >                    }
1725 >                  }
1726 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1727 >                    //vel = (*sdi)->getVel();
1728 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1729 >                    if (doLinearPart)
1730 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1731 >                    if (doAngularPart)
1732 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1733 >
1734 >                    (*sdi)->setVel(vel);
1735 >                    if (rnemdFluxType_ == rnemdFullKE) {
1736 >                      if ((*sdi)->isDirectional()) {
1737 >                        Vector3d angMom = (*sdi)->getJ() * h;
1738 >                        (*sdi)->setJ(angMom);
1739 >                      }
1740 >                    }
1741 >                  }
1742 >                  successfulExchange = true;
1743 >                  kineticExchange_ += kineticTarget_;
1744 >                  momentumExchange_ += momentumTarget_;
1745 >                  angularMomentumExchange_ += angularMomentumTarget_;
1746 >                }
1747 >              }
1748 >            }
1749 >          }
1750 >        }
1751        }
1752 <      exchangeSum_ += targetFlux_;
1753 <      //we may want to check whether the exchange has been successful
1754 <    } else {
1755 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1752 >    }
1753 >    if (successfulExchange != true) {
1754 >      sprintf(painCave.errMsg,
1755 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1756 >              "\tthe constraint equations may not exist or there may be\n"
1757 >              "\tno selected objects in one or both slabs.\n");
1758 >      painCave.isFatal = 0;
1759 >      painCave.severity = OPENMD_INFO;
1760 >      simError();        
1761        failTrialCount_++;
1762      }
848
1763    }
1764  
1765 +  RealType RNEMD::getDividingArea() {
1766 +
1767 +    if (hasDividingArea_) return dividingArea_;
1768 +
1769 +    RealType areaA, areaB;
1770 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1771 +
1772 +    if (hasSelectionA_) {
1773 +
1774 +      if (evaluatorA_.hasSurfaceArea())
1775 +        areaA = evaluatorA_.getSurfaceArea();
1776 +      else {
1777 +        
1778 +        int isd;
1779 +        StuntDouble* sd;
1780 +        vector<StuntDouble*> aSites;
1781 +        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1782 +        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1783 +             sd = seleManA_.nextSelected(isd)) {
1784 +          aSites.push_back(sd);
1785 +        }
1786 + #if defined(HAVE_QHULL)
1787 +        ConvexHull* surfaceMeshA = new ConvexHull();
1788 +        surfaceMeshA->computeHull(aSites);
1789 +        areaA = surfaceMeshA->getArea();
1790 +        delete surfaceMeshA;
1791 + #else
1792 +        sprintf( painCave.errMsg,
1793 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1794 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1795 +        painCave.severity = OPENMD_ERROR;
1796 +        painCave.isFatal = 1;
1797 +        simError();
1798 + #endif
1799 +      }
1800 +
1801 +    } else {
1802 +      if (usePeriodicBoundaryConditions_) {
1803 +        // in periodic boundaries, the surface area is twice the x-y
1804 +        // area of the current box:
1805 +        areaA = 2.0 * snap->getXYarea();
1806 +      } else {
1807 +        // in non-periodic simulations, without explicitly setting
1808 +        // selections, the sphere radius sets the surface area of the
1809 +        // dividing surface:
1810 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1811 +      }
1812 +    }
1813 +
1814 +    if (hasSelectionB_) {
1815 +      if (evaluatorB_.hasSurfaceArea()) {
1816 +        areaB = evaluatorB_.getSurfaceArea();
1817 +      } else {
1818 +
1819 +        int isd;
1820 +        StuntDouble* sd;
1821 +        vector<StuntDouble*> bSites;
1822 +        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1823 +        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1824 +             sd = seleManB_.nextSelected(isd)) {
1825 +          bSites.push_back(sd);
1826 +        }
1827 +        
1828 + #if defined(HAVE_QHULL)
1829 +        ConvexHull* surfaceMeshB = new ConvexHull();    
1830 +        surfaceMeshB->computeHull(bSites);
1831 +        areaB = surfaceMeshB->getArea();
1832 +        delete surfaceMeshB;
1833 + #else
1834 +        sprintf( painCave.errMsg,
1835 +                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1836 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1837 +        painCave.severity = OPENMD_ERROR;
1838 +        painCave.isFatal = 1;
1839 +        simError();
1840 + #endif
1841 +      }
1842 +      
1843 +    } else {
1844 +      if (usePeriodicBoundaryConditions_) {
1845 +        // in periodic boundaries, the surface area is twice the x-y
1846 +        // area of the current box:
1847 +        areaB = 2.0 * snap->getXYarea();
1848 +      } else {
1849 +        // in non-periodic simulations, without explicitly setting
1850 +        // selections, but if a sphereBradius has been set, just use that:
1851 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1852 +      }
1853 +    }
1854 +      
1855 +    dividingArea_ = min(areaA, areaB);
1856 +    hasDividingArea_ = true;
1857 +    return dividingArea_;
1858 +  }
1859 +  
1860    void RNEMD::doRNEMD() {
1861 +    if (!doRNEMD_) return;
1862 +    trialCount_++;
1863  
1864 <    switch(rnemdType_) {
1865 <    case rnemdKineticScale :
1866 <    case rnemdPxScale :
1867 <    case rnemdPyScale :
1868 <    case rnemdPzScale :
1869 <      doScale();
1864 >    // object evaluator:
1865 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1866 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1867 >
1868 >    evaluatorA_.loadScriptString(selectionA_);
1869 >    evaluatorB_.loadScriptString(selectionB_);
1870 >
1871 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1872 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1873 >
1874 >    commonA_ = seleManA_ & seleMan_;
1875 >    commonB_ = seleManB_ & seleMan_;
1876 >
1877 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1878 >    // dt = exchange time interval
1879 >    // flux = target flux
1880 >    // dividingArea = smallest dividing surface between the two regions
1881 >
1882 >    hasDividingArea_ = false;
1883 >    RealType area = getDividingArea();
1884 >
1885 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1886 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1887 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1888 >
1889 >    switch(rnemdMethod_) {
1890 >    case rnemdSwap:
1891 >      doSwap(commonA_, commonB_);
1892        break;
1893 <    case rnemdKineticSwap :
1894 <    case rnemdPx :
862 <    case rnemdPy :
863 <    case rnemdPz :
864 <      doSwap();
1893 >    case rnemdNIVS:
1894 >      doNIVS(commonA_, commonB_);
1895        break;
1896 <    case rnemdUnknown :
1896 >    case rnemdVSS:
1897 >      doVSS(commonA_, commonB_);
1898 >      break;
1899 >    case rnemdUnkownMethod:
1900      default :
1901        break;
1902      }
1903    }
1904  
1905    void RNEMD::collectData() {
1906 <
1906 >    if (!doRNEMD_) return;
1907      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1908 +
1909 +    // collectData can be called more frequently than the doRNEMD, so use the
1910 +    // computed area from the last exchange time:
1911 +    RealType area = getDividingArea();
1912 +    areaAccumulator_->add(area);
1913      Mat3x3d hmat = currentSnap_->getHmat();
1914 +    Vector3d u = angularMomentumFluxVector_;
1915 +    u.normalize();
1916  
1917      seleMan_.setSelectionSet(evaluator_.evaluate());
1918  
1919 <    int selei;
1919 >    int selei(0);
1920      StuntDouble* sd;
1921 <    int idx;
1921 >    int binNo;
1922 >    RealType mass;
1923 >    Vector3d vel;
1924 >    Vector3d rPos;
1925 >    RealType KE;
1926 >    Vector3d L;
1927 >    Mat3x3d I;
1928 >    RealType r2;
1929  
1930 +    vector<RealType> binMass(nBins_, 0.0);
1931 +    vector<Vector3d> binP(nBins_, V3Zero);
1932 +    vector<RealType> binOmega(nBins_, 0.0);
1933 +    vector<Vector3d> binL(nBins_, V3Zero);
1934 +    vector<Mat3x3d>  binI(nBins_);
1935 +    vector<RealType> binKE(nBins_, 0.0);
1936 +    vector<int> binDOF(nBins_, 0);
1937 +    vector<int> binCount(nBins_, 0);
1938 +
1939 +    // alternative approach, track all molecules instead of only those
1940 +    // selected for scaling/swapping:
1941 +    /*
1942 +      SimInfo::MoleculeIterator miter;
1943 +      vector<StuntDouble*>::iterator iiter;
1944 +      Molecule* mol;
1945 +      StuntDouble* sd;
1946 +      for (mol = info_->beginMolecule(miter); mol != NULL;
1947 +      mol = info_->nextMolecule(miter))
1948 +      sd is essentially sd
1949 +      for (sd = mol->beginIntegrableObject(iiter);
1950 +      sd != NULL;
1951 +      sd = mol->nextIntegrableObject(iiter))
1952 +    */
1953 +
1954      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1955 <         sd = seleMan_.nextSelected(selei)) {
1956 <      
886 <      idx = sd->getLocalIndex();
887 <      
1955 >         sd = seleMan_.nextSelected(selei)) {    
1956 >    
1957        Vector3d pos = sd->getPos();
1958  
1959        // wrap the stuntdouble's position back into the box:
1960        
1961 <      if (usePeriodicBoundaryConditions_)
1961 >      if (usePeriodicBoundaryConditions_) {
1962          currentSnap_->wrapVector(pos);
1963 <      
1964 <      // which bin is this stuntdouble in?
1965 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1966 <      
1967 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1963 >        // which bin is this stuntdouble in?
1964 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1965 >        // Shift molecules by half a box to have bins start at 0
1966 >        // The modulo operator is used to wrap the case when we are
1967 >        // beyond the end of the bins back to the beginning.
1968 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1969 >      } else {
1970 >        Vector3d rPos = pos - coordinateOrigin_;
1971 >        binNo = int(rPos.length() / binWidth_);
1972 >      }
1973  
1974 <      if (rnemdLogWidth_ == midBin_ + 1)
1975 <        if (binNo > midBin_)
1976 <          binNo = nBins_ - binNo;
1974 >      mass = sd->getMass();
1975 >      vel = sd->getVel();
1976 >      rPos = sd->getPos() - coordinateOrigin_;
1977 >      KE = 0.5 * mass * vel.lengthSquare();
1978 >      L = mass * cross(rPos, vel);
1979 >      I = outProduct(rPos, rPos) * mass;
1980 >      r2 = rPos.lengthSquare();
1981 >      I(0, 0) += mass * r2;
1982 >      I(1, 1) += mass * r2;
1983 >      I(2, 2) += mass * r2;
1984  
1985 <      RealType mass = sd->getMass();
1986 <      Vector3d vel = sd->getVel();
1987 <      RealType value;
1988 <      RealType xVal, yVal, zVal;
1985 >      // Project the relative position onto a plane perpendicular to
1986 >      // the angularMomentumFluxVector:
1987 >      // Vector3d rProj = rPos - dot(rPos, u) * u;
1988 >      // Project the velocity onto a plane perpendicular to the
1989 >      // angularMomentumFluxVector:
1990 >      // Vector3d vProj = vel  - dot(vel, u) * u;
1991 >      // Compute angular velocity vector (should be nearly parallel to
1992 >      // angularMomentumFluxVector
1993 >      // Vector3d aVel = cross(rProj, vProj);
1994  
1995 <      switch(rnemdType_) {
1996 <      case rnemdKineticSwap :
1997 <      case rnemdKineticScale :
1998 <        
1999 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
2000 <                        vel[2]*vel[2]);
2001 <        
2002 <        valueCount_[binNo] += 3;
2003 <        if (sd->isDirectional()) {
2004 <          Vector3d angMom = sd->getJ();
2005 <          Mat3x3d I = sd->getI();
2006 <          
2007 <          if (sd->isLinear()) {
2008 <            int i = sd->linearAxis();
2009 <            int j = (i + 1) % 3;
2010 <            int k = (i + 2) % 3;
2011 <            value += angMom[j] * angMom[j] / I(j, j) +
2012 <              angMom[k] * angMom[k] / I(k, k);
1995 >      if (binNo >= 0 && binNo < nBins_)  {
1996 >        binCount[binNo]++;
1997 >        binMass[binNo] += mass;
1998 >        binP[binNo] += mass*vel;
1999 >        binKE[binNo] += KE;
2000 >        binI[binNo] += I;
2001 >        binL[binNo] += L;
2002 >        binDOF[binNo] += 3;
2003 >        
2004 >        if (sd->isDirectional()) {
2005 >          Vector3d angMom = sd->getJ();
2006 >          Mat3x3d Ia = sd->getI();
2007 >          if (sd->isLinear()) {
2008 >            int i = sd->linearAxis();
2009 >            int j = (i + 1) % 3;
2010 >            int k = (i + 2) % 3;
2011 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2012 >                                   angMom[k] * angMom[k] / Ia(k, k));
2013 >            binDOF[binNo] += 2;
2014 >          } else {
2015 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2016 >                                   angMom[1] * angMom[1] / Ia(1, 1) +
2017 >                                   angMom[2] * angMom[2] / Ia(2, 2));
2018 >            binDOF[binNo] += 3;
2019 >          }
2020 >        }
2021 >      }
2022 >    }
2023  
2024 <            valueCount_[binNo] +=2;
2024 > #ifdef IS_MPI
2025  
2026 <          } else {
2027 <            value += angMom[0]*angMom[0]/I(0, 0)
2028 <              + angMom[1]*angMom[1]/I(1, 1)
2029 <              + angMom[2]*angMom[2]/I(2, 2);
2030 <            valueCount_[binNo] +=3;
2031 <          }
2032 <        }
2033 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
2034 <
2035 <        break;
2036 <      case rnemdPx :
2037 <      case rnemdPxScale :
2038 <        value = mass * vel[0];
2039 <        valueCount_[binNo]++;
2040 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
2041 <          / PhysicalConstants::kb;
2042 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
2043 <          / PhysicalConstants::kb;
948 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
949 <          / PhysicalConstants::kb;
950 <        xTempHist_[binNo] += xVal;
951 <        yTempHist_[binNo] += yVal;
952 <        zTempHist_[binNo] += zVal;
953 <        break;
954 <      case rnemdPy :
955 <      case rnemdPyScale :
956 <        value = mass * vel[1];
957 <        valueCount_[binNo]++;
958 <        break;
959 <      case rnemdPz :
960 <      case rnemdPzScale :
961 <        value = mass * vel[2];
962 <        valueCount_[binNo]++;
963 <        break;
964 <      case rnemdUnknown :
965 <      default :
966 <        break;
967 <      }
968 <      valueHist_[binNo] += value;
2026 >    for (int i = 0; i < nBins_; i++) {
2027 >      
2028 >      MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2029 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2030 >      MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2031 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2032 >      MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2033 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 >      MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2035 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 >      MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2037 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038 >      MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2039 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2040 >      MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2041 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2042 >      //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2043 >      //                          1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2044      }
2045 +    
2046 + #endif
2047  
2048 +    Vector3d omega;
2049 +    RealType den;
2050 +    RealType temp;
2051 +    RealType z;
2052 +    RealType r;
2053 +    for (int i = 0; i < nBins_; i++) {
2054 +      if (usePeriodicBoundaryConditions_) {
2055 +        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2056 +        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2057 +          / currentSnap_->getVolume() ;
2058 +      } else {
2059 +        r = (((RealType)i + 0.5) * binWidth_);
2060 +        RealType rinner = (RealType)i * binWidth_;
2061 +        RealType router = (RealType)(i+1) * binWidth_;
2062 +        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2063 +          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2064 +      }
2065 +      vel = binP[i] / binMass[i];
2066 +
2067 +      omega = binI[i].inverse() * binL[i];
2068 +
2069 +      // omega = binOmega[i] / binCount[i];
2070 +
2071 +      if (binCount[i] > 0) {
2072 +        // only add values if there are things to add
2073 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2074 +                                 PhysicalConstants::energyConvert);
2075 +        
2076 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2077 +          if(outputMask_[j]) {
2078 +            switch(j) {
2079 +            case Z:
2080 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2081 +              break;
2082 +            case R:
2083 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2084 +              break;
2085 +            case TEMPERATURE:
2086 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2087 +              break;
2088 +            case VELOCITY:
2089 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2090 +              break;
2091 +            case ANGULARVELOCITY:  
2092 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2093 +              break;
2094 +            case DENSITY:
2095 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2096 +              break;
2097 +            }
2098 +          }
2099 +        }
2100 +      }
2101 +    }
2102 +    hasData_ = true;
2103    }
2104  
2105    void RNEMD::getStarted() {
2106 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2107 <    Stats& stat = currentSnap_->statData;
2108 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2106 >    if (!doRNEMD_) return;
2107 >    hasDividingArea_ = false;
2108 >    collectData();
2109 >    writeOutputFile();
2110    }
2111  
2112 <  void RNEMD::getStatus() {
2112 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2113 >    if (!doRNEMD_) return;
2114 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2115 >    
2116 >    while(tokenizer.hasMoreTokens()) {
2117 >      std::string token(tokenizer.nextToken());
2118 >      toUpper(token);
2119 >      OutputMapType::iterator i = outputMap_.find(token);
2120 >      if (i != outputMap_.end()) {
2121 >        outputMask_.set(i->second);
2122 >      } else {
2123 >        sprintf( painCave.errMsg,
2124 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2125 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2126 >        painCave.isFatal = 0;
2127 >        painCave.severity = OPENMD_ERROR;
2128 >        simError();            
2129 >      }
2130 >    }
2131 >  }
2132 >  
2133 >  void RNEMD::writeOutputFile() {
2134 >    if (!doRNEMD_) return;
2135 >    if (!hasData_) return;
2136 >    
2137 > #ifdef IS_MPI
2138 >    // If we're the root node, should we print out the results
2139 >    int worldRank;
2140 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2141  
2142 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2143 <    Stats& stat = currentSnap_->statData;
2144 <    RealType time = currentSnap_->getTime();
2142 >    if (worldRank == 0) {
2143 > #endif
2144 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2145 >      
2146 >      if( !rnemdFile_ ){        
2147 >        sprintf( painCave.errMsg,
2148 >                 "Could not open \"%s\" for RNEMD output.\n",
2149 >                 rnemdFileName_.c_str());
2150 >        painCave.isFatal = 1;
2151 >        simError();
2152 >      }
2153  
2154 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
986 <    //or to be more meaningful, define another item as exchangeSum_ / time
987 <    int j;
2154 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2155  
2156 < #ifdef IS_MPI
2156 >      RealType time = currentSnap_->getTime();
2157 >      RealType avgArea;
2158 >      areaAccumulator_->getAverage(avgArea);
2159  
2160 <    // all processors have the same number of bins, and STL vectors pack their
2161 <    // arrays, so in theory, this should be safe:
2160 >      RealType Jz(0.0);
2161 >      Vector3d JzP(V3Zero);
2162 >      Vector3d JzL(V3Zero);
2163 >      if (time >= info_->getSimParams()->getDt()) {
2164 >        Jz = kineticExchange_ / (time * avgArea)
2165 >          / PhysicalConstants::energyConvert;
2166 >        JzP = momentumExchange_ / (time * avgArea);
2167 >        JzL = angularMomentumExchange_ / (time * avgArea);
2168 >      }
2169  
2170 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
2171 <                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2172 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
2173 <                              rnemdLogWidth_, MPI::INT, MPI::SUM);
2174 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
2175 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
2176 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005 <    }
1006 <    // If we're the root node, should we print out the results
1007 <    int worldRank = MPI::COMM_WORLD.Get_rank();
1008 <    if (worldRank == 0) {
1009 < #endif
1010 <      rnemdLog_ << time;
1011 <      for (j = 0; j < rnemdLogWidth_; j++) {
1012 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
2170 >      rnemdFile_ << "#######################################################\n";
2171 >      rnemdFile_ << "# RNEMD {\n";
2172 >
2173 >      map<string, RNEMDMethod>::iterator mi;
2174 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2175 >        if ( (*mi).second == rnemdMethod_)
2176 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2177        }
2178 <      rnemdLog_ << "\n";
2179 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
2180 <        xTempLog_ << time;      
2181 <        for (j = 0; j < rnemdLogWidth_; j++) {
2182 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
2178 >      map<string, RNEMDFluxType>::iterator fi;
2179 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2180 >        if ( (*fi).second == rnemdFluxType_)
2181 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2182 >      }
2183 >      
2184 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2185 >
2186 >      rnemdFile_ << "#    objectSelection = \""
2187 >                 << rnemdObjectSelection_ << "\";\n";
2188 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2189 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2190 >      rnemdFile_ << "# }\n";
2191 >      rnemdFile_ << "#######################################################\n";
2192 >      rnemdFile_ << "# RNEMD report:\n";      
2193 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2194 >      rnemdFile_ << "# Target flux:\n";
2195 >      rnemdFile_ << "#           kinetic = "
2196 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2197 >                 << " (kcal/mol/A^2/fs)\n";
2198 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2199 >                 << " (amu/A/fs^2)\n";
2200 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2201 >                 << " (amu/A^2/fs^2)\n";
2202 >      rnemdFile_ << "# Target one-time exchanges:\n";
2203 >      rnemdFile_ << "#          kinetic = "
2204 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2205 >                 << " (kcal/mol)\n";
2206 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2207 >                 << " (amu*A/fs)\n";
2208 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2209 >                 << " (amu*A^2/fs)\n";
2210 >      rnemdFile_ << "# Actual exchange totals:\n";
2211 >      rnemdFile_ << "#          kinetic = "
2212 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2213 >                 << " (kcal/mol)\n";
2214 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2215 >                 << " (amu*A/fs)\n";      
2216 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2217 >                 << " (amu*A^2/fs)\n";      
2218 >      rnemdFile_ << "# Actual flux:\n";
2219 >      rnemdFile_ << "#          kinetic = " << Jz
2220 >                 << " (kcal/mol/A^2/fs)\n";
2221 >      rnemdFile_ << "#          momentum = " << JzP
2222 >                 << " (amu/A/fs^2)\n";
2223 >      rnemdFile_ << "#  angular momentum = " << JzL
2224 >                 << " (amu/A^2/fs^2)\n";
2225 >      rnemdFile_ << "# Exchange statistics:\n";
2226 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2227 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2228 >      if (rnemdMethod_ == rnemdNIVS) {
2229 >        rnemdFile_ << "#  NIVS root-check errors = "
2230 >                   << failRootCount_ << "\n";
2231 >      }
2232 >      rnemdFile_ << "#######################################################\n";
2233 >      
2234 >      
2235 >      
2236 >      //write title
2237 >      rnemdFile_ << "#";
2238 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2239 >        if (outputMask_[i]) {
2240 >          rnemdFile_ << "\t" << data_[i].title <<
2241 >            "(" << data_[i].units << ")";
2242 >          // add some extra tabs for column alignment
2243 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2244          }
2245 <        xTempLog_ << "\n";
2246 <        yTempLog_ << time;
2247 <        for (j = 0; j < rnemdLogWidth_; j++) {
2248 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
2245 >      }
2246 >      rnemdFile_ << std::endl;
2247 >      
2248 >      rnemdFile_.precision(8);
2249 >      
2250 >      for (int j = 0; j < nBins_; j++) {        
2251 >        
2252 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2253 >          if (outputMask_[i]) {
2254 >            if (data_[i].dataType == "RealType")
2255 >              writeReal(i,j);
2256 >            else if (data_[i].dataType == "Vector3d")
2257 >              writeVector(i,j);
2258 >            else {
2259 >              sprintf( painCave.errMsg,
2260 >                       "RNEMD found an unknown data type for: %s ",
2261 >                       data_[i].title.c_str());
2262 >              painCave.isFatal = 1;
2263 >              simError();
2264 >            }
2265 >          }
2266          }
2267 <        yTempLog_ << "\n";
2268 <        zTempLog_ << time;
2269 <        for (j = 0; j < rnemdLogWidth_; j++) {
2270 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
2267 >        rnemdFile_ << std::endl;
2268 >        
2269 >      }        
2270 >
2271 >      rnemdFile_ << "#######################################################\n";
2272 >      rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2273 >      rnemdFile_ << "#######################################################\n";
2274 >
2275 >
2276 >      for (int j = 0; j < nBins_; j++) {        
2277 >        rnemdFile_ << "#";
2278 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2279 >          if (outputMask_[i]) {
2280 >            if (data_[i].dataType == "RealType")
2281 >              writeRealErrorBars(i,j);
2282 >            else if (data_[i].dataType == "Vector3d")
2283 >              writeVectorErrorBars(i,j);
2284 >            else {
2285 >              sprintf( painCave.errMsg,
2286 >                       "RNEMD found an unknown data type for: %s ",
2287 >                       data_[i].title.c_str());
2288 >              painCave.isFatal = 1;
2289 >              simError();
2290 >            }
2291 >          }
2292          }
2293 <        zTempLog_ << "\n";
2294 <      }
2293 >        rnemdFile_ << std::endl;
2294 >        
2295 >      }        
2296 >      
2297 >      rnemdFile_.flush();
2298 >      rnemdFile_.close();
2299 >      
2300   #ifdef IS_MPI
2301      }
2302   #endif
2303 <    for (j = 0; j < rnemdLogWidth_; j++) {
2304 <      valueCount_[j] = 0;
2305 <      valueHist_[j] = 0.0;
2303 >    
2304 >  }
2305 >  
2306 >  void RNEMD::writeReal(int index, unsigned int bin) {
2307 >    if (!doRNEMD_) return;
2308 >    assert(index >=0 && index < ENDINDEX);
2309 >    assert(int(bin) < nBins_);
2310 >    RealType s;
2311 >    int count;
2312 >    
2313 >    count = data_[index].accumulator[bin]->count();
2314 >    if (count == 0) return;
2315 >    
2316 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2317 >    
2318 >    if (! isinf(s) && ! isnan(s)) {
2319 >      rnemdFile_ << "\t" << s;
2320 >    } else{
2321 >      sprintf( painCave.errMsg,
2322 >               "RNEMD detected a numerical error writing: %s for bin %u",
2323 >               data_[index].title.c_str(), bin);
2324 >      painCave.isFatal = 1;
2325 >      simError();
2326 >    }    
2327 >  }
2328 >  
2329 >  void RNEMD::writeVector(int index, unsigned int bin) {
2330 >    if (!doRNEMD_) return;
2331 >    assert(index >=0 && index < ENDINDEX);
2332 >    assert(int(bin) < nBins_);
2333 >    Vector3d s;
2334 >    int count;
2335 >    
2336 >    count = data_[index].accumulator[bin]->count();
2337 >
2338 >    if (count == 0) return;
2339 >
2340 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2341 >    if (isinf(s[0]) || isnan(s[0]) ||
2342 >        isinf(s[1]) || isnan(s[1]) ||
2343 >        isinf(s[2]) || isnan(s[2]) ) {      
2344 >      sprintf( painCave.errMsg,
2345 >               "RNEMD detected a numerical error writing: %s for bin %u",
2346 >               data_[index].title.c_str(), bin);
2347 >      painCave.isFatal = 1;
2348 >      simError();
2349 >    } else {
2350 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2351      }
2352 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
2353 <      for (j = 0; j < rnemdLogWidth_; j++) {
2354 <        xTempHist_[j] = 0.0;
2355 <        yTempHist_[j] = 0.0;
2356 <        zTempHist_[j] = 0.0;
2357 <      }
2352 >  }  
2353 >
2354 >  void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2355 >    if (!doRNEMD_) return;
2356 >    assert(index >=0 && index < ENDINDEX);
2357 >    assert(int(bin) < nBins_);
2358 >    RealType s;
2359 >    int count;
2360 >    
2361 >    count = data_[index].accumulator[bin]->count();
2362 >    if (count == 0) return;
2363 >    
2364 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2365 >    
2366 >    if (! isinf(s) && ! isnan(s)) {
2367 >      rnemdFile_ << "\t" << s;
2368 >    } else{
2369 >      sprintf( painCave.errMsg,
2370 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2371 >               data_[index].title.c_str(), bin);
2372 >      painCave.isFatal = 1;
2373 >      simError();
2374 >    }    
2375    }
2376 +  
2377 +  void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2378 +    if (!doRNEMD_) return;
2379 +    assert(index >=0 && index < ENDINDEX);
2380 +    assert(int(bin) < nBins_);
2381 +    Vector3d s;
2382 +    int count;
2383 +    
2384 +    count = data_[index].accumulator[bin]->count();
2385 +    if (count == 0) return;
2386 +
2387 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2388 +    if (isinf(s[0]) || isnan(s[0]) ||
2389 +        isinf(s[1]) || isnan(s[1]) ||
2390 +        isinf(s[2]) || isnan(s[2]) ) {      
2391 +      sprintf( painCave.errMsg,
2392 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2393 +               data_[index].title.c_str(), bin);
2394 +      painCave.isFatal = 1;
2395 +      simError();
2396 +    } else {
2397 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2398 +    }
2399 +  }  
2400   }
2401 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines