ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 1971 by gezelter, Fri Feb 28 13:25:13 2014 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #ifdef IS_MPI
42 + #include <mpi.h>
43 + #endif
44  
45   #include <cmath>
46 < #include "integrators/RNEMD.hpp"
46 > #include <sstream>
47 > #include <string>
48 >
49 > #include "rnemd/RNEMD.hpp"
50   #include "math/Vector3.hpp"
51 + #include "math/Vector.hpp"
52   #include "math/SquareMatrix3.hpp"
53   #include "math/Polynomial.hpp"
54   #include "primitives/Molecule.hpp"
55   #include "primitives/StuntDouble.hpp"
56   #include "utils/PhysicalConstants.hpp"
57   #include "utils/Tuple.hpp"
58 + #include "brains/Thermo.hpp"
59 + #include "math/ConvexHull.hpp"
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
55 < #include "math/ParallelRandNumGen.hpp"
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68 + using namespace std;
69   namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                hasData_(false), hasDividingArea_(false),
76 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78 +    trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    int seedValue;
83 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
86 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
72 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
73 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
74 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
75 <    stringToEnumMap_["Px"] = rnemdPx;
76 <    stringToEnumMap_["Py"] = rnemdPy;
77 <    stringToEnumMap_["Pz"] = rnemdPz;
78 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
85 >    doRNEMD_ = rnemdParams->getUseRNEMD();
86 >    if (!doRNEMD_) return;
87  
88 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 <    evaluator_.loadScriptString(rnemdObjectSelection_);
90 <    seleMan_.setSelectionSet(evaluator_.evaluate());
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91  
92 <    // do some sanity checking
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109 <    int selectionCount = seleMan_.getSelectionCount();
110 <    int nIntegrable = info->getNGlobalIntegrableObjects();
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111  
112 <    if (selectionCount > nIntegrable) {
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121        sprintf(painCave.errMsg,
122 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
123 <              "\t\t%s\n"
124 <              "\thas resulted in %d selected objects.  However,\n"
125 <              "\tthe total number of integrable objects in the system\n"
126 <              "\tis only %d.  This is almost certainly not what you want\n"
127 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
128 <              "\tselector in the selection script!\n",
98 <              rnemdObjectSelection_.c_str(),
99 <              selectionCount, nIntegrable);
100 <      painCave.isFatal = 0;
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129        simError();
102
130      }
131 +
132 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 +    bool hasOutputFields = rnemdParams->haveOutputFields();
147      
148 <    const std::string st = simParams->getRNEMD_exchangeType();
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162  
163 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
164 <    i = stringToEnumMap_.find(st);
165 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
166 <    if (rnemdType_ == rnemdUnknown) {
167 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168 >      sprintf(painCave.errMsg,
169 >              "RNEMD: The current fluxType,\n"
170 >              "\t\t%s\n"
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173 >      painCave.isFatal = 1;
174 >      painCave.severity = OPENMD_ERROR;
175 >      simError();
176      }
177  
178 < #ifdef IS_MPI
179 <    if (worldRank == 0) {
180 < #endif
181 <
182 <      std::string rnemdFileName;
183 <      std::string xTempFileName;
184 <      std::string yTempFileName;
121 <      std::string zTempFileName;
122 <      switch(rnemdType_) {
123 <      case rnemdKineticSwap :
124 <      case rnemdKineticScale :
125 <        rnemdFileName = "temperature.log";
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185          break;
186 <      case rnemdPx :
187 <      case rnemdPxScale :
188 <      case rnemdPy :
189 <      case rnemdPyScale :
131 <        rnemdFileName = "momemtum.log";
132 <        xTempFileName = "temperatureX.log";
133 <        yTempFileName = "temperatureY.log";
134 <        zTempFileName = "temperatureZ.log";
135 <        xTempLog_.open(xTempFileName.c_str());
136 <        yTempLog_.open(yTempFileName.c_str());
137 <        zTempLog_.open(zTempFileName.c_str());
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190          break;
139      case rnemdPz :
140      case rnemdPzScale :
141      case rnemdUnknown :
191        default :
192 <        rnemdFileName = "rnemd.log";
192 >        methodFluxMismatch = true;
193          break;
194        }
195 <      rnemdLog_.open(rnemdFileName.c_str());
196 <
197 < #ifdef IS_MPI
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215 >      }
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258 >      }
259 >    default:
260 >      break;
261      }
150 #endif
262  
263 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
264 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
265 <    midBin_ = nBins_ / 2;
266 <    if (simParams->haveRNEMD_logWidth()) {
267 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
268 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
269 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
270 <        std::cerr << "Automaically set back to default.\n";
271 <        rnemdLogWidth_ = nBins_;
272 <      }
273 <    } else {
274 <      rnemdLogWidth_ = nBins_;
275 <    }
276 <    valueHist_.resize(rnemdLogWidth_, 0.0);
277 <    valueCount_.resize(rnemdLogWidth_, 0);
278 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
279 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
280 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284  
285 <    set_RNEMD_exchange_total(0.0);
286 <    if (simParams->haveRNEMD_targetFlux()) {
287 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290      } else {
291 <      set_RNEMD_target_flux(0.0);
291 >      kineticFlux_ = 0.0;
292 >    }
293 >    if (hasMomentumFluxVector) {
294 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
295 >    } else {
296 >      momentumFluxVector_ = V3Zero;
297 >      if (hasMomentumFlux) {
298 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
299 >        switch (rnemdFluxType_) {
300 >        case rnemdPx:
301 >          momentumFluxVector_.x() = momentumFlux;
302 >          break;
303 >        case rnemdPy:
304 >          momentumFluxVector_.y() = momentumFlux;
305 >          break;
306 >        case rnemdPz:
307 >          momentumFluxVector_.z() = momentumFlux;
308 >          break;
309 >        case rnemdKePx:
310 >          momentumFluxVector_.x() = momentumFlux;
311 >          break;
312 >        case rnemdKePy:
313 >          momentumFluxVector_.y() = momentumFlux;
314 >          break;
315 >        default:
316 >          break;
317 >        }
318 >      }
319 >      if (hasAngularMomentumFluxVector) {
320 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321 >      } else {
322 >        angularMomentumFluxVector_ = V3Zero;
323 >        if (hasAngularMomentumFlux) {
324 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325 >          switch (rnemdFluxType_) {
326 >          case rnemdLx:
327 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
328 >            break;
329 >          case rnemdLy:
330 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
331 >            break;
332 >          case rnemdLz:
333 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
334 >            break;
335 >          case rnemdKeLx:
336 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
337 >            break;
338 >          case rnemdKeLy:
339 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
340 >            break;
341 >          case rnemdKeLz:
342 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
343 >            break;
344 >          default:
345 >            break;
346 >          }
347 >        }        
348 >      }
349 >
350 >      if (hasCoordinateOrigin) {
351 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352 >      } else {
353 >        coordinateOrigin_ = V3Zero;
354 >      }
355 >
356 >      // do some sanity checking
357 >
358 >      int selectionCount = seleMan_.getSelectionCount();
359 >
360 >      int nIntegrable = info->getNGlobalIntegrableObjects();
361 >
362 >      if (selectionCount > nIntegrable) {
363 >        sprintf(painCave.errMsg,
364 >                "RNEMD: The current objectSelection,\n"
365 >                "\t\t%s\n"
366 >                "\thas resulted in %d selected objects.  However,\n"
367 >                "\tthe total number of integrable objects in the system\n"
368 >                "\tis only %d.  This is almost certainly not what you want\n"
369 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
370 >                "\tselector in the selection script!\n",
371 >                rnemdObjectSelection_.c_str(),
372 >                selectionCount, nIntegrable);
373 >        painCave.isFatal = 0;
374 >        painCave.severity = OPENMD_WARNING;
375 >        simError();
376 >      }
377 >
378 >      areaAccumulator_ = new Accumulator();
379 >
380 >      nBins_ = rnemdParams->getOutputBins();
381 >      binWidth_ = rnemdParams->getOutputBinWidth();
382 >
383 >      data_.resize(RNEMD::ENDINDEX);
384 >      OutputData z;
385 >      z.units =  "Angstroms";
386 >      z.title =  "Z";
387 >      z.dataType = "RealType";
388 >      z.accumulator.reserve(nBins_);
389 >      for (int i = 0; i < nBins_; i++)
390 >        z.accumulator.push_back( new Accumulator() );
391 >      data_[Z] = z;
392 >      outputMap_["Z"] =  Z;
393 >
394 >      OutputData r;
395 >      r.units =  "Angstroms";
396 >      r.title =  "R";
397 >      r.dataType = "RealType";
398 >      r.accumulator.reserve(nBins_);
399 >      for (int i = 0; i < nBins_; i++)
400 >        r.accumulator.push_back( new Accumulator() );
401 >      data_[R] = r;
402 >      outputMap_["R"] =  R;
403 >
404 >      OutputData temperature;
405 >      temperature.units =  "K";
406 >      temperature.title =  "Temperature";
407 >      temperature.dataType = "RealType";
408 >      temperature.accumulator.reserve(nBins_);
409 >      for (int i = 0; i < nBins_; i++)
410 >        temperature.accumulator.push_back( new Accumulator() );
411 >      data_[TEMPERATURE] = temperature;
412 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
413 >
414 >      OutputData velocity;
415 >      velocity.units = "angstroms/fs";
416 >      velocity.title =  "Velocity";  
417 >      velocity.dataType = "Vector3d";
418 >      velocity.accumulator.reserve(nBins_);
419 >      for (int i = 0; i < nBins_; i++)
420 >        velocity.accumulator.push_back( new VectorAccumulator() );
421 >      data_[VELOCITY] = velocity;
422 >      outputMap_["VELOCITY"] = VELOCITY;
423 >
424 >      OutputData angularVelocity;
425 >      angularVelocity.units = "angstroms^2/fs";
426 >      angularVelocity.title =  "AngularVelocity";  
427 >      angularVelocity.dataType = "Vector3d";
428 >      angularVelocity.accumulator.reserve(nBins_);
429 >      for (int i = 0; i < nBins_; i++)
430 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 >      data_[ANGULARVELOCITY] = angularVelocity;
432 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433 >
434 >      OutputData density;
435 >      density.units =  "g cm^-3";
436 >      density.title =  "Density";
437 >      density.dataType = "RealType";
438 >      density.accumulator.reserve(nBins_);
439 >      for (int i = 0; i < nBins_; i++)
440 >        density.accumulator.push_back( new Accumulator() );
441 >      data_[DENSITY] = density;
442 >      outputMap_["DENSITY"] =  DENSITY;
443 >
444 >      if (hasOutputFields) {
445 >        parseOutputFileFormat(rnemdParams->getOutputFields());
446 >      } else {
447 >        if (usePeriodicBoundaryConditions_)
448 >          outputMask_.set(Z);
449 >        else
450 >          outputMask_.set(R);
451 >        switch (rnemdFluxType_) {
452 >        case rnemdKE:
453 >        case rnemdRotKE:
454 >        case rnemdFullKE:
455 >          outputMask_.set(TEMPERATURE);
456 >          break;
457 >        case rnemdPx:
458 >        case rnemdPy:
459 >          outputMask_.set(VELOCITY);
460 >          break;
461 >        case rnemdPz:        
462 >        case rnemdPvector:
463 >          outputMask_.set(VELOCITY);
464 >          outputMask_.set(DENSITY);
465 >          break;
466 >        case rnemdLx:
467 >        case rnemdLy:
468 >        case rnemdLz:
469 >        case rnemdLvector:
470 >          outputMask_.set(ANGULARVELOCITY);
471 >          break;
472 >        case rnemdKeLx:
473 >        case rnemdKeLy:
474 >        case rnemdKeLz:
475 >        case rnemdKeLvector:
476 >          outputMask_.set(TEMPERATURE);
477 >          outputMask_.set(ANGULARVELOCITY);
478 >          break;
479 >        case rnemdKePx:
480 >        case rnemdKePy:
481 >          outputMask_.set(TEMPERATURE);
482 >          outputMask_.set(VELOCITY);
483 >          break;
484 >        case rnemdKePvector:
485 >          outputMask_.set(TEMPERATURE);
486 >          outputMask_.set(VELOCITY);
487 >          outputMask_.set(DENSITY);        
488 >          break;
489 >        default:
490 >          break;
491 >        }
492 >      }
493 >      
494 >      if (hasOutputFileName) {
495 >        rnemdFileName_ = rnemdParams->getOutputFileName();
496 >      } else {
497 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498 >      }          
499 >
500 >      exchangeTime_ = rnemdParams->getExchangeTime();
501 >
502 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503 >      // total exchange sums are zeroed out at the beginning:
504 >
505 >      kineticExchange_ = 0.0;
506 >      momentumExchange_ = V3Zero;
507 >      angularMomentumExchange_ = V3Zero;
508 >
509 >      std::ostringstream selectionAstream;
510 >      std::ostringstream selectionBstream;
511 >    
512 >      if (hasSelectionA_) {
513 >        selectionA_ = rnemdParams->getSelectionA();
514 >      } else {
515 >        if (usePeriodicBoundaryConditions_) {    
516 >          Mat3x3d hmat = currentSnap_->getHmat();
517 >        
518 >          if (hasSlabWidth)
519 >            slabWidth_ = rnemdParams->getSlabWidth();
520 >          else
521 >            slabWidth_ = hmat(2,2) / 10.0;
522 >        
523 >          if (hasSlabACenter)
524 >            slabACenter_ = rnemdParams->getSlabACenter();
525 >          else
526 >            slabACenter_ = 0.0;
527 >        
528 >          selectionAstream << "select wrappedz > "
529 >                           << slabACenter_ - 0.5*slabWidth_
530 >                           <<  " && wrappedz < "
531 >                           << slabACenter_ + 0.5*slabWidth_;
532 >          selectionA_ = selectionAstream.str();
533 >        } else {
534 >          if (hasSphereARadius)
535 >            sphereARadius_ = rnemdParams->getSphereARadius();
536 >          else {
537 >            // use an initial guess to the size of the inner slab to be 1/10 the
538 >            // radius of an approximately spherical hull:
539 >            Thermo thermo(info);
540 >            RealType hVol = thermo.getHullVolume();
541 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542 >          }
543 >          selectionAstream << "select r < " << sphereARadius_;
544 >          selectionA_ = selectionAstream.str();
545 >        }
546 >      }
547 >    
548 >      if (hasSelectionB_) {
549 >        selectionB_ = rnemdParams->getSelectionB();
550 >
551 >      } else {
552 >        if (usePeriodicBoundaryConditions_) {    
553 >          Mat3x3d hmat = currentSnap_->getHmat();
554 >        
555 >          if (hasSlabWidth)
556 >            slabWidth_ = rnemdParams->getSlabWidth();
557 >          else
558 >            slabWidth_ = hmat(2,2) / 10.0;
559 >        
560 >          if (hasSlabBCenter)
561 >            slabBCenter_ = rnemdParams->getSlabBCenter();
562 >          else
563 >            slabBCenter_ = hmat(2,2) / 2.0;
564 >        
565 >          selectionBstream << "select wrappedz > "
566 >                           << slabBCenter_ - 0.5*slabWidth_
567 >                           <<  " && wrappedz < "
568 >                           << slabBCenter_ + 0.5*slabWidth_;
569 >          selectionB_ = selectionBstream.str();
570 >        } else {
571 >          if (hasSphereBRadius_) {
572 >            sphereBRadius_ = rnemdParams->getSphereBRadius();
573 >            selectionBstream << "select r > " << sphereBRadius_;
574 >            selectionB_ = selectionBstream.str();
575 >          } else {
576 >            selectionB_ = "select hull";
577 >            BisHull_ = true;
578 >            hasSelectionB_ = true;
579 >          }
580 >        }
581 >      }
582      }
583  
584 < #ifndef IS_MPI
585 <    if (simParams->haveSeed()) {
586 <      seedValue = simParams->getSeed();
587 <      randNumGen_ = new SeqRandNumGen(seedValue);
588 <    }else {
589 <      randNumGen_ = new SeqRandNumGen();
590 <    }    
591 < #else
592 <    if (simParams->haveSeed()) {
187 <      seedValue = simParams->getSeed();
188 <      randNumGen_ = new ParallelRandNumGen(seedValue);
189 <    }else {
190 <      randNumGen_ = new ParallelRandNumGen();
191 <    }    
192 < #endif
584 >    // object evaluator:
585 >    evaluator_.loadScriptString(rnemdObjectSelection_);
586 >    seleMan_.setSelectionSet(evaluator_.evaluate());
587 >    evaluatorA_.loadScriptString(selectionA_);
588 >    evaluatorB_.loadScriptString(selectionB_);
589 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
590 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
591 >    commonA_ = seleManA_ & seleMan_;
592 >    commonB_ = seleManB_ & seleMan_;  
593    }
594    
195  RNEMD::~RNEMD() {
196    delete randNumGen_;
595      
596 +  RNEMD::~RNEMD() {
597 +    if (!doRNEMD_) return;
598   #ifdef IS_MPI
599      if (worldRank == 0) {
600   #endif
601 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
602 <      rnemdLog_.close();
603 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
604 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
605 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
206 <        xTempLog_.close();
207 <        yTempLog_.close();
208 <        zTempLog_.close();
209 <      }
601 >
602 >      writeOutputFile();
603 >
604 >      rnemdFile_.close();
605 >      
606   #ifdef IS_MPI
607      }
608   #endif
609 +
610 +    // delete all of the objects we created:
611 +    delete areaAccumulator_;    
612 +    data_.clear();
613    }
614 +  
615 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
616 +    if (!doRNEMD_) return;
617 +    int selei;
618 +    int selej;
619  
215  void RNEMD::doSwap() {
216
620      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
621      Mat3x3d hmat = currentSnap_->getHmat();
622  
220    seleMan_.setSelectionSet(evaluator_.evaluate());
221
222    int selei;
623      StuntDouble* sd;
224    int idx;
624  
625      RealType min_val;
626 <    bool min_found = false;  
626 >    int min_found = 0;  
627      StuntDouble* min_sd;
628  
629      RealType max_val;
630 <    bool max_found = false;
630 >    int max_found = 0;
631      StuntDouble* max_sd;
632  
633 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
634 <         sd = seleMan_.nextSelected(selei)) {
633 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
634 >         sd = seleManA_.nextSelected(selei)) {
635  
237      idx = sd->getLocalIndex();
238
636        Vector3d pos = sd->getPos();
637 <
637 >      
638        // wrap the stuntdouble's position back into the box:
639 <
639 >      
640        if (usePeriodicBoundaryConditions_)
641          currentSnap_->wrapVector(pos);
642 <
643 <      // which bin is this stuntdouble in?
644 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
645 <
646 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
647 <
648 <
252 <      // if we're in bin 0 or the middleBin
253 <      if (binNo == 0 || binNo == midBin_) {
642 >      
643 >      RealType mass = sd->getMass();
644 >      Vector3d vel = sd->getVel();
645 >      RealType value;
646 >      
647 >      switch(rnemdFluxType_) {
648 >      case rnemdKE :
649          
650 <        RealType mass = sd->getMass();
651 <        Vector3d vel = sd->getVel();
652 <        RealType value;
653 <
654 <        switch(rnemdType_) {
260 <        case rnemdKineticSwap :
650 >        value = mass * vel.lengthSquare();
651 >        
652 >        if (sd->isDirectional()) {
653 >          Vector3d angMom = sd->getJ();
654 >          Mat3x3d I = sd->getI();
655            
656 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
657 <                          vel[2]*vel[2]);
658 <          if (sd->isDirectional()) {
659 <            Vector3d angMom = sd->getJ();
660 <            Mat3x3d I = sd->getI();
661 <            
662 <            if (sd->isLinear()) {
663 <              int i = sd->linearAxis();
664 <              int j = (i + 1) % 3;
665 <              int k = (i + 2) % 3;
272 <              value += angMom[j] * angMom[j] / I(j, j) +
273 <                angMom[k] * angMom[k] / I(k, k);
274 <            } else {                        
275 <              value += angMom[0]*angMom[0]/I(0, 0)
276 <                + angMom[1]*angMom[1]/I(1, 1)
277 <                + angMom[2]*angMom[2]/I(2, 2);
278 <            }
656 >          if (sd->isLinear()) {
657 >            int i = sd->linearAxis();
658 >            int j = (i + 1) % 3;
659 >            int k = (i + 2) % 3;
660 >            value += angMom[j] * angMom[j] / I(j, j) +
661 >              angMom[k] * angMom[k] / I(k, k);
662 >          } else {                        
663 >            value += angMom[0]*angMom[0]/I(0, 0)
664 >              + angMom[1]*angMom[1]/I(1, 1)
665 >              + angMom[2]*angMom[2]/I(2, 2);
666            }
667 <          //make exchangeSum_ comparable between swap & scale
668 <          //temporarily without using energyConvert
669 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
670 <          value *= 0.5;
671 <          break;
672 <        case rnemdPx :
673 <          value = mass * vel[0];
674 <          break;
675 <        case rnemdPy :
676 <          value = mass * vel[1];
677 <          break;
678 <        case rnemdPz :
679 <          value = mass * vel[2];
680 <          break;
681 <        default :
682 <          break;
667 >        } //angular momenta exchange enabled
668 >        value *= 0.5;
669 >        break;
670 >      case rnemdPx :
671 >        value = mass * vel[0];
672 >        break;
673 >      case rnemdPy :
674 >        value = mass * vel[1];
675 >        break;
676 >      case rnemdPz :
677 >        value = mass * vel[2];
678 >        break;
679 >      default :
680 >        break;
681 >      }
682 >      if (!max_found) {
683 >        max_val = value;
684 >        max_sd = sd;
685 >        max_found = 1;
686 >      } else {
687 >        if (max_val < value) {
688 >          max_val = value;
689 >          max_sd = sd;
690          }
691 +      }  
692 +    }
693          
694 <        if (binNo == 0) {
695 <          if (!min_found) {
696 <            min_val = value;
697 <            min_sd = sd;
698 <            min_found = true;
699 <          } else {
700 <            if (min_val > value) {
701 <              min_val = value;
702 <              min_sd = sd;
703 <            }
704 <          }
705 <        } else { //midBin_
706 <          if (!max_found) {
707 <            max_val = value;
708 <            max_sd = sd;
709 <            max_found = true;
710 <          } else {
711 <            if (max_val < value) {
712 <              max_val = value;
713 <              max_sd = sd;
714 <            }
715 <          }      
716 <        }
694 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
695 >         sd = seleManB_.nextSelected(selej)) {
696 >
697 >      Vector3d pos = sd->getPos();
698 >      
699 >      // wrap the stuntdouble's position back into the box:
700 >      
701 >      if (usePeriodicBoundaryConditions_)
702 >        currentSnap_->wrapVector(pos);
703 >      
704 >      RealType mass = sd->getMass();
705 >      Vector3d vel = sd->getVel();
706 >      RealType value;
707 >      
708 >      switch(rnemdFluxType_) {
709 >      case rnemdKE :
710 >        
711 >        value = mass * vel.lengthSquare();
712 >        
713 >        if (sd->isDirectional()) {
714 >          Vector3d angMom = sd->getJ();
715 >          Mat3x3d I = sd->getI();
716 >          
717 >          if (sd->isLinear()) {
718 >            int i = sd->linearAxis();
719 >            int j = (i + 1) % 3;
720 >            int k = (i + 2) % 3;
721 >            value += angMom[j] * angMom[j] / I(j, j) +
722 >              angMom[k] * angMom[k] / I(k, k);
723 >          } else {                        
724 >            value += angMom[0]*angMom[0]/I(0, 0)
725 >              + angMom[1]*angMom[1]/I(1, 1)
726 >              + angMom[2]*angMom[2]/I(2, 2);
727 >          }
728 >        } //angular momenta exchange enabled
729 >        value *= 0.5;
730 >        break;
731 >      case rnemdPx :
732 >        value = mass * vel[0];
733 >        break;
734 >      case rnemdPy :
735 >        value = mass * vel[1];
736 >        break;
737 >      case rnemdPz :
738 >        value = mass * vel[2];
739 >        break;
740 >      default :
741 >        break;
742        }
743 +      
744 +      if (!min_found) {
745 +        min_val = value;
746 +        min_sd = sd;
747 +        min_found = 1;
748 +      } else {
749 +        if (min_val > value) {
750 +          min_val = value;
751 +          min_sd = sd;
752 +        }
753 +      }
754      }
755 +    
756 + #ifdef IS_MPI    
757 +    int worldRank;
758 +    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
759 +        
760 +    int my_min_found = min_found;
761 +    int my_max_found = max_found;
762  
324 #ifdef IS_MPI
325    int nProc, worldRank;
326
327    nProc = MPI::COMM_WORLD.Get_size();
328    worldRank = MPI::COMM_WORLD.Get_rank();
329
330    bool my_min_found = min_found;
331    bool my_max_found = max_found;
332
763      // Even if we didn't find a minimum, did someone else?
764 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
765 <                              1, MPI::BOOL, MPI::LAND);
336 <    
764 >    MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
765 >                  MPI_COMM_WORLD);
766      // Even if we didn't find a maximum, did someone else?
767 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
768 <                              1, MPI::BOOL, MPI::LAND);
769 <    
770 <    struct {
771 <      RealType val;
772 <      int rank;
773 <    } max_vals, min_vals;
774 <    
775 <    if (min_found) {
776 <      if (my_min_found)
767 >    MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
768 >                  MPI_COMM_WORLD);
769 > #endif
770 >
771 >    if (max_found && min_found) {
772 >
773 > #ifdef IS_MPI
774 >      struct {
775 >        RealType val;
776 >        int rank;
777 >      } max_vals, min_vals;
778 >      
779 >      if (my_min_found) {
780          min_vals.val = min_val;
781 <      else
781 >      } else {
782          min_vals.val = HONKING_LARGE_VALUE;
783 <      
783 >      }
784        min_vals.rank = worldRank;    
785        
786        // Who had the minimum?
787 <      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
788 <                                1, MPI::REALTYPE_INT, MPI::MINLOC);
787 >      MPI_Allreduce(&min_vals, &min_vals,
788 >                    1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
789        min_val = min_vals.val;
358    }
790        
791 <    if (max_found) {
361 <      if (my_max_found)
791 >      if (my_max_found) {
792          max_vals.val = max_val;
793 <      else
793 >      } else {
794          max_vals.val = -HONKING_LARGE_VALUE;
795 <      
795 >      }
796        max_vals.rank = worldRank;    
797        
798        // Who had the maximum?
799 <      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
800 <                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
799 >      MPI_Allreduce(&max_vals, &max_vals,
800 >                    1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
801        max_val = max_vals.val;
372    }
802   #endif
803 <
804 <    if (max_found && min_found) {
805 <      if (min_val< max_val) {
377 <
803 >      
804 >      if (min_val < max_val) {
805 >        
806   #ifdef IS_MPI      
807          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
808            // I have both maximum and minimum, so proceed like a single
809            // processor version:
810   #endif
811 <          // objects to be swapped: velocity & angular velocity
811 >
812            Vector3d min_vel = min_sd->getVel();
813            Vector3d max_vel = max_sd->getVel();
814            RealType temp_vel;
815            
816 <          switch(rnemdType_) {
817 <          case rnemdKineticSwap :
816 >          switch(rnemdFluxType_) {
817 >          case rnemdKE :
818              min_sd->setVel(max_vel);
819              max_sd->setVel(min_vel);
820 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
820 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
821                Vector3d min_angMom = min_sd->getJ();
822                Vector3d max_angMom = max_sd->getJ();
823                min_sd->setJ(max_angMom);
824                max_sd->setJ(min_angMom);
825 <            }
825 >            }//angular momenta exchange enabled
826 >            //assumes same rigid body identity
827              break;
828            case rnemdPx :
829              temp_vel = min_vel.x();
# Line 420 | Line 849 | namespace OpenMD {
849            default :
850              break;
851            }
852 +
853   #ifdef IS_MPI
854            // the rest of the cases only apply in parallel simulations:
855          } else if (max_vals.rank == worldRank) {
# Line 427 | Line 857 | namespace OpenMD {
857            
858            Vector3d min_vel;
859            Vector3d max_vel = max_sd->getVel();
860 <          MPI::Status status;
860 >          MPI_Status* status;
861  
862            // point-to-point swap of the velocity vector
863 <          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
864 <                                   min_vals.rank, 0,
865 <                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
866 <                                   min_vals.rank, 0, status);
863 >          MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
864 >                       min_vals.rank, 0,
865 >                       min_vel.getArrayPointer(), 3, MPI_REALTYPE,
866 >                       min_vals.rank, 0, MPI_COMM_WORLD, status);
867            
868 <          switch(rnemdType_) {
869 <          case rnemdKineticSwap :
868 >          switch(rnemdFluxType_) {
869 >          case rnemdKE :
870              max_sd->setVel(min_vel);
871 <            
871 >            //angular momenta exchange enabled
872              if (max_sd->isDirectional()) {
873                Vector3d min_angMom;
874                Vector3d max_angMom = max_sd->getJ();
875 <
875 >              
876                // point-to-point swap of the angular momentum vector
877 <              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
878 <                                       MPI::REALTYPE, min_vals.rank, 1,
879 <                                       min_angMom.getArrayPointer(), 3,
880 <                                       MPI::REALTYPE, min_vals.rank, 1,
881 <                                       status);
882 <
877 >              MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
878 >                           MPI_REALTYPE, min_vals.rank, 1,
879 >                           min_angMom.getArrayPointer(), 3,
880 >                           MPI_REALTYPE, min_vals.rank, 1,
881 >                           MPI_COMM_WORLD, status);
882 >              
883                max_sd->setJ(min_angMom);
884 <            }
884 >            }
885              break;
886            case rnemdPx :
887              max_vel.x() = min_vel.x();
# Line 473 | Line 903 | namespace OpenMD {
903            
904            Vector3d max_vel;
905            Vector3d min_vel = min_sd->getVel();
906 <          MPI::Status status;
906 >          MPI_Status* status;
907            
908            // point-to-point swap of the velocity vector
909 <          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
910 <                                   max_vals.rank, 0,
911 <                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
912 <                                   max_vals.rank, 0, status);
909 >          MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
910 >                       max_vals.rank, 0,
911 >                       max_vel.getArrayPointer(), 3, MPI_REALTYPE,
912 >                       max_vals.rank, 0, MPI_COMM_WORLD, status);
913            
914 <          switch(rnemdType_) {
915 <          case rnemdKineticSwap :
914 >          switch(rnemdFluxType_) {
915 >          case rnemdKE :
916              min_sd->setVel(max_vel);
917 <            
917 >            //angular momenta exchange enabled
918              if (min_sd->isDirectional()) {
919                Vector3d min_angMom = min_sd->getJ();
920                Vector3d max_angMom;
921 <
921 >              
922                // point-to-point swap of the angular momentum vector
923 <              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
924 <                                       MPI::REALTYPE, max_vals.rank, 1,
925 <                                       max_angMom.getArrayPointer(), 3,
926 <                                       MPI::REALTYPE, max_vals.rank, 1,
927 <                                       status);
928 <
923 >              MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
924 >                           MPI_REALTYPE, max_vals.rank, 1,
925 >                           max_angMom.getArrayPointer(), 3,
926 >                           MPI_REALTYPE, max_vals.rank, 1,
927 >                           MPI_COMM_WORLD, status);
928 >              
929                min_sd->setJ(max_angMom);
930              }
931              break;
# Line 516 | Line 946 | namespace OpenMD {
946            }
947          }
948   #endif
949 <        exchangeSum_ += max_val - min_val;
950 <      } else {
951 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
949 >        
950 >        switch(rnemdFluxType_) {
951 >        case rnemdKE:
952 >          kineticExchange_ += max_val - min_val;
953 >          break;
954 >        case rnemdPx:
955 >          momentumExchange_.x() += max_val - min_val;
956 >          break;
957 >        case rnemdPy:
958 >          momentumExchange_.y() += max_val - min_val;
959 >          break;
960 >        case rnemdPz:
961 >          momentumExchange_.z() += max_val - min_val;
962 >          break;
963 >        default:
964 >          break;
965 >        }
966 >      } else {        
967 >        sprintf(painCave.errMsg,
968 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
969 >        painCave.isFatal = 0;
970 >        painCave.severity = OPENMD_INFO;
971 >        simError();        
972          failTrialCount_++;
973        }
974      } else {
975 <      std::cerr << "exchange NOT performed!\n";
976 <      std::cerr << "at least one of the two slabs empty.\n";
975 >      sprintf(painCave.errMsg,
976 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
977 >              "\twas not present in at least one of the two slabs.\n");
978 >      painCave.isFatal = 0;
979 >      painCave.severity = OPENMD_INFO;
980 >      simError();        
981        failTrialCount_++;
982 <    }
529 <    
982 >    }    
983    }
984    
985 <  void RNEMD::doScale() {
985 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
986 >    if (!doRNEMD_) return;
987 >    int selei;
988 >    int selej;
989  
990      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
991 +    RealType time = currentSnap_->getTime();    
992      Mat3x3d hmat = currentSnap_->getHmat();
993  
537    seleMan_.setSelectionSet(evaluator_.evaluate());
538
539    int selei;
994      StuntDouble* sd;
541    int idx;
995  
996 <    std::vector<StuntDouble*> hotBin, coldBin;
996 >    vector<StuntDouble*> hotBin, coldBin;
997  
998      RealType Phx = 0.0;
999      RealType Phy = 0.0;
# Line 548 | Line 1001 | namespace OpenMD {
1001      RealType Khx = 0.0;
1002      RealType Khy = 0.0;
1003      RealType Khz = 0.0;
1004 +    RealType Khw = 0.0;
1005      RealType Pcx = 0.0;
1006      RealType Pcy = 0.0;
1007      RealType Pcz = 0.0;
1008      RealType Kcx = 0.0;
1009      RealType Kcy = 0.0;
1010      RealType Kcz = 0.0;
1011 +    RealType Kcw = 0.0;
1012  
1013 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1014 <         sd = seleMan_.nextSelected(selei)) {
1013 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1014 >         sd = smanA.nextSelected(selei)) {
1015  
561      idx = sd->getLocalIndex();
562
1016        Vector3d pos = sd->getPos();
1017 <
1017 >      
1018        // wrap the stuntdouble's position back into the box:
1019 <
1019 >      
1020        if (usePeriodicBoundaryConditions_)
1021          currentSnap_->wrapVector(pos);
1022 <
1023 <      // which bin is this stuntdouble in?
1024 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1025 <
1026 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1027 <
1028 <      // if we're in bin 0 or the middleBin
1029 <      if (binNo == 0 || binNo == midBin_) {
1030 <        
1031 <        RealType mass = sd->getMass();
1032 <        Vector3d vel = sd->getVel();
1033 <      
1034 <        if (binNo == 0) {
1035 <          hotBin.push_back(sd);
1036 <          Phx += mass * vel.x();
1037 <          Phy += mass * vel.y();
1038 <          Phz += mass * vel.z();
1039 <          Khx += mass * vel.x() * vel.x();
1040 <          Khy += mass * vel.y() * vel.y();
1041 <          Khz += mass * vel.z() * vel.z();
1042 <        } else { //midBin_
1043 <          coldBin.push_back(sd);
1044 <          Pcx += mass * vel.x();
1045 <          Pcy += mass * vel.y();
1046 <          Pcz += mass * vel.z();
1047 <          Kcx += mass * vel.x() * vel.x();
595 <          Kcy += mass * vel.y() * vel.y();
596 <          Kcz += mass * vel.z() * vel.z();
597 <        }
1022 >      
1023 >      
1024 >      RealType mass = sd->getMass();
1025 >      Vector3d vel = sd->getVel();
1026 >      
1027 >      hotBin.push_back(sd);
1028 >      Phx += mass * vel.x();
1029 >      Phy += mass * vel.y();
1030 >      Phz += mass * vel.z();
1031 >      Khx += mass * vel.x() * vel.x();
1032 >      Khy += mass * vel.y() * vel.y();
1033 >      Khz += mass * vel.z() * vel.z();
1034 >      if (sd->isDirectional()) {
1035 >        Vector3d angMom = sd->getJ();
1036 >        Mat3x3d I = sd->getI();
1037 >        if (sd->isLinear()) {
1038 >          int i = sd->linearAxis();
1039 >          int j = (i + 1) % 3;
1040 >          int k = (i + 2) % 3;
1041 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1042 >            angMom[k] * angMom[k] / I(k, k);
1043 >        } else {
1044 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1045 >            + angMom[1]*angMom[1]/I(1, 1)
1046 >            + angMom[2]*angMom[2]/I(2, 2);
1047 >        }
1048        }
1049      }
1050 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1051 +         sd = smanB.nextSelected(selej)) {
1052 +      Vector3d pos = sd->getPos();
1053 +      
1054 +      // wrap the stuntdouble's position back into the box:
1055 +      
1056 +      if (usePeriodicBoundaryConditions_)
1057 +        currentSnap_->wrapVector(pos);
1058 +            
1059 +      RealType mass = sd->getMass();
1060 +      Vector3d vel = sd->getVel();
1061  
1062 +      coldBin.push_back(sd);
1063 +      Pcx += mass * vel.x();
1064 +      Pcy += mass * vel.y();
1065 +      Pcz += mass * vel.z();
1066 +      Kcx += mass * vel.x() * vel.x();
1067 +      Kcy += mass * vel.y() * vel.y();
1068 +      Kcz += mass * vel.z() * vel.z();
1069 +      if (sd->isDirectional()) {
1070 +        Vector3d angMom = sd->getJ();
1071 +        Mat3x3d I = sd->getI();
1072 +        if (sd->isLinear()) {
1073 +          int i = sd->linearAxis();
1074 +          int j = (i + 1) % 3;
1075 +          int k = (i + 2) % 3;
1076 +          Kcw += angMom[j] * angMom[j] / I(j, j) +
1077 +            angMom[k] * angMom[k] / I(k, k);
1078 +        } else {
1079 +          Kcw += angMom[0]*angMom[0]/I(0, 0)
1080 +            + angMom[1]*angMom[1]/I(1, 1)
1081 +            + angMom[2]*angMom[2]/I(2, 2);
1082 +        }
1083 +      }
1084 +    }
1085 +    
1086      Khx *= 0.5;
1087      Khy *= 0.5;
1088      Khz *= 0.5;
1089 +    Khw *= 0.5;
1090      Kcx *= 0.5;
1091      Kcy *= 0.5;
1092      Kcz *= 0.5;
1093 +    Kcw *= 0.5;
1094  
1095   #ifdef IS_MPI
1096 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1097 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1098 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1099 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1100 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1101 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1096 >    MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1097 >    MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1098 >    MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1099 >    MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1100 >    MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1101 >    MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1102  
1103 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1104 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1105 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1106 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1107 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1108 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1103 >    MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1104 >    MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1105 >    MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1106 >    MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1107 >
1108 >    MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1109 >    MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1110 >    MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1111 >    MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1112   #endif
1113  
1114 <    //use coldBin coeff's
1114 >    //solve coldBin coeff's first
1115      RealType px = Pcx / Phx;
1116      RealType py = Pcy / Phy;
1117      RealType pz = Pcz / Phz;
1118 +    RealType c, x, y, z;
1119 +    bool successfulScale = false;
1120 +    if ((rnemdFluxType_ == rnemdFullKE) ||
1121 +        (rnemdFluxType_ == rnemdRotKE)) {
1122 +      //may need sanity check Khw & Kcw > 0
1123  
1124 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
1125 <    switch(rnemdType_) {
1126 <    case rnemdKineticScale :
1127 <    /*used hotBin coeff's & only scale x & y dimensions
1128 <      RealType px = Phx / Pcx;
634 <      RealType py = Phy / Pcy;
635 <      a110 = Khy;
636 <      c0 = - Khx - Khy - targetFlux_;
637 <      a000 = Khx;
638 <      a111 = Kcy * py * py
639 <      b11 = -2.0 * Kcy * py * (1.0 + py);
640 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
641 <      b01 = -2.0 * Kcx * px * (1.0 + px);
642 <      a001 = Kcx * px * px;
643 <    */
1124 >      if (rnemdFluxType_ == rnemdFullKE) {
1125 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1126 >      } else {
1127 >        c = 1.0 - kineticTarget_ / Kcw;
1128 >      }
1129  
1130 <      //scale all three dimensions, let c_x = c_y
1131 <      a000 = Kcx + Kcy;
1132 <      a110 = Kcz;
1133 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
1134 <      a001 = Khx * px * px + Khy * py * py;
1135 <      a111 = Khz * pz * pz;
1136 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1137 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1138 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1139 <         + Khz * pz * (2.0 + pz) - targetFlux_;
1140 <      break;
1141 <    case rnemdPxScale :
1142 <      c = 1 - targetFlux_ / Pcx;
1143 <      a000 = Kcy;
1144 <      a110 = Kcz;
1145 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1146 <      a001 = py * py * Khy;
1147 <      a111 = pz * pz * Khz;
1148 <      b01 = -2.0 * Khy * py * (1.0 + py);
1149 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1150 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1151 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1152 <      break;
1153 <    case rnemdPyScale :
1154 <      c = 1 - targetFlux_ / Pcy;
1155 <      a000 = Kcx;
1156 <      a110 = Kcz;
1157 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1158 <      a001 = px * px * Khx;
1159 <      a111 = pz * pz * Khz;
1160 <      b01 = -2.0 * Khx * px * (1.0 + px);
1161 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1162 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1163 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1130 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1131 >        c = sqrt(c);
1132 >
1133 >        RealType w = 0.0;
1134 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1135 >          x = 1.0 + px * (1.0 - c);
1136 >          y = 1.0 + py * (1.0 - c);
1137 >          z = 1.0 + pz * (1.0 - c);
1138 >          /* more complicated way
1139 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1140 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1141 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1142 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1143 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1144 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1145 >          */
1146 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1147 >              (fabs(z - 1.0) < 0.1)) {
1148 >            w = 1.0 + (kineticTarget_
1149 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1150 >                       + Khz * (1.0 - z * z)) / Khw;
1151 >          }//no need to calculate w if x, y or z is out of range
1152 >        } else {
1153 >          w = 1.0 + kineticTarget_ / Khw;
1154 >        }
1155 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1156 >          //if w is in the right range, so should be x, y, z.
1157 >          vector<StuntDouble*>::iterator sdi;
1158 >          Vector3d vel;
1159 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1160 >            if (rnemdFluxType_ == rnemdFullKE) {
1161 >              vel = (*sdi)->getVel() * c;
1162 >              (*sdi)->setVel(vel);
1163 >            }
1164 >            if ((*sdi)->isDirectional()) {
1165 >              Vector3d angMom = (*sdi)->getJ() * c;
1166 >              (*sdi)->setJ(angMom);
1167 >            }
1168 >          }
1169 >          w = sqrt(w);
1170 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1171 >            if (rnemdFluxType_ == rnemdFullKE) {
1172 >              vel = (*sdi)->getVel();
1173 >              vel.x() *= x;
1174 >              vel.y() *= y;
1175 >              vel.z() *= z;
1176 >              (*sdi)->setVel(vel);
1177 >            }
1178 >            if ((*sdi)->isDirectional()) {
1179 >              Vector3d angMom = (*sdi)->getJ() * w;
1180 >              (*sdi)->setJ(angMom);
1181 >            }
1182 >          }
1183 >          successfulScale = true;
1184 >          kineticExchange_ += kineticTarget_;
1185 >        }
1186 >      }
1187 >    } else {
1188 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1189 >      switch(rnemdFluxType_) {
1190 >      case rnemdKE :
1191 >        /* used hotBin coeff's & only scale x & y dimensions
1192 >           RealType px = Phx / Pcx;
1193 >           RealType py = Phy / Pcy;
1194 >           a110 = Khy;
1195 >           c0 = - Khx - Khy - kineticTarget_;
1196 >           a000 = Khx;
1197 >           a111 = Kcy * py * py;
1198 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1199 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1200 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1201 >           a001 = Kcx * px * px;
1202 >        */
1203 >        //scale all three dimensions, let c_x = c_y
1204 >        a000 = Kcx + Kcy;
1205 >        a110 = Kcz;
1206 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1207 >        a001 = Khx * px * px + Khy * py * py;
1208 >        a111 = Khz * pz * pz;
1209 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1210 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1211 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1212 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1213 >        break;
1214 >      case rnemdPx :
1215 >        c = 1 - momentumTarget_.x() / Pcx;
1216 >        a000 = Kcy;
1217 >        a110 = Kcz;
1218 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1219 >        a001 = py * py * Khy;
1220 >        a111 = pz * pz * Khz;
1221 >        b01 = -2.0 * Khy * py * (1.0 + py);
1222 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1223 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1224 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1225 >        break;
1226 >      case rnemdPy :
1227 >        c = 1 - momentumTarget_.y() / Pcy;
1228 >        a000 = Kcx;
1229 >        a110 = Kcz;
1230 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1231 >        a001 = px * px * Khx;
1232 >        a111 = pz * pz * Khz;
1233 >        b01 = -2.0 * Khx * px * (1.0 + px);
1234 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1235 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1236 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1237 >        break;
1238 >      case rnemdPz ://we don't really do this, do we?
1239 >        c = 1 - momentumTarget_.z() / Pcz;
1240 >        a000 = Kcx;
1241 >        a110 = Kcy;
1242 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1243 >        a001 = px * px * Khx;
1244 >        a111 = py * py * Khy;
1245 >        b01 = -2.0 * Khx * px * (1.0 + px);
1246 >        b11 = -2.0 * Khy * py * (1.0 + py);
1247 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1248 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1249 >        break;
1250 >      default :
1251 >        break;
1252 >      }
1253 >      
1254 >      RealType v1 = a000 * a111 - a001 * a110;
1255 >      RealType v2 = a000 * b01;
1256 >      RealType v3 = a000 * b11;
1257 >      RealType v4 = a000 * c1 - a001 * c0;
1258 >      RealType v8 = a110 * b01;
1259 >      RealType v10 = - b01 * c0;
1260 >      
1261 >      RealType u0 = v2 * v10 - v4 * v4;
1262 >      RealType u1 = -2.0 * v3 * v4;
1263 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1264 >      RealType u3 = -2.0 * v1 * v3;
1265 >      RealType u4 = - v1 * v1;
1266 >      //rescale coefficients
1267 >      RealType maxAbs = fabs(u0);
1268 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1269 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1270 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1271 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1272 >      u0 /= maxAbs;
1273 >      u1 /= maxAbs;
1274 >      u2 /= maxAbs;
1275 >      u3 /= maxAbs;
1276 >      u4 /= maxAbs;
1277 >      //max_element(start, end) is also available.
1278 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1279 >      poly.setCoefficient(4, u4);
1280 >      poly.setCoefficient(3, u3);
1281 >      poly.setCoefficient(2, u2);
1282 >      poly.setCoefficient(1, u1);
1283 >      poly.setCoefficient(0, u0);
1284 >      vector<RealType> realRoots = poly.FindRealRoots();
1285 >      
1286 >      vector<RealType>::iterator ri;
1287 >      RealType r1, r2, alpha0;
1288 >      vector<pair<RealType,RealType> > rps;
1289 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1290 >        r2 = *ri;
1291 >        //check if FindRealRoots() give the right answer
1292 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1293 >          sprintf(painCave.errMsg,
1294 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1295 >          painCave.isFatal = 0;
1296 >          simError();
1297 >          failRootCount_++;
1298 >        }
1299 >        //might not be useful w/o rescaling coefficients
1300 >        alpha0 = -c0 - a110 * r2 * r2;
1301 >        if (alpha0 >= 0.0) {
1302 >          r1 = sqrt(alpha0 / a000);
1303 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1304 >              < 1e-6)
1305 >            { rps.push_back(make_pair(r1, r2)); }
1306 >          if (r1 > 1e-6) { //r1 non-negative
1307 >            r1 = -r1;
1308 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1309 >                < 1e-6)
1310 >              { rps.push_back(make_pair(r1, r2)); }
1311 >          }
1312 >        }
1313 >      }
1314 >      // Consider combining together the solving pair part w/ the searching
1315 >      // best solution part so that we don't need the pairs vector
1316 >      if (!rps.empty()) {
1317 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1318 >        RealType diff;
1319 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1320 >        vector<pair<RealType,RealType> >::iterator rpi;
1321 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1322 >          r1 = (*rpi).first;
1323 >          r2 = (*rpi).second;
1324 >          switch(rnemdFluxType_) {
1325 >          case rnemdKE :
1326 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1327 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1328 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1329 >            break;
1330 >          case rnemdPx :
1331 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1332 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1333 >            break;
1334 >          case rnemdPy :
1335 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1336 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1337 >            break;
1338 >          case rnemdPz :
1339 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1340 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1341 >          default :
1342 >            break;
1343 >          }
1344 >          if (diff < smallestDiff) {
1345 >            smallestDiff = diff;
1346 >            bestPair = *rpi;
1347 >          }
1348 >        }
1349 > #ifdef IS_MPI
1350 >        if (worldRank == 0) {
1351 > #endif
1352 >          // sprintf(painCave.errMsg,
1353 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1354 >          //         bestPair.first, bestPair.second);
1355 >          // painCave.isFatal = 0;
1356 >          // painCave.severity = OPENMD_INFO;
1357 >          // simError();
1358 > #ifdef IS_MPI
1359 >        }
1360 > #endif
1361 >        
1362 >        switch(rnemdFluxType_) {
1363 >        case rnemdKE :
1364 >          x = bestPair.first;
1365 >          y = bestPair.first;
1366 >          z = bestPair.second;
1367 >          break;
1368 >        case rnemdPx :
1369 >          x = c;
1370 >          y = bestPair.first;
1371 >          z = bestPair.second;
1372 >          break;
1373 >        case rnemdPy :
1374 >          x = bestPair.first;
1375 >          y = c;
1376 >          z = bestPair.second;
1377 >          break;
1378 >        case rnemdPz :
1379 >          x = bestPair.first;
1380 >          y = bestPair.second;
1381 >          z = c;
1382 >          break;          
1383 >        default :
1384 >          break;
1385 >        }
1386 >        vector<StuntDouble*>::iterator sdi;
1387 >        Vector3d vel;
1388 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1389 >          vel = (*sdi)->getVel();
1390 >          vel.x() *= x;
1391 >          vel.y() *= y;
1392 >          vel.z() *= z;
1393 >          (*sdi)->setVel(vel);
1394 >        }
1395 >        //convert to hotBin coefficient
1396 >        x = 1.0 + px * (1.0 - x);
1397 >        y = 1.0 + py * (1.0 - y);
1398 >        z = 1.0 + pz * (1.0 - z);
1399 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1400 >          vel = (*sdi)->getVel();
1401 >          vel.x() *= x;
1402 >          vel.y() *= y;
1403 >          vel.z() *= z;
1404 >          (*sdi)->setVel(vel);
1405 >        }
1406 >        successfulScale = true;
1407 >        switch(rnemdFluxType_) {
1408 >        case rnemdKE :
1409 >          kineticExchange_ += kineticTarget_;
1410 >          break;
1411 >        case rnemdPx :
1412 >        case rnemdPy :
1413 >        case rnemdPz :
1414 >          momentumExchange_ += momentumTarget_;
1415 >          break;          
1416 >        default :
1417 >          break;
1418 >        }      
1419 >      }
1420 >    }
1421 >    if (successfulScale != true) {
1422 >      sprintf(painCave.errMsg,
1423 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1424 >              "\tthe constraint equations may not exist or there may be\n"
1425 >              "\tno selected objects in one or both slabs.\n");
1426 >      painCave.isFatal = 0;
1427 >      painCave.severity = OPENMD_INFO;
1428 >      simError();        
1429 >      failTrialCount_++;
1430 >    }
1431 >  }
1432 >  
1433 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1434 >    if (!doRNEMD_) return;
1435 >    int selei;
1436 >    int selej;
1437 >
1438 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1439 >    RealType time = currentSnap_->getTime();    
1440 >    Mat3x3d hmat = currentSnap_->getHmat();
1441 >
1442 >    StuntDouble* sd;
1443 >
1444 >    vector<StuntDouble*> hotBin, coldBin;
1445 >
1446 >    Vector3d Ph(V3Zero);
1447 >    Vector3d Lh(V3Zero);
1448 >    RealType Mh = 0.0;
1449 >    Mat3x3d Ih(0.0);
1450 >    RealType Kh = 0.0;
1451 >    Vector3d Pc(V3Zero);
1452 >    Vector3d Lc(V3Zero);
1453 >    RealType Mc = 0.0;
1454 >    Mat3x3d Ic(0.0);
1455 >    RealType Kc = 0.0;
1456 >
1457 >    // Constraints can be on only the linear or angular momentum, but
1458 >    // not both.  Usually, the user will specify which they want, but
1459 >    // in case they don't, the use of periodic boundaries should make
1460 >    // the choice for us.
1461 >    bool doLinearPart = false;
1462 >    bool doAngularPart = false;
1463 >
1464 >    switch (rnemdFluxType_) {
1465 >    case rnemdPx:
1466 >    case rnemdPy:
1467 >    case rnemdPz:
1468 >    case rnemdPvector:
1469 >    case rnemdKePx:
1470 >    case rnemdKePy:
1471 >    case rnemdKePvector:
1472 >      doLinearPart = true;
1473        break;
1474 <    case rnemdPzScale ://we don't really do this, do we?
1475 <      c = 1 - targetFlux_ / Pcz;
1476 <      a000 = Kcx;
1477 <      a110 = Kcy;
1478 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1479 <      a001 = px * px * Khx;
1480 <      a111 = py * py * Khy;
1481 <      b01 = -2.0 * Khx * px * (1.0 + px);
1482 <      b11 = -2.0 * Khy * py * (1.0 + py);
689 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
690 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
691 <      break;      
692 <    default :
1474 >    case rnemdLx:
1475 >    case rnemdLy:
1476 >    case rnemdLz:
1477 >    case rnemdLvector:
1478 >    case rnemdKeLx:
1479 >    case rnemdKeLy:
1480 >    case rnemdKeLz:
1481 >    case rnemdKeLvector:
1482 >      doAngularPart = true;
1483        break;
1484 +    case rnemdKE:
1485 +    case rnemdRotKE:
1486 +    case rnemdFullKE:
1487 +    default:
1488 +      if (usePeriodicBoundaryConditions_)
1489 +        doLinearPart = true;
1490 +      else
1491 +        doAngularPart = true;
1492 +      break;
1493      }
1494 +    
1495 +    for (sd = smanA.beginSelected(selei); sd != NULL;
1496 +         sd = smanA.nextSelected(selei)) {
1497  
1498 <    RealType v1 = a000 * a111 - a001 * a110;
697 <    RealType v2 = a000 * b01;
698 <    RealType v3 = a000 * b11;
699 <    RealType v4 = a000 * c1 - a001 * c0;
700 <    RealType v8 = a110 * b01;
701 <    RealType v10 = - b01 * c0;
1498 >      Vector3d pos = sd->getPos();
1499  
1500 <    RealType u0 = v2 * v10 - v4 * v4;
1501 <    RealType u1 = -2.0 * v3 * v4;
1502 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1503 <    RealType u3 = -2.0 * v1 * v3;
1504 <    RealType u4 = - v1 * v1;
1505 <    //rescale coefficients
1506 <    RealType maxAbs = fabs(u0);
1507 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1508 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1509 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1510 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1511 <    u0 /= maxAbs;
1512 <    u1 /= maxAbs;
1513 <    u2 /= maxAbs;
1514 <    u3 /= maxAbs;
1515 <    u4 /= maxAbs;
1516 <    //max_element(start, end) is also available.
1517 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
1518 <    poly.setCoefficient(4, u4);
1519 <    poly.setCoefficient(3, u3);
1520 <    poly.setCoefficient(2, u2);
1521 <    poly.setCoefficient(1, u1);
1522 <    poly.setCoefficient(0, u0);
1523 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1524 <
1525 <    std::vector<RealType>::iterator ri;
1526 <    RealType r1, r2, alpha0;
1527 <    std::vector<std::pair<RealType,RealType> > rps;
1528 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1529 <      r2 = *ri;
1530 <      //check if FindRealRoots() give the right answer
1531 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1532 <        sprintf(painCave.errMsg,
1533 <                "RNEMD Warning: polynomial solve seems to have an error!");
1534 <        painCave.isFatal = 0;
1535 <        simError();
739 <        failRootCount_++;
740 <      }
741 <      //might not be useful w/o rescaling coefficients
742 <      alpha0 = -c0 - a110 * r2 * r2;
743 <      if (alpha0 >= 0.0) {
744 <        r1 = sqrt(alpha0 / a000);
745 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
746 <          { rps.push_back(std::make_pair(r1, r2)); }
747 <        if (r1 > 1e-6) { //r1 non-negative
748 <          r1 = -r1;
749 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
750 <            { rps.push_back(std::make_pair(r1, r2)); }
1500 >      // wrap the stuntdouble's position back into the box:
1501 >      
1502 >      if (usePeriodicBoundaryConditions_)
1503 >        currentSnap_->wrapVector(pos);
1504 >      
1505 >      RealType mass = sd->getMass();
1506 >      Vector3d vel = sd->getVel();
1507 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1508 >      RealType r2;
1509 >      
1510 >      hotBin.push_back(sd);
1511 >      Ph += mass * vel;
1512 >      Mh += mass;
1513 >      Kh += mass * vel.lengthSquare();
1514 >      Lh += mass * cross(rPos, vel);
1515 >      Ih -= outProduct(rPos, rPos) * mass;
1516 >      r2 = rPos.lengthSquare();
1517 >      Ih(0, 0) += mass * r2;
1518 >      Ih(1, 1) += mass * r2;
1519 >      Ih(2, 2) += mass * r2;
1520 >      
1521 >      if (rnemdFluxType_ == rnemdFullKE) {
1522 >        if (sd->isDirectional()) {
1523 >          Vector3d angMom = sd->getJ();
1524 >          Mat3x3d I = sd->getI();
1525 >          if (sd->isLinear()) {
1526 >            int i = sd->linearAxis();
1527 >            int j = (i + 1) % 3;
1528 >            int k = (i + 2) % 3;
1529 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1530 >              angMom[k] * angMom[k] / I(k, k);
1531 >          } else {
1532 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1533 >              angMom[1] * angMom[1] / I(1, 1) +
1534 >              angMom[2] * angMom[2] / I(2, 2);
1535 >          }
1536          }
1537        }
1538      }
1539 <    // Consider combininig together the solving pair part w/ the searching
1540 <    // best solution part so that we don't need the pairs vector
1541 <    if (!rps.empty()) {
1542 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1543 <      RealType diff;
1544 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1545 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1546 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1547 <        r1 = (*rpi).first;
1548 <        r2 = (*rpi).second;
1549 <        switch(rnemdType_) {
1550 <        case rnemdKineticScale :
1551 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1552 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1553 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1554 <          break;
1555 <        case rnemdPxScale :
1556 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1557 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1558 <          break;
1559 <        case rnemdPyScale :
1560 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1561 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1562 <          break;
1563 <        case rnemdPzScale :
1564 <        default :
1565 <          break;
1539 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1540 >         sd = smanB.nextSelected(selej)) {
1541 >
1542 >      Vector3d pos = sd->getPos();
1543 >      
1544 >      // wrap the stuntdouble's position back into the box:
1545 >      
1546 >      if (usePeriodicBoundaryConditions_)
1547 >        currentSnap_->wrapVector(pos);
1548 >      
1549 >      RealType mass = sd->getMass();
1550 >      Vector3d vel = sd->getVel();
1551 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1552 >      RealType r2;
1553 >
1554 >      coldBin.push_back(sd);
1555 >      Pc += mass * vel;
1556 >      Mc += mass;
1557 >      Kc += mass * vel.lengthSquare();
1558 >      Lc += mass * cross(rPos, vel);
1559 >      Ic -= outProduct(rPos, rPos) * mass;
1560 >      r2 = rPos.lengthSquare();
1561 >      Ic(0, 0) += mass * r2;
1562 >      Ic(1, 1) += mass * r2;
1563 >      Ic(2, 2) += mass * r2;
1564 >      
1565 >      if (rnemdFluxType_ == rnemdFullKE) {
1566 >        if (sd->isDirectional()) {
1567 >          Vector3d angMom = sd->getJ();
1568 >          Mat3x3d I = sd->getI();
1569 >          if (sd->isLinear()) {
1570 >            int i = sd->linearAxis();
1571 >            int j = (i + 1) % 3;
1572 >            int k = (i + 2) % 3;
1573 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1574 >              angMom[k] * angMom[k] / I(k, k);
1575 >          } else {
1576 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1577 >              angMom[1] * angMom[1] / I(1, 1) +
1578 >              angMom[2] * angMom[2] / I(2, 2);
1579 >          }
1580          }
782        if (diff < smallestDiff) {
783          smallestDiff = diff;
784          bestPair = *rpi;
785        }
1581        }
1582 +    }
1583 +    
1584 +    Kh *= 0.5;
1585 +    Kc *= 0.5;
1586 +    
1587   #ifdef IS_MPI
1588 <      if (worldRank == 0) {
1588 >    MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1589 >                  MPI_COMM_WORLD);
1590 >    MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1591 >                  MPI_COMM_WORLD);
1592 >    MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1593 >                  MPI_COMM_WORLD);
1594 >    MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1595 >                  MPI_COMM_WORLD);
1596 >    MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1597 >    MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1598 >    MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1599 >    MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1600 >    MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1601 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1602 >    MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1603 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1604   #endif
1605 <        std::cerr << "we choose r1 = " << bestPair.first
791 <                  << " and r2 = " << bestPair.second << "\n";
792 < #ifdef IS_MPI
793 <      }
794 < #endif
1605 >    
1606  
1607 <      RealType x, y, z;
1608 <        switch(rnemdType_) {
1609 <        case rnemdKineticScale :
1610 <          x = bestPair.first;
1611 <          y = bestPair.first;
1612 <          z = bestPair.second;
1613 <          break;
1614 <        case rnemdPxScale :
1615 <          x = c;
1616 <          y = bestPair.first;
1617 <          z = bestPair.second;
1618 <          break;
1619 <        case rnemdPyScale :
1620 <          x = bestPair.first;
1621 <          y = c;
1622 <          z = bestPair.second;
1623 <          break;
1624 <        case rnemdPzScale :
1625 <          x = bestPair.first;
1626 <          y = bestPair.second;
1627 <          z = c;
1628 <          break;          
1629 <        default :
1630 <          break;
1631 <        }
1632 <      std::vector<StuntDouble*>::iterator sdi;
1633 <      Vector3d vel;
1634 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1635 <        vel = (*sdi)->getVel();
1636 <        vel.x() *= x;
1637 <        vel.y() *= y;
1638 <        vel.z() *= z;
1639 <        (*sdi)->setVel(vel);
1640 <      }
1641 <      //convert to hotBin coefficient
1642 <      x = 1.0 + px * (1.0 - x);
1643 <      y = 1.0 + py * (1.0 - y);
1644 <      z = 1.0 + pz * (1.0 - z);
1645 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1646 <        vel = (*sdi)->getVel();
1647 <        vel.x() *= x;
1648 <        vel.y() *= y;
1649 <        vel.z() *= z;
1650 <        (*sdi)->setVel(vel);
1607 >    Vector3d ac, acrec, bc, bcrec;
1608 >    Vector3d ah, ahrec, bh, bhrec;
1609 >
1610 >    bool successfulExchange = false;
1611 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1612 >      Vector3d vc = Pc / Mc;
1613 >      ac = -momentumTarget_ / Mc + vc;
1614 >      acrec = -momentumTarget_ / Mc;
1615 >      
1616 >      // We now need the inverse of the inertia tensor to calculate the
1617 >      // angular velocity of the cold slab;
1618 >      Mat3x3d Ici = Ic.inverse();
1619 >      Vector3d omegac = Ici * Lc;
1620 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1621 >      bcrec = bc - omegac;
1622 >      
1623 >      RealType cNumerator = Kc - kineticTarget_;
1624 >      if (doLinearPart)
1625 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1626 >      
1627 >      if (doAngularPart)
1628 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1629 >
1630 >      if (cNumerator > 0.0) {
1631 >        
1632 >        RealType cDenominator = Kc;
1633 >
1634 >        if (doLinearPart)
1635 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1636 >
1637 >        if (doAngularPart)
1638 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1639 >        
1640 >        if (cDenominator > 0.0) {
1641 >          RealType c = sqrt(cNumerator / cDenominator);
1642 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1643 >            
1644 >            Vector3d vh = Ph / Mh;
1645 >            ah = momentumTarget_ / Mh + vh;
1646 >            ahrec = momentumTarget_ / Mh;
1647 >            
1648 >            // We now need the inverse of the inertia tensor to
1649 >            // calculate the angular velocity of the hot slab;
1650 >            Mat3x3d Ihi = Ih.inverse();
1651 >            Vector3d omegah = Ihi * Lh;
1652 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1653 >            bhrec = bh - omegah;
1654 >            
1655 >            RealType hNumerator = Kh + kineticTarget_;
1656 >            if (doLinearPart)
1657 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1658 >            
1659 >            if (doAngularPart)
1660 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1661 >              
1662 >            if (hNumerator > 0.0) {
1663 >              
1664 >              RealType hDenominator = Kh;
1665 >              if (doLinearPart)
1666 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1667 >              if (doAngularPart)
1668 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1669 >              
1670 >              if (hDenominator > 0.0) {
1671 >                RealType h = sqrt(hNumerator / hDenominator);
1672 >                if ((h > 0.9) && (h < 1.1)) {
1673 >                  
1674 >                  vector<StuntDouble*>::iterator sdi;
1675 >                  Vector3d vel;
1676 >                  Vector3d rPos;
1677 >                  
1678 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1679 >                    //vel = (*sdi)->getVel();
1680 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1681 >                    if (doLinearPart)
1682 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1683 >                    if (doAngularPart)
1684 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1685 >
1686 >                    (*sdi)->setVel(vel);
1687 >                    if (rnemdFluxType_ == rnemdFullKE) {
1688 >                      if ((*sdi)->isDirectional()) {
1689 >                        Vector3d angMom = (*sdi)->getJ() * c;
1690 >                        (*sdi)->setJ(angMom);
1691 >                      }
1692 >                    }
1693 >                  }
1694 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1695 >                    //vel = (*sdi)->getVel();
1696 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1697 >                    if (doLinearPart)
1698 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1699 >                    if (doAngularPart)
1700 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1701 >
1702 >                    (*sdi)->setVel(vel);
1703 >                    if (rnemdFluxType_ == rnemdFullKE) {
1704 >                      if ((*sdi)->isDirectional()) {
1705 >                        Vector3d angMom = (*sdi)->getJ() * h;
1706 >                        (*sdi)->setJ(angMom);
1707 >                      }
1708 >                    }
1709 >                  }
1710 >                  successfulExchange = true;
1711 >                  kineticExchange_ += kineticTarget_;
1712 >                  momentumExchange_ += momentumTarget_;
1713 >                  angularMomentumExchange_ += angularMomentumTarget_;
1714 >                }
1715 >              }
1716 >            }
1717 >          }
1718 >        }
1719        }
1720 <      exchangeSum_ += targetFlux_;
1721 <      //we may want to check whether the exchange has been successful
1722 <    } else {
1723 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1720 >    }
1721 >    if (successfulExchange != true) {
1722 >      sprintf(painCave.errMsg,
1723 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1724 >              "\tthe constraint equations may not exist or there may be\n"
1725 >              "\tno selected objects in one or both slabs.\n");
1726 >      painCave.isFatal = 0;
1727 >      painCave.severity = OPENMD_INFO;
1728 >      simError();        
1729        failTrialCount_++;
1730      }
847
1731    }
1732  
1733 +  RealType RNEMD::getDividingArea() {
1734 +
1735 +    if (hasDividingArea_) return dividingArea_;
1736 +
1737 +    RealType areaA, areaB;
1738 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1739 +
1740 +    if (hasSelectionA_) {
1741 +
1742 +      if (evaluatorA_.hasSurfaceArea())
1743 +        areaA = evaluatorA_.getSurfaceArea();
1744 +      else {
1745 +        
1746 +        cerr << "selection A did not have surface area, recomputing\n";
1747 +        int isd;
1748 +        StuntDouble* sd;
1749 +        vector<StuntDouble*> aSites;
1750 +        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1751 +        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1752 +             sd = seleManA_.nextSelected(isd)) {
1753 +          aSites.push_back(sd);
1754 +        }
1755 + #if defined(HAVE_QHULL)
1756 +        ConvexHull* surfaceMeshA = new ConvexHull();
1757 +        surfaceMeshA->computeHull(aSites);
1758 +        areaA = surfaceMeshA->getArea();
1759 +        delete surfaceMeshA;
1760 + #else
1761 +        sprintf( painCave.errMsg,
1762 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1763 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1764 +        painCave.severity = OPENMD_ERROR;
1765 +        painCave.isFatal = 1;
1766 +        simError();
1767 + #endif
1768 +      }
1769 +
1770 +    } else {
1771 +      if (usePeriodicBoundaryConditions_) {
1772 +        // in periodic boundaries, the surface area is twice the x-y
1773 +        // area of the current box:
1774 +        areaA = 2.0 * snap->getXYarea();
1775 +      } else {
1776 +        // in non-periodic simulations, without explicitly setting
1777 +        // selections, the sphere radius sets the surface area of the
1778 +        // dividing surface:
1779 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1780 +      }
1781 +    }
1782 +
1783 +    if (hasSelectionB_) {
1784 +      if (evaluatorB_.hasSurfaceArea())
1785 +        areaB = evaluatorB_.getSurfaceArea();
1786 +      else {
1787 +        cerr << "selection B did not have surface area, recomputing\n";
1788 +
1789 +        int isd;
1790 +        StuntDouble* sd;
1791 +        vector<StuntDouble*> bSites;
1792 +        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1793 +        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1794 +             sd = seleManB_.nextSelected(isd)) {
1795 +          bSites.push_back(sd);
1796 +        }
1797 +        
1798 + #if defined(HAVE_QHULL)
1799 +        ConvexHull* surfaceMeshB = new ConvexHull();    
1800 +        surfaceMeshB->computeHull(bSites);
1801 +        areaB = surfaceMeshB->getArea();
1802 +        delete surfaceMeshB;
1803 + #else
1804 +        sprintf( painCave.errMsg,
1805 +                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1806 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1807 +        painCave.severity = OPENMD_ERROR;
1808 +        painCave.isFatal = 1;
1809 +        simError();
1810 + #endif
1811 +      }
1812 +      
1813 +    } else {
1814 +      if (usePeriodicBoundaryConditions_) {
1815 +        // in periodic boundaries, the surface area is twice the x-y
1816 +        // area of the current box:
1817 +        areaB = 2.0 * snap->getXYarea();
1818 +      } else {
1819 +        // in non-periodic simulations, without explicitly setting
1820 +        // selections, but if a sphereBradius has been set, just use that:
1821 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1822 +      }
1823 +    }
1824 +      
1825 +    dividingArea_ = min(areaA, areaB);
1826 +    hasDividingArea_ = true;
1827 +    return dividingArea_;
1828 +  }
1829 +  
1830    void RNEMD::doRNEMD() {
1831 +    if (!doRNEMD_) return;
1832 +    trialCount_++;
1833  
1834 <    switch(rnemdType_) {
1835 <    case rnemdKineticScale :
1836 <    case rnemdPxScale :
1837 <    case rnemdPyScale :
1838 <    case rnemdPzScale :
1839 <      doScale();
1834 >    // object evaluator:
1835 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1836 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1837 >
1838 >    evaluatorA_.loadScriptString(selectionA_);
1839 >    evaluatorB_.loadScriptString(selectionB_);
1840 >
1841 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1842 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1843 >
1844 >    commonA_ = seleManA_ & seleMan_;
1845 >    commonB_ = seleManB_ & seleMan_;
1846 >
1847 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1848 >    // dt = exchange time interval
1849 >    // flux = target flux
1850 >    // dividingArea = smallest dividing surface between the two regions
1851 >
1852 >    hasDividingArea_ = false;
1853 >    RealType area = getDividingArea();
1854 >
1855 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1856 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1857 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1858 >
1859 >    switch(rnemdMethod_) {
1860 >    case rnemdSwap:
1861 >      doSwap(commonA_, commonB_);
1862        break;
1863 <    case rnemdKineticSwap :
1864 <    case rnemdPx :
861 <    case rnemdPy :
862 <    case rnemdPz :
863 <      doSwap();
1863 >    case rnemdNIVS:
1864 >      doNIVS(commonA_, commonB_);
1865        break;
1866 <    case rnemdUnknown :
1866 >    case rnemdVSS:
1867 >      doVSS(commonA_, commonB_);
1868 >      break;
1869 >    case rnemdUnkownMethod:
1870      default :
1871        break;
1872      }
1873    }
1874  
1875    void RNEMD::collectData() {
1876 <
1876 >    if (!doRNEMD_) return;
1877      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1878 +    
1879 +    // collectData can be called more frequently than the doRNEMD, so use the
1880 +    // computed area from the last exchange time:
1881 +    RealType area = getDividingArea();
1882 +    areaAccumulator_->add(area);
1883      Mat3x3d hmat = currentSnap_->getHmat();
1884 +    Vector3d u = angularMomentumFluxVector_;
1885 +    u.normalize();
1886  
1887      seleMan_.setSelectionSet(evaluator_.evaluate());
1888  
1889 <    int selei;
1889 >    int selei(0);
1890      StuntDouble* sd;
1891 <    int idx;
1891 >    int binNo;
1892 >    RealType mass;
1893 >    Vector3d vel;
1894 >    Vector3d rPos;
1895 >    RealType KE;
1896 >    Vector3d L;
1897 >    Mat3x3d I;
1898 >    RealType r2;
1899  
1900 +    vector<RealType> binMass(nBins_, 0.0);
1901 +    vector<Vector3d> binP(nBins_, V3Zero);
1902 +    vector<RealType> binOmega(nBins_, 0.0);
1903 +    vector<Vector3d> binL(nBins_, V3Zero);
1904 +    vector<Mat3x3d>  binI(nBins_);
1905 +    vector<RealType> binKE(nBins_, 0.0);
1906 +    vector<int> binDOF(nBins_, 0);
1907 +    vector<int> binCount(nBins_, 0);
1908 +
1909 +    // alternative approach, track all molecules instead of only those
1910 +    // selected for scaling/swapping:
1911 +    /*
1912 +      SimInfo::MoleculeIterator miter;
1913 +      vector<StuntDouble*>::iterator iiter;
1914 +      Molecule* mol;
1915 +      StuntDouble* sd;
1916 +      for (mol = info_->beginMolecule(miter); mol != NULL;
1917 +      mol = info_->nextMolecule(miter))
1918 +      sd is essentially sd
1919 +      for (sd = mol->beginIntegrableObject(iiter);
1920 +      sd != NULL;
1921 +      sd = mol->nextIntegrableObject(iiter))
1922 +    */
1923 +
1924      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1925 <         sd = seleMan_.nextSelected(selei)) {
1926 <      
885 <      idx = sd->getLocalIndex();
886 <      
1925 >         sd = seleMan_.nextSelected(selei)) {    
1926 >    
1927        Vector3d pos = sd->getPos();
1928  
1929        // wrap the stuntdouble's position back into the box:
1930        
1931 <      if (usePeriodicBoundaryConditions_)
1931 >      if (usePeriodicBoundaryConditions_) {
1932          currentSnap_->wrapVector(pos);
1933 <      
1934 <      // which bin is this stuntdouble in?
1935 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1936 <      
1937 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1933 >        // which bin is this stuntdouble in?
1934 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1935 >        // Shift molecules by half a box to have bins start at 0
1936 >        // The modulo operator is used to wrap the case when we are
1937 >        // beyond the end of the bins back to the beginning.
1938 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1939 >      } else {
1940 >        Vector3d rPos = pos - coordinateOrigin_;
1941 >        binNo = int(rPos.length() / binWidth_);
1942 >      }
1943  
1944 <      if (rnemdLogWidth_ == midBin_ + 1)
1945 <        if (binNo > midBin_)
1946 <          binNo = nBins_ - binNo;
1944 >      mass = sd->getMass();
1945 >      vel = sd->getVel();
1946 >      rPos = sd->getPos() - coordinateOrigin_;
1947 >      KE = 0.5 * mass * vel.lengthSquare();
1948 >      L = mass * cross(rPos, vel);
1949 >      I = outProduct(rPos, rPos) * mass;
1950 >      r2 = rPos.lengthSquare();
1951 >      I(0, 0) += mass * r2;
1952 >      I(1, 1) += mass * r2;
1953 >      I(2, 2) += mass * r2;
1954  
1955 <      RealType mass = sd->getMass();
1956 <      Vector3d vel = sd->getVel();
1957 <      RealType value;
1958 <      RealType xVal, yVal, zVal;
1955 >      // Project the relative position onto a plane perpendicular to
1956 >      // the angularMomentumFluxVector:
1957 >      // Vector3d rProj = rPos - dot(rPos, u) * u;
1958 >      // Project the velocity onto a plane perpendicular to the
1959 >      // angularMomentumFluxVector:
1960 >      // Vector3d vProj = vel  - dot(vel, u) * u;
1961 >      // Compute angular velocity vector (should be nearly parallel to
1962 >      // angularMomentumFluxVector
1963 >      // Vector3d aVel = cross(rProj, vProj);
1964  
1965 <      switch(rnemdType_) {
1966 <      case rnemdKineticSwap :
1967 <      case rnemdKineticScale :
1968 <        
1969 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1970 <                        vel[2]*vel[2]);
1971 <        
1972 <        valueCount_[binNo] += 3;
1973 <        if (sd->isDirectional()) {
1974 <          Vector3d angMom = sd->getJ();
1975 <          Mat3x3d I = sd->getI();
1976 <          
1977 <          if (sd->isLinear()) {
1978 <            int i = sd->linearAxis();
1979 <            int j = (i + 1) % 3;
1980 <            int k = (i + 2) % 3;
1981 <            value += angMom[j] * angMom[j] / I(j, j) +
1982 <              angMom[k] * angMom[k] / I(k, k);
1983 <
1984 <            valueCount_[binNo] +=2;
1985 <
1986 <          } else {
1987 <            value += angMom[0]*angMom[0]/I(0, 0)
1988 <              + angMom[1]*angMom[1]/I(1, 1)
1989 <              + angMom[2]*angMom[2]/I(2, 2);
1990 <            valueCount_[binNo] +=3;
934 <          }
935 <        }
936 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
937 <
938 <        break;
939 <      case rnemdPx :
940 <      case rnemdPxScale :
941 <        value = mass * vel[0];
942 <        valueCount_[binNo]++;
943 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
944 <          / PhysicalConstants::kb;
945 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
946 <          / PhysicalConstants::kb;
947 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
948 <          / PhysicalConstants::kb;
949 <        xTempHist_[binNo] += xVal;
950 <        yTempHist_[binNo] += yVal;
951 <        zTempHist_[binNo] += zVal;
952 <        break;
953 <      case rnemdPy :
954 <      case rnemdPyScale :
955 <        value = mass * vel[1];
956 <        valueCount_[binNo]++;
957 <        break;
958 <      case rnemdPz :
959 <      case rnemdPzScale :
960 <        value = mass * vel[2];
961 <        valueCount_[binNo]++;
962 <        break;
963 <      case rnemdUnknown :
964 <      default :
965 <        break;
1965 >      if (binNo >= 0 && binNo < nBins_)  {
1966 >        binCount[binNo]++;
1967 >        binMass[binNo] += mass;
1968 >        binP[binNo] += mass*vel;
1969 >        binKE[binNo] += KE;
1970 >        binI[binNo] += I;
1971 >        binL[binNo] += L;
1972 >        binDOF[binNo] += 3;
1973 >        
1974 >        if (sd->isDirectional()) {
1975 >          Vector3d angMom = sd->getJ();
1976 >          Mat3x3d Ia = sd->getI();
1977 >          if (sd->isLinear()) {
1978 >            int i = sd->linearAxis();
1979 >            int j = (i + 1) % 3;
1980 >            int k = (i + 2) % 3;
1981 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
1982 >                                   angMom[k] * angMom[k] / Ia(k, k));
1983 >            binDOF[binNo] += 2;
1984 >          } else {
1985 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
1986 >                                   angMom[1] * angMom[1] / Ia(1, 1) +
1987 >                                   angMom[2] * angMom[2] / Ia(2, 2));
1988 >            binDOF[binNo] += 3;
1989 >          }
1990 >        }
1991        }
1992 <      valueHist_[binNo] += value;
1992 >    }
1993 >    
1994 > #ifdef IS_MPI
1995 >
1996 >    for (int i = 0; i < nBins_; i++) {
1997 >      
1998 >      MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
1999 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2000 >      MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2001 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2002 >      MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2003 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2004 >      MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2005 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2006 >      MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2007 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2008 >      MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2009 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2010 >      MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2011 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2012 >      //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2013 >      //                          1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2014      }
2015 +    
2016 + #endif
2017  
2018 +    Vector3d omega;
2019 +    RealType den;
2020 +    RealType temp;
2021 +    RealType z;
2022 +    RealType r;
2023 +    for (int i = 0; i < nBins_; i++) {
2024 +      if (usePeriodicBoundaryConditions_) {
2025 +        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2026 +        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2027 +          / currentSnap_->getVolume() ;
2028 +      } else {
2029 +        r = (((RealType)i + 0.5) * binWidth_);
2030 +        RealType rinner = (RealType)i * binWidth_;
2031 +        RealType router = (RealType)(i+1) * binWidth_;
2032 +        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2033 +          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2034 +      }
2035 +      vel = binP[i] / binMass[i];
2036 +
2037 +      omega = binI[i].inverse() * binL[i];
2038 +
2039 +      // omega = binOmega[i] / binCount[i];
2040 +
2041 +      if (binCount[i] > 0) {
2042 +        // only add values if there are things to add
2043 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2044 +                                 PhysicalConstants::energyConvert);
2045 +        
2046 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2047 +          if(outputMask_[j]) {
2048 +            switch(j) {
2049 +            case Z:
2050 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2051 +              break;
2052 +            case R:
2053 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2054 +              break;
2055 +            case TEMPERATURE:
2056 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2057 +              break;
2058 +            case VELOCITY:
2059 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2060 +              break;
2061 +            case ANGULARVELOCITY:  
2062 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2063 +              break;
2064 +            case DENSITY:
2065 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2066 +              break;
2067 +            }
2068 +          }
2069 +        }
2070 +      }
2071 +    }
2072 +    hasData_ = true;
2073    }
2074  
2075    void RNEMD::getStarted() {
2076 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2077 <    Stats& stat = currentSnap_->statData;
2078 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2076 >    if (!doRNEMD_) return;
2077 >    hasDividingArea_ = false;
2078 >    collectData();
2079 >    writeOutputFile();
2080    }
2081  
2082 <  void RNEMD::getStatus() {
2082 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2083 >    if (!doRNEMD_) return;
2084 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2085 >    
2086 >    while(tokenizer.hasMoreTokens()) {
2087 >      std::string token(tokenizer.nextToken());
2088 >      toUpper(token);
2089 >      OutputMapType::iterator i = outputMap_.find(token);
2090 >      if (i != outputMap_.end()) {
2091 >        outputMask_.set(i->second);
2092 >      } else {
2093 >        sprintf( painCave.errMsg,
2094 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2095 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2096 >        painCave.isFatal = 0;
2097 >        painCave.severity = OPENMD_ERROR;
2098 >        simError();            
2099 >      }
2100 >    }  
2101 >  }
2102 >  
2103 >  void RNEMD::writeOutputFile() {
2104 >    if (!doRNEMD_) return;
2105 >    if (!hasData_) return;
2106 >    
2107 > #ifdef IS_MPI
2108 >    // If we're the root node, should we print out the results
2109 >    int worldRank;
2110 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2111  
2112 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2113 <    Stats& stat = currentSnap_->statData;
2114 <    RealType time = currentSnap_->getTime();
2112 >    if (worldRank == 0) {
2113 > #endif
2114 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2115 >      
2116 >      if( !rnemdFile_ ){        
2117 >        sprintf( painCave.errMsg,
2118 >                 "Could not open \"%s\" for RNEMD output.\n",
2119 >                 rnemdFileName_.c_str());
2120 >        painCave.isFatal = 1;
2121 >        simError();
2122 >      }
2123  
2124 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
985 <    //or to be more meaningful, define another item as exchangeSum_ / time
986 <    int j;
2124 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2125  
2126 < #ifdef IS_MPI
2126 >      RealType time = currentSnap_->getTime();
2127 >      RealType avgArea;
2128 >      areaAccumulator_->getAverage(avgArea);
2129  
2130 <    // all processors have the same number of bins, and STL vectors pack their
2131 <    // arrays, so in theory, this should be safe:
2130 >      RealType Jz(0.0);
2131 >      Vector3d JzP(V3Zero);
2132 >      Vector3d JzL(V3Zero);
2133 >      if (time >= info_->getSimParams()->getDt()) {
2134 >        Jz = kineticExchange_ / (time * avgArea)
2135 >          / PhysicalConstants::energyConvert;
2136 >        JzP = momentumExchange_ / (time * avgArea);
2137 >        JzL = angularMomentumExchange_ / (time * avgArea);
2138 >      }
2139  
2140 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
2141 <                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2142 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
2143 <                              rnemdLogWidth_, MPI::INT, MPI::SUM);
2144 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
2145 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
2146 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1000 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1001 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1002 <      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1003 <                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1004 <    }
1005 <    // If we're the root node, should we print out the results
1006 <    int worldRank = MPI::COMM_WORLD.Get_rank();
1007 <    if (worldRank == 0) {
1008 < #endif
1009 <      rnemdLog_ << time;
1010 <      for (j = 0; j < rnemdLogWidth_; j++) {
1011 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
2140 >      rnemdFile_ << "#######################################################\n";
2141 >      rnemdFile_ << "# RNEMD {\n";
2142 >
2143 >      map<string, RNEMDMethod>::iterator mi;
2144 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2145 >        if ( (*mi).second == rnemdMethod_)
2146 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2147        }
2148 <      rnemdLog_ << "\n";
2149 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
2150 <        xTempLog_ << time;      
2151 <        for (j = 0; j < rnemdLogWidth_; j++) {
2152 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
2148 >      map<string, RNEMDFluxType>::iterator fi;
2149 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2150 >        if ( (*fi).second == rnemdFluxType_)
2151 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2152 >      }
2153 >      
2154 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2155 >
2156 >      rnemdFile_ << "#    objectSelection = \""
2157 >                 << rnemdObjectSelection_ << "\";\n";
2158 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2159 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2160 >      rnemdFile_ << "# }\n";
2161 >      rnemdFile_ << "#######################################################\n";
2162 >      rnemdFile_ << "# RNEMD report:\n";      
2163 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2164 >      rnemdFile_ << "# Target flux:\n";
2165 >      rnemdFile_ << "#           kinetic = "
2166 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2167 >                 << " (kcal/mol/A^2/fs)\n";
2168 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2169 >                 << " (amu/A/fs^2)\n";
2170 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2171 >                 << " (amu/A^2/fs^2)\n";
2172 >      rnemdFile_ << "# Target one-time exchanges:\n";
2173 >      rnemdFile_ << "#          kinetic = "
2174 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2175 >                 << " (kcal/mol)\n";
2176 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2177 >                 << " (amu*A/fs)\n";
2178 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2179 >                 << " (amu*A^2/fs)\n";
2180 >      rnemdFile_ << "# Actual exchange totals:\n";
2181 >      rnemdFile_ << "#          kinetic = "
2182 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2183 >                 << " (kcal/mol)\n";
2184 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2185 >                 << " (amu*A/fs)\n";      
2186 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2187 >                 << " (amu*A^2/fs)\n";      
2188 >      rnemdFile_ << "# Actual flux:\n";
2189 >      rnemdFile_ << "#          kinetic = " << Jz
2190 >                 << " (kcal/mol/A^2/fs)\n";
2191 >      rnemdFile_ << "#          momentum = " << JzP
2192 >                 << " (amu/A/fs^2)\n";
2193 >      rnemdFile_ << "#  angular momentum = " << JzL
2194 >                 << " (amu/A^2/fs^2)\n";
2195 >      rnemdFile_ << "# Exchange statistics:\n";
2196 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2197 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2198 >      if (rnemdMethod_ == rnemdNIVS) {
2199 >        rnemdFile_ << "#  NIVS root-check errors = "
2200 >                   << failRootCount_ << "\n";
2201 >      }
2202 >      rnemdFile_ << "#######################################################\n";
2203 >      
2204 >      
2205 >      
2206 >      //write title
2207 >      rnemdFile_ << "#";
2208 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2209 >        if (outputMask_[i]) {
2210 >          rnemdFile_ << "\t" << data_[i].title <<
2211 >            "(" << data_[i].units << ")";
2212 >          // add some extra tabs for column alignment
2213 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2214          }
2215 <        xTempLog_ << "\n";
2216 <        yTempLog_ << time;
2217 <        for (j = 0; j < rnemdLogWidth_; j++) {
2218 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
2215 >      }
2216 >      rnemdFile_ << std::endl;
2217 >      
2218 >      rnemdFile_.precision(8);
2219 >      
2220 >      for (int j = 0; j < nBins_; j++) {        
2221 >        
2222 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2223 >          if (outputMask_[i]) {
2224 >            if (data_[i].dataType == "RealType")
2225 >              writeReal(i,j);
2226 >            else if (data_[i].dataType == "Vector3d")
2227 >              writeVector(i,j);
2228 >            else {
2229 >              sprintf( painCave.errMsg,
2230 >                       "RNEMD found an unknown data type for: %s ",
2231 >                       data_[i].title.c_str());
2232 >              painCave.isFatal = 1;
2233 >              simError();
2234 >            }
2235 >          }
2236          }
2237 <        yTempLog_ << "\n";
2238 <        zTempLog_ << time;
2239 <        for (j = 0; j < rnemdLogWidth_; j++) {
2240 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
2237 >        rnemdFile_ << std::endl;
2238 >        
2239 >      }        
2240 >
2241 >      rnemdFile_ << "#######################################################\n";
2242 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2243 >      rnemdFile_ << "#######################################################\n";
2244 >
2245 >
2246 >      for (int j = 0; j < nBins_; j++) {        
2247 >        rnemdFile_ << "#";
2248 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2249 >          if (outputMask_[i]) {
2250 >            if (data_[i].dataType == "RealType")
2251 >              writeRealStdDev(i,j);
2252 >            else if (data_[i].dataType == "Vector3d")
2253 >              writeVectorStdDev(i,j);
2254 >            else {
2255 >              sprintf( painCave.errMsg,
2256 >                       "RNEMD found an unknown data type for: %s ",
2257 >                       data_[i].title.c_str());
2258 >              painCave.isFatal = 1;
2259 >              simError();
2260 >            }
2261 >          }
2262          }
2263 <        zTempLog_ << "\n";
2264 <      }
2263 >        rnemdFile_ << std::endl;
2264 >        
2265 >      }        
2266 >      
2267 >      rnemdFile_.flush();
2268 >      rnemdFile_.close();
2269 >      
2270   #ifdef IS_MPI
2271      }
2272   #endif
2273 <    for (j = 0; j < rnemdLogWidth_; j++) {
2274 <      valueCount_[j] = 0;
2275 <      valueHist_[j] = 0.0;
2273 >    
2274 >  }
2275 >  
2276 >  void RNEMD::writeReal(int index, unsigned int bin) {
2277 >    if (!doRNEMD_) return;
2278 >    assert(index >=0 && index < ENDINDEX);
2279 >    assert(int(bin) < nBins_);
2280 >    RealType s;
2281 >    int count;
2282 >    
2283 >    count = data_[index].accumulator[bin]->count();
2284 >    if (count == 0) return;
2285 >    
2286 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2287 >    
2288 >    if (! isinf(s) && ! isnan(s)) {
2289 >      rnemdFile_ << "\t" << s;
2290 >    } else{
2291 >      sprintf( painCave.errMsg,
2292 >               "RNEMD detected a numerical error writing: %s for bin %u",
2293 >               data_[index].title.c_str(), bin);
2294 >      painCave.isFatal = 1;
2295 >      simError();
2296 >    }    
2297 >  }
2298 >  
2299 >  void RNEMD::writeVector(int index, unsigned int bin) {
2300 >    if (!doRNEMD_) return;
2301 >    assert(index >=0 && index < ENDINDEX);
2302 >    assert(int(bin) < nBins_);
2303 >    Vector3d s;
2304 >    int count;
2305 >    
2306 >    count = data_[index].accumulator[bin]->count();
2307 >
2308 >    if (count == 0) return;
2309 >
2310 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2311 >    if (isinf(s[0]) || isnan(s[0]) ||
2312 >        isinf(s[1]) || isnan(s[1]) ||
2313 >        isinf(s[2]) || isnan(s[2]) ) {      
2314 >      sprintf( painCave.errMsg,
2315 >               "RNEMD detected a numerical error writing: %s for bin %u",
2316 >               data_[index].title.c_str(), bin);
2317 >      painCave.isFatal = 1;
2318 >      simError();
2319 >    } else {
2320 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2321      }
2322 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
2323 <      for (j = 0; j < rnemdLogWidth_; j++) {
2324 <        xTempHist_[j] = 0.0;
2325 <        yTempHist_[j] = 0.0;
2326 <        zTempHist_[j] = 0.0;
2327 <      }
2322 >  }  
2323 >
2324 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2325 >    if (!doRNEMD_) return;
2326 >    assert(index >=0 && index < ENDINDEX);
2327 >    assert(int(bin) < nBins_);
2328 >    RealType s;
2329 >    int count;
2330 >    
2331 >    count = data_[index].accumulator[bin]->count();
2332 >    if (count == 0) return;
2333 >    
2334 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2335 >    
2336 >    if (! isinf(s) && ! isnan(s)) {
2337 >      rnemdFile_ << "\t" << s;
2338 >    } else{
2339 >      sprintf( painCave.errMsg,
2340 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2341 >               data_[index].title.c_str(), bin);
2342 >      painCave.isFatal = 1;
2343 >      simError();
2344 >    }    
2345    }
2346 +  
2347 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2348 +    if (!doRNEMD_) return;
2349 +    assert(index >=0 && index < ENDINDEX);
2350 +    assert(int(bin) < nBins_);
2351 +    Vector3d s;
2352 +    int count;
2353 +    
2354 +    count = data_[index].accumulator[bin]->count();
2355 +    if (count == 0) return;
2356 +
2357 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2358 +    if (isinf(s[0]) || isnan(s[0]) ||
2359 +        isinf(s[1]) || isnan(s[1]) ||
2360 +        isinf(s[2]) || isnan(s[2]) ) {      
2361 +      sprintf( painCave.errMsg,
2362 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2363 +               data_[index].title.c_str(), bin);
2364 +      painCave.isFatal = 1;
2365 +      simError();
2366 +    } else {
2367 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2368 +    }
2369 +  }  
2370   }
2371 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines