ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 2056 by gezelter, Fri Feb 20 15:12:07 2015 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < #include "integrators/RNEMD.hpp"
43 < #include "math/SquareMatrix3.hpp"
44 < #include "primitives/Molecule.hpp"
45 < #include "primitives/StuntDouble.hpp"
46 <
47 < #ifndef IS_MPI
48 < #include "math/SeqRandNumGen.hpp"
49 < #else
50 < #include "math/ParallelRandNumGen.hpp"
51 < #endif
52 <
53 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
59 <
60 < namespace oopse {
61 <  
62 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
63 <    
64 <    int seedValue;
65 <    Globals * simParams = info->getSimParams();
66 <
67 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
68 <    stringToEnumMap_["Px"] = rnemdPx;
69 <    stringToEnumMap_["Py"] = rnemdPy;
70 <    stringToEnumMap_["Pz"] = rnemdPz;
71 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 <
73 <    const std::string st = simParams->getRNEMD_swapType();
74 <
75 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
76 <    i = stringToEnumMap_.find(st);
77 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
78 <
79 <
80 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
81 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
82 <    exchangeSum_ = 0.0;
83 <    
84 < #ifndef IS_MPI
85 <    if (simParams->haveSeed()) {
86 <      seedValue = simParams->getSeed();
87 <      randNumGen_ = new SeqRandNumGen(seedValue);
88 <    }else {
89 <      randNumGen_ = new SeqRandNumGen();
90 <    }    
91 < #else
92 <    if (simParams->haveSeed()) {
93 <      seedValue = simParams->getSeed();
94 <      randNumGen_ = new ParallelRandNumGen(seedValue);
95 <    }else {
96 <      randNumGen_ = new ParallelRandNumGen();
97 <    }    
98 < #endif
99 <  }
100 <  
101 <  RNEMD::~RNEMD() {
102 <    delete randNumGen_;
103 <  }
104 <
105 <  void RNEMD::doSwap() {
106 <    std::cerr << "in RNEMD!\n";  
107 <    std::cerr << "nBins = " << nBins_ << "\n";
108 <    std::cerr << "swapTime = " << swapTime_ << "\n";
109 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
110 <    std::cerr << "swapType = " << rnemdType_ << "\n";
111 <  }  
112 < }
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 > #ifdef IS_MPI
42 > #include <mpi.h>
43 > #endif
44 >
45 > #include <cmath>
46 > #include <sstream>
47 > #include <string>
48 >
49 > #include "rnemd/RNEMD.hpp"
50 > #include "math/Vector3.hpp"
51 > #include "math/Vector.hpp"
52 > #include "math/SquareMatrix3.hpp"
53 > #include "math/Polynomial.hpp"
54 > #include "primitives/Molecule.hpp"
55 > #include "primitives/StuntDouble.hpp"
56 > #include "utils/PhysicalConstants.hpp"
57 > #include "utils/Tuple.hpp"
58 > #include "brains/Thermo.hpp"
59 > #include "math/ConvexHull.hpp"
60 >
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64 > #endif
65 >
66 > #define HONKING_LARGE_VALUE 1.0e10
67 >
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                hasData_(false), hasDividingArea_(false),
76 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77 >
78 >    trialCount_ = 0;
79 >    failTrialCount_ = 0;
80 >    failRootCount_ = 0;
81 >
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84 >
85 >    doRNEMD_ = rnemdParams->getUseRNEMD();
86 >    if (!doRNEMD_) return;
87 >
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91 >
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108 >
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111 >
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121 >      sprintf(painCave.errMsg,
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129 >      simError();
130 >    }
131 >
132 >    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 >    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 >    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 >    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 >    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 >    hasSelectionA_ = rnemdParams->haveSelectionA();
138 >    hasSelectionB_ = rnemdParams->haveSelectionB();
139 >    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 >    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 >    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 >    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 >    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 >    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 >    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 >    bool hasOutputFields = rnemdParams->haveOutputFields();
147 >    
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162 >
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168 >      sprintf(painCave.errMsg,
169 >              "RNEMD: The current fluxType,\n"
170 >              "\t\t%s\n"
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173 >      painCave.isFatal = 1;
174 >      painCave.severity = OPENMD_ERROR;
175 >      simError();
176 >    }
177 >
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185 >        break;
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190 >        break;
191 >      default :
192 >        methodFluxMismatch = true;
193 >        break;
194 >      }
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215 >      }
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258 >      }
259 >    default:
260 >      break;
261 >    }
262 >
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284 >
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290 >    } else {
291 >      kineticFlux_ = 0.0;
292 >    }
293 >    if (hasMomentumFluxVector) {
294 >      std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
295 >      if (mf.size() != 3) {
296 >          sprintf(painCave.errMsg,
297 >                  "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
298 >                  "\tthere should be 3 parameters, but %lu were specified.\n",
299 >                  mf.size());
300 >          painCave.isFatal = 1;
301 >          simError();      
302 >      }
303 >      momentumFluxVector_.x() = mf[0];
304 >      momentumFluxVector_.y() = mf[1];
305 >      momentumFluxVector_.z() = mf[2];
306 >    } else {
307 >      momentumFluxVector_ = V3Zero;
308 >      if (hasMomentumFlux) {
309 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
310 >        switch (rnemdFluxType_) {
311 >        case rnemdPx:
312 >          momentumFluxVector_.x() = momentumFlux;
313 >          break;
314 >        case rnemdPy:
315 >          momentumFluxVector_.y() = momentumFlux;
316 >          break;
317 >        case rnemdPz:
318 >          momentumFluxVector_.z() = momentumFlux;
319 >          break;
320 >        case rnemdKePx:
321 >          momentumFluxVector_.x() = momentumFlux;
322 >          break;
323 >        case rnemdKePy:
324 >          momentumFluxVector_.y() = momentumFlux;
325 >          break;
326 >        default:
327 >          break;
328 >        }
329 >      }
330 >    }
331 >    if (hasAngularMomentumFluxVector) {
332 >      std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
333 >      if (amf.size() != 3) {
334 >        sprintf(painCave.errMsg,
335 >                "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
336 >                "\tthere should be 3 parameters, but %lu were specified.\n",
337 >                amf.size());
338 >        painCave.isFatal = 1;
339 >        simError();      
340 >      }
341 >      angularMomentumFluxVector_.x() = amf[0];
342 >      angularMomentumFluxVector_.y() = amf[1];
343 >      angularMomentumFluxVector_.z() = amf[2];
344 >    } else {
345 >      angularMomentumFluxVector_ = V3Zero;
346 >      if (hasAngularMomentumFlux) {
347 >        RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
348 >        switch (rnemdFluxType_) {
349 >        case rnemdLx:
350 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
351 >          break;
352 >        case rnemdLy:
353 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
354 >          break;
355 >        case rnemdLz:
356 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
357 >          break;
358 >        case rnemdKeLx:
359 >          angularMomentumFluxVector_.x() = angularMomentumFlux;
360 >          break;
361 >        case rnemdKeLy:
362 >          angularMomentumFluxVector_.y() = angularMomentumFlux;
363 >          break;
364 >        case rnemdKeLz:
365 >          angularMomentumFluxVector_.z() = angularMomentumFlux;
366 >          break;
367 >        default:
368 >          break;
369 >        }
370 >      }        
371 >    }
372 >
373 >    if (hasCoordinateOrigin) {
374 >      std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
375 >      if (co.size() != 3) {
376 >        sprintf(painCave.errMsg,
377 >                "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
378 >                "\tthere should be 3 parameters, but %lu were specified.\n",
379 >                co.size());
380 >        painCave.isFatal = 1;
381 >        simError();      
382 >      }
383 >      coordinateOrigin_.x() = co[0];
384 >      coordinateOrigin_.y() = co[1];
385 >      coordinateOrigin_.z() = co[2];
386 >    } else {
387 >      coordinateOrigin_ = V3Zero;
388 >    }
389 >    
390 >    // do some sanity checking
391 >    
392 >    int selectionCount = seleMan_.getSelectionCount();    
393 >    int nIntegrable = info->getNGlobalIntegrableObjects();
394 >    if (selectionCount > nIntegrable) {
395 >      sprintf(painCave.errMsg,
396 >              "RNEMD: The current objectSelection,\n"
397 >              "\t\t%s\n"
398 >              "\thas resulted in %d selected objects.  However,\n"
399 >              "\tthe total number of integrable objects in the system\n"
400 >              "\tis only %d.  This is almost certainly not what you want\n"
401 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
402 >              "\tselector in the selection script!\n",
403 >              rnemdObjectSelection_.c_str(),
404 >              selectionCount, nIntegrable);
405 >      painCave.isFatal = 0;
406 >      painCave.severity = OPENMD_WARNING;
407 >      simError();
408 >    }
409 >    
410 >    areaAccumulator_ = new Accumulator();
411 >    
412 >    nBins_ = rnemdParams->getOutputBins();
413 >    binWidth_ = rnemdParams->getOutputBinWidth();
414 >    
415 >    data_.resize(RNEMD::ENDINDEX);
416 >    OutputData z;
417 >    z.units =  "Angstroms";
418 >    z.title =  "Z";
419 >    z.dataType = "RealType";
420 >    z.accumulator.reserve(nBins_);
421 >    for (int i = 0; i < nBins_; i++)
422 >      z.accumulator.push_back( new Accumulator() );
423 >    data_[Z] = z;
424 >    outputMap_["Z"] =  Z;
425 >    
426 >    OutputData r;
427 >    r.units =  "Angstroms";
428 >    r.title =  "R";
429 >    r.dataType = "RealType";
430 >    r.accumulator.reserve(nBins_);
431 >    for (int i = 0; i < nBins_; i++)
432 >      r.accumulator.push_back( new Accumulator() );
433 >    data_[R] = r;
434 >    outputMap_["R"] =  R;
435 >    
436 >    OutputData temperature;
437 >    temperature.units =  "K";
438 >    temperature.title =  "Temperature";
439 >    temperature.dataType = "RealType";
440 >    temperature.accumulator.reserve(nBins_);
441 >    for (int i = 0; i < nBins_; i++)
442 >      temperature.accumulator.push_back( new Accumulator() );
443 >    data_[TEMPERATURE] = temperature;
444 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
445 >    
446 >    OutputData velocity;
447 >    velocity.units = "angstroms/fs";
448 >    velocity.title =  "Velocity";  
449 >    velocity.dataType = "Vector3d";
450 >    velocity.accumulator.reserve(nBins_);
451 >    for (int i = 0; i < nBins_; i++)
452 >      velocity.accumulator.push_back( new VectorAccumulator() );
453 >    data_[VELOCITY] = velocity;
454 >    outputMap_["VELOCITY"] = VELOCITY;
455 >    
456 >    OutputData angularVelocity;
457 >    angularVelocity.units = "angstroms^2/fs";
458 >    angularVelocity.title =  "AngularVelocity";  
459 >    angularVelocity.dataType = "Vector3d";
460 >    angularVelocity.accumulator.reserve(nBins_);
461 >    for (int i = 0; i < nBins_; i++)
462 >      angularVelocity.accumulator.push_back( new VectorAccumulator() );
463 >    data_[ANGULARVELOCITY] = angularVelocity;
464 >    outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
465 >    
466 >    OutputData density;
467 >    density.units =  "g cm^-3";
468 >    density.title =  "Density";
469 >    density.dataType = "RealType";
470 >    density.accumulator.reserve(nBins_);
471 >    for (int i = 0; i < nBins_; i++)
472 >      density.accumulator.push_back( new Accumulator() );
473 >    data_[DENSITY] = density;
474 >    outputMap_["DENSITY"] =  DENSITY;
475 >    
476 >    if (hasOutputFields) {
477 >      parseOutputFileFormat(rnemdParams->getOutputFields());
478 >    } else {
479 >      if (usePeriodicBoundaryConditions_)
480 >        outputMask_.set(Z);
481 >      else
482 >        outputMask_.set(R);
483 >      switch (rnemdFluxType_) {
484 >      case rnemdKE:
485 >      case rnemdRotKE:
486 >      case rnemdFullKE:
487 >        outputMask_.set(TEMPERATURE);
488 >        break;
489 >      case rnemdPx:
490 >      case rnemdPy:
491 >        outputMask_.set(VELOCITY);
492 >        break;
493 >      case rnemdPz:        
494 >      case rnemdPvector:
495 >        outputMask_.set(VELOCITY);
496 >        outputMask_.set(DENSITY);
497 >        break;
498 >      case rnemdLx:
499 >      case rnemdLy:
500 >      case rnemdLz:
501 >      case rnemdLvector:
502 >        outputMask_.set(ANGULARVELOCITY);
503 >        break;
504 >      case rnemdKeLx:
505 >      case rnemdKeLy:
506 >      case rnemdKeLz:
507 >      case rnemdKeLvector:
508 >        outputMask_.set(TEMPERATURE);
509 >        outputMask_.set(ANGULARVELOCITY);
510 >        break;
511 >      case rnemdKePx:
512 >      case rnemdKePy:
513 >        outputMask_.set(TEMPERATURE);
514 >        outputMask_.set(VELOCITY);
515 >        break;
516 >      case rnemdKePvector:
517 >        outputMask_.set(TEMPERATURE);
518 >        outputMask_.set(VELOCITY);
519 >        outputMask_.set(DENSITY);        
520 >        break;
521 >      default:
522 >        break;
523 >      }
524 >    }
525 >    
526 >    if (hasOutputFileName) {
527 >      rnemdFileName_ = rnemdParams->getOutputFileName();
528 >    } else {
529 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
530 >    }          
531 >    
532 >    exchangeTime_ = rnemdParams->getExchangeTime();
533 >    
534 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
535 >    // total exchange sums are zeroed out at the beginning:
536 >    
537 >    kineticExchange_ = 0.0;
538 >    momentumExchange_ = V3Zero;
539 >    angularMomentumExchange_ = V3Zero;
540 >    
541 >    std::ostringstream selectionAstream;
542 >    std::ostringstream selectionBstream;
543 >    
544 >    if (hasSelectionA_) {
545 >      selectionA_ = rnemdParams->getSelectionA();
546 >    } else {
547 >      if (usePeriodicBoundaryConditions_) {    
548 >        Mat3x3d hmat = currentSnap_->getHmat();
549 >        
550 >        if (hasSlabWidth)
551 >          slabWidth_ = rnemdParams->getSlabWidth();
552 >        else
553 >          slabWidth_ = hmat(2,2) / 10.0;
554 >        
555 >        if (hasSlabACenter)
556 >          slabACenter_ = rnemdParams->getSlabACenter();
557 >        else
558 >          slabACenter_ = 0.0;
559 >        
560 >        selectionAstream << "select wrappedz > "
561 >                         << slabACenter_ - 0.5*slabWidth_
562 >                         <<  " && wrappedz < "
563 >                         << slabACenter_ + 0.5*slabWidth_;
564 >        selectionA_ = selectionAstream.str();
565 >      } else {
566 >        if (hasSphereARadius)
567 >          sphereARadius_ = rnemdParams->getSphereARadius();
568 >        else {
569 >          // use an initial guess to the size of the inner slab to be 1/10 the
570 >          // radius of an approximately spherical hull:
571 >          Thermo thermo(info);
572 >          RealType hVol = thermo.getHullVolume();
573 >          sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
574 >        }
575 >        selectionAstream << "select r < " << sphereARadius_;
576 >        selectionA_ = selectionAstream.str();
577 >      }
578 >    }
579 >    
580 >    if (hasSelectionB_) {
581 >      selectionB_ = rnemdParams->getSelectionB();
582 >      
583 >    } else {
584 >      if (usePeriodicBoundaryConditions_) {    
585 >        Mat3x3d hmat = currentSnap_->getHmat();
586 >        
587 >        if (hasSlabWidth)
588 >          slabWidth_ = rnemdParams->getSlabWidth();
589 >        else
590 >          slabWidth_ = hmat(2,2) / 10.0;
591 >        
592 >        if (hasSlabBCenter)
593 >          slabBCenter_ = rnemdParams->getSlabBCenter();
594 >        else
595 >          slabBCenter_ = hmat(2,2) / 2.0;
596 >        
597 >        selectionBstream << "select wrappedz > "
598 >                         << slabBCenter_ - 0.5*slabWidth_
599 >                         <<  " && wrappedz < "
600 >                         << slabBCenter_ + 0.5*slabWidth_;
601 >        selectionB_ = selectionBstream.str();
602 >      } else {
603 >        if (hasSphereBRadius_) {
604 >          sphereBRadius_ = rnemdParams->getSphereBRadius();
605 >          selectionBstream << "select r > " << sphereBRadius_;
606 >          selectionB_ = selectionBstream.str();
607 >        } else {
608 >          selectionB_ = "select hull";
609 >          BisHull_ = true;
610 >          hasSelectionB_ = true;
611 >        }
612 >      }
613 >    }
614 >  
615 >  
616 >    // object evaluator:
617 >    evaluator_.loadScriptString(rnemdObjectSelection_);
618 >    seleMan_.setSelectionSet(evaluator_.evaluate());
619 >    evaluatorA_.loadScriptString(selectionA_);
620 >    evaluatorB_.loadScriptString(selectionB_);
621 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
622 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
623 >    commonA_ = seleManA_ & seleMan_;
624 >    commonB_ = seleManB_ & seleMan_;  
625 >  }
626 >  
627 >    
628 >  RNEMD::~RNEMD() {
629 >    if (!doRNEMD_) return;
630 > #ifdef IS_MPI
631 >    if (worldRank == 0) {
632 > #endif
633 >
634 >      writeOutputFile();
635 >
636 >      rnemdFile_.close();
637 >      
638 > #ifdef IS_MPI
639 >    }
640 > #endif
641 >
642 >    // delete all of the objects we created:
643 >    delete areaAccumulator_;    
644 >    data_.clear();
645 >  }
646 >  
647 >  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
648 >    if (!doRNEMD_) return;
649 >    int selei;
650 >    int selej;
651 >
652 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
653 >    Mat3x3d hmat = currentSnap_->getHmat();
654 >
655 >    StuntDouble* sd;
656 >
657 >    RealType min_val;
658 >    int min_found = 0;  
659 >    StuntDouble* min_sd;
660 >
661 >    RealType max_val;
662 >    int max_found = 0;
663 >    StuntDouble* max_sd;
664 >
665 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
666 >         sd = seleManA_.nextSelected(selei)) {
667 >
668 >      Vector3d pos = sd->getPos();
669 >      
670 >      // wrap the stuntdouble's position back into the box:
671 >      
672 >      if (usePeriodicBoundaryConditions_)
673 >        currentSnap_->wrapVector(pos);
674 >      
675 >      RealType mass = sd->getMass();
676 >      Vector3d vel = sd->getVel();
677 >      RealType value;
678 >      
679 >      switch(rnemdFluxType_) {
680 >      case rnemdKE :
681 >        
682 >        value = mass * vel.lengthSquare();
683 >        
684 >        if (sd->isDirectional()) {
685 >          Vector3d angMom = sd->getJ();
686 >          Mat3x3d I = sd->getI();
687 >          
688 >          if (sd->isLinear()) {
689 >            int i = sd->linearAxis();
690 >            int j = (i + 1) % 3;
691 >            int k = (i + 2) % 3;
692 >            value += angMom[j] * angMom[j] / I(j, j) +
693 >              angMom[k] * angMom[k] / I(k, k);
694 >          } else {                        
695 >            value += angMom[0]*angMom[0]/I(0, 0)
696 >              + angMom[1]*angMom[1]/I(1, 1)
697 >              + angMom[2]*angMom[2]/I(2, 2);
698 >          }
699 >        } //angular momenta exchange enabled
700 >        value *= 0.5;
701 >        break;
702 >      case rnemdPx :
703 >        value = mass * vel[0];
704 >        break;
705 >      case rnemdPy :
706 >        value = mass * vel[1];
707 >        break;
708 >      case rnemdPz :
709 >        value = mass * vel[2];
710 >        break;
711 >      default :
712 >        break;
713 >      }
714 >      if (!max_found) {
715 >        max_val = value;
716 >        max_sd = sd;
717 >        max_found = 1;
718 >      } else {
719 >        if (max_val < value) {
720 >          max_val = value;
721 >          max_sd = sd;
722 >        }
723 >      }  
724 >    }
725 >        
726 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
727 >         sd = seleManB_.nextSelected(selej)) {
728 >
729 >      Vector3d pos = sd->getPos();
730 >      
731 >      // wrap the stuntdouble's position back into the box:
732 >      
733 >      if (usePeriodicBoundaryConditions_)
734 >        currentSnap_->wrapVector(pos);
735 >      
736 >      RealType mass = sd->getMass();
737 >      Vector3d vel = sd->getVel();
738 >      RealType value;
739 >      
740 >      switch(rnemdFluxType_) {
741 >      case rnemdKE :
742 >        
743 >        value = mass * vel.lengthSquare();
744 >        
745 >        if (sd->isDirectional()) {
746 >          Vector3d angMom = sd->getJ();
747 >          Mat3x3d I = sd->getI();
748 >          
749 >          if (sd->isLinear()) {
750 >            int i = sd->linearAxis();
751 >            int j = (i + 1) % 3;
752 >            int k = (i + 2) % 3;
753 >            value += angMom[j] * angMom[j] / I(j, j) +
754 >              angMom[k] * angMom[k] / I(k, k);
755 >          } else {                        
756 >            value += angMom[0]*angMom[0]/I(0, 0)
757 >              + angMom[1]*angMom[1]/I(1, 1)
758 >              + angMom[2]*angMom[2]/I(2, 2);
759 >          }
760 >        } //angular momenta exchange enabled
761 >        value *= 0.5;
762 >        break;
763 >      case rnemdPx :
764 >        value = mass * vel[0];
765 >        break;
766 >      case rnemdPy :
767 >        value = mass * vel[1];
768 >        break;
769 >      case rnemdPz :
770 >        value = mass * vel[2];
771 >        break;
772 >      default :
773 >        break;
774 >      }
775 >      
776 >      if (!min_found) {
777 >        min_val = value;
778 >        min_sd = sd;
779 >        min_found = 1;
780 >      } else {
781 >        if (min_val > value) {
782 >          min_val = value;
783 >          min_sd = sd;
784 >        }
785 >      }
786 >    }
787 >    
788 > #ifdef IS_MPI    
789 >    int worldRank;
790 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
791 >        
792 >    int my_min_found = min_found;
793 >    int my_max_found = max_found;
794 >
795 >    // Even if we didn't find a minimum, did someone else?
796 >    MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
797 >                  MPI_COMM_WORLD);
798 >    // Even if we didn't find a maximum, did someone else?
799 >    MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
800 >                  MPI_COMM_WORLD);
801 > #endif
802 >
803 >    if (max_found && min_found) {
804 >
805 > #ifdef IS_MPI
806 >      struct {
807 >        RealType val;
808 >        int rank;
809 >      } max_vals, min_vals;
810 >      
811 >      if (my_min_found) {
812 >        min_vals.val = min_val;
813 >      } else {
814 >        min_vals.val = HONKING_LARGE_VALUE;
815 >      }
816 >      min_vals.rank = worldRank;    
817 >      
818 >      // Who had the minimum?
819 >      MPI_Allreduce(&min_vals, &min_vals,
820 >                    1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
821 >      min_val = min_vals.val;
822 >      
823 >      if (my_max_found) {
824 >        max_vals.val = max_val;
825 >      } else {
826 >        max_vals.val = -HONKING_LARGE_VALUE;
827 >      }
828 >      max_vals.rank = worldRank;    
829 >      
830 >      // Who had the maximum?
831 >      MPI_Allreduce(&max_vals, &max_vals,
832 >                    1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
833 >      max_val = max_vals.val;
834 > #endif
835 >      
836 >      if (min_val < max_val) {
837 >        
838 > #ifdef IS_MPI      
839 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
840 >          // I have both maximum and minimum, so proceed like a single
841 >          // processor version:
842 > #endif
843 >
844 >          Vector3d min_vel = min_sd->getVel();
845 >          Vector3d max_vel = max_sd->getVel();
846 >          RealType temp_vel;
847 >          
848 >          switch(rnemdFluxType_) {
849 >          case rnemdKE :
850 >            min_sd->setVel(max_vel);
851 >            max_sd->setVel(min_vel);
852 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
853 >              Vector3d min_angMom = min_sd->getJ();
854 >              Vector3d max_angMom = max_sd->getJ();
855 >              min_sd->setJ(max_angMom);
856 >              max_sd->setJ(min_angMom);
857 >            }//angular momenta exchange enabled
858 >            //assumes same rigid body identity
859 >            break;
860 >          case rnemdPx :
861 >            temp_vel = min_vel.x();
862 >            min_vel.x() = max_vel.x();
863 >            max_vel.x() = temp_vel;
864 >            min_sd->setVel(min_vel);
865 >            max_sd->setVel(max_vel);
866 >            break;
867 >          case rnemdPy :
868 >            temp_vel = min_vel.y();
869 >            min_vel.y() = max_vel.y();
870 >            max_vel.y() = temp_vel;
871 >            min_sd->setVel(min_vel);
872 >            max_sd->setVel(max_vel);
873 >            break;
874 >          case rnemdPz :
875 >            temp_vel = min_vel.z();
876 >            min_vel.z() = max_vel.z();
877 >            max_vel.z() = temp_vel;
878 >            min_sd->setVel(min_vel);
879 >            max_sd->setVel(max_vel);
880 >            break;
881 >          default :
882 >            break;
883 >          }
884 >
885 > #ifdef IS_MPI
886 >          // the rest of the cases only apply in parallel simulations:
887 >        } else if (max_vals.rank == worldRank) {
888 >          // I had the max, but not the minimum
889 >          
890 >          Vector3d min_vel;
891 >          Vector3d max_vel = max_sd->getVel();
892 >          MPI_Status status;
893 >
894 >          // point-to-point swap of the velocity vector
895 >          MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
896 >                       min_vals.rank, 0,
897 >                       min_vel.getArrayPointer(), 3, MPI_REALTYPE,
898 >                       min_vals.rank, 0, MPI_COMM_WORLD, &status);
899 >          
900 >          switch(rnemdFluxType_) {
901 >          case rnemdKE :
902 >            max_sd->setVel(min_vel);
903 >            //angular momenta exchange enabled
904 >            if (max_sd->isDirectional()) {
905 >              Vector3d min_angMom;
906 >              Vector3d max_angMom = max_sd->getJ();
907 >              
908 >              // point-to-point swap of the angular momentum vector
909 >              MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
910 >                           MPI_REALTYPE, min_vals.rank, 1,
911 >                           min_angMom.getArrayPointer(), 3,
912 >                           MPI_REALTYPE, min_vals.rank, 1,
913 >                           MPI_COMM_WORLD, &status);
914 >              
915 >              max_sd->setJ(min_angMom);
916 >            }
917 >            break;
918 >          case rnemdPx :
919 >            max_vel.x() = min_vel.x();
920 >            max_sd->setVel(max_vel);
921 >            break;
922 >          case rnemdPy :
923 >            max_vel.y() = min_vel.y();
924 >            max_sd->setVel(max_vel);
925 >            break;
926 >          case rnemdPz :
927 >            max_vel.z() = min_vel.z();
928 >            max_sd->setVel(max_vel);
929 >            break;
930 >          default :
931 >            break;
932 >          }
933 >        } else if (min_vals.rank == worldRank) {
934 >          // I had the minimum but not the maximum:
935 >          
936 >          Vector3d max_vel;
937 >          Vector3d min_vel = min_sd->getVel();
938 >          MPI_Status status;
939 >          
940 >          // point-to-point swap of the velocity vector
941 >          MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
942 >                       max_vals.rank, 0,
943 >                       max_vel.getArrayPointer(), 3, MPI_REALTYPE,
944 >                       max_vals.rank, 0, MPI_COMM_WORLD, &status);
945 >          
946 >          switch(rnemdFluxType_) {
947 >          case rnemdKE :
948 >            min_sd->setVel(max_vel);
949 >            //angular momenta exchange enabled
950 >            if (min_sd->isDirectional()) {
951 >              Vector3d min_angMom = min_sd->getJ();
952 >              Vector3d max_angMom;
953 >              
954 >              // point-to-point swap of the angular momentum vector
955 >              MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
956 >                           MPI_REALTYPE, max_vals.rank, 1,
957 >                           max_angMom.getArrayPointer(), 3,
958 >                           MPI_REALTYPE, max_vals.rank, 1,
959 >                           MPI_COMM_WORLD, &status);
960 >              
961 >              min_sd->setJ(max_angMom);
962 >            }
963 >            break;
964 >          case rnemdPx :
965 >            min_vel.x() = max_vel.x();
966 >            min_sd->setVel(min_vel);
967 >            break;
968 >          case rnemdPy :
969 >            min_vel.y() = max_vel.y();
970 >            min_sd->setVel(min_vel);
971 >            break;
972 >          case rnemdPz :
973 >            min_vel.z() = max_vel.z();
974 >            min_sd->setVel(min_vel);
975 >            break;
976 >          default :
977 >            break;
978 >          }
979 >        }
980 > #endif
981 >        
982 >        switch(rnemdFluxType_) {
983 >        case rnemdKE:
984 >          kineticExchange_ += max_val - min_val;
985 >          break;
986 >        case rnemdPx:
987 >          momentumExchange_.x() += max_val - min_val;
988 >          break;
989 >        case rnemdPy:
990 >          momentumExchange_.y() += max_val - min_val;
991 >          break;
992 >        case rnemdPz:
993 >          momentumExchange_.z() += max_val - min_val;
994 >          break;
995 >        default:
996 >          break;
997 >        }
998 >      } else {        
999 >        sprintf(painCave.errMsg,
1000 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
1001 >        painCave.isFatal = 0;
1002 >        painCave.severity = OPENMD_INFO;
1003 >        simError();        
1004 >        failTrialCount_++;
1005 >      }
1006 >    } else {
1007 >      sprintf(painCave.errMsg,
1008 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
1009 >              "\twas not present in at least one of the two slabs.\n");
1010 >      painCave.isFatal = 0;
1011 >      painCave.severity = OPENMD_INFO;
1012 >      simError();        
1013 >      failTrialCount_++;
1014 >    }    
1015 >  }
1016 >  
1017 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1018 >    if (!doRNEMD_) return;
1019 >    int selei;
1020 >    int selej;
1021 >
1022 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1023 >    RealType time = currentSnap_->getTime();    
1024 >    Mat3x3d hmat = currentSnap_->getHmat();
1025 >
1026 >    StuntDouble* sd;
1027 >
1028 >    vector<StuntDouble*> hotBin, coldBin;
1029 >
1030 >    RealType Phx = 0.0;
1031 >    RealType Phy = 0.0;
1032 >    RealType Phz = 0.0;
1033 >    RealType Khx = 0.0;
1034 >    RealType Khy = 0.0;
1035 >    RealType Khz = 0.0;
1036 >    RealType Khw = 0.0;
1037 >    RealType Pcx = 0.0;
1038 >    RealType Pcy = 0.0;
1039 >    RealType Pcz = 0.0;
1040 >    RealType Kcx = 0.0;
1041 >    RealType Kcy = 0.0;
1042 >    RealType Kcz = 0.0;
1043 >    RealType Kcw = 0.0;
1044 >
1045 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1046 >         sd = smanA.nextSelected(selei)) {
1047 >
1048 >      Vector3d pos = sd->getPos();
1049 >      
1050 >      // wrap the stuntdouble's position back into the box:
1051 >      
1052 >      if (usePeriodicBoundaryConditions_)
1053 >        currentSnap_->wrapVector(pos);
1054 >      
1055 >      
1056 >      RealType mass = sd->getMass();
1057 >      Vector3d vel = sd->getVel();
1058 >      
1059 >      hotBin.push_back(sd);
1060 >      Phx += mass * vel.x();
1061 >      Phy += mass * vel.y();
1062 >      Phz += mass * vel.z();
1063 >      Khx += mass * vel.x() * vel.x();
1064 >      Khy += mass * vel.y() * vel.y();
1065 >      Khz += mass * vel.z() * vel.z();
1066 >      if (sd->isDirectional()) {
1067 >        Vector3d angMom = sd->getJ();
1068 >        Mat3x3d I = sd->getI();
1069 >        if (sd->isLinear()) {
1070 >          int i = sd->linearAxis();
1071 >          int j = (i + 1) % 3;
1072 >          int k = (i + 2) % 3;
1073 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1074 >            angMom[k] * angMom[k] / I(k, k);
1075 >        } else {
1076 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1077 >            + angMom[1]*angMom[1]/I(1, 1)
1078 >            + angMom[2]*angMom[2]/I(2, 2);
1079 >        }
1080 >      }
1081 >    }
1082 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1083 >         sd = smanB.nextSelected(selej)) {
1084 >      Vector3d pos = sd->getPos();
1085 >      
1086 >      // wrap the stuntdouble's position back into the box:
1087 >      
1088 >      if (usePeriodicBoundaryConditions_)
1089 >        currentSnap_->wrapVector(pos);
1090 >            
1091 >      RealType mass = sd->getMass();
1092 >      Vector3d vel = sd->getVel();
1093 >
1094 >      coldBin.push_back(sd);
1095 >      Pcx += mass * vel.x();
1096 >      Pcy += mass * vel.y();
1097 >      Pcz += mass * vel.z();
1098 >      Kcx += mass * vel.x() * vel.x();
1099 >      Kcy += mass * vel.y() * vel.y();
1100 >      Kcz += mass * vel.z() * vel.z();
1101 >      if (sd->isDirectional()) {
1102 >        Vector3d angMom = sd->getJ();
1103 >        Mat3x3d I = sd->getI();
1104 >        if (sd->isLinear()) {
1105 >          int i = sd->linearAxis();
1106 >          int j = (i + 1) % 3;
1107 >          int k = (i + 2) % 3;
1108 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1109 >            angMom[k] * angMom[k] / I(k, k);
1110 >        } else {
1111 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1112 >            + angMom[1]*angMom[1]/I(1, 1)
1113 >            + angMom[2]*angMom[2]/I(2, 2);
1114 >        }
1115 >      }
1116 >    }
1117 >    
1118 >    Khx *= 0.5;
1119 >    Khy *= 0.5;
1120 >    Khz *= 0.5;
1121 >    Khw *= 0.5;
1122 >    Kcx *= 0.5;
1123 >    Kcy *= 0.5;
1124 >    Kcz *= 0.5;
1125 >    Kcw *= 0.5;
1126 >
1127 > #ifdef IS_MPI
1128 >    MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1129 >    MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130 >    MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131 >    MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132 >    MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133 >    MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1134 >
1135 >    MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1136 >    MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137 >    MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138 >    MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1139 >
1140 >    MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1141 >    MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142 >    MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143 >    MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1144 > #endif
1145 >
1146 >    //solve coldBin coeff's first
1147 >    RealType px = Pcx / Phx;
1148 >    RealType py = Pcy / Phy;
1149 >    RealType pz = Pcz / Phz;
1150 >    RealType c, x, y, z;
1151 >    bool successfulScale = false;
1152 >    if ((rnemdFluxType_ == rnemdFullKE) ||
1153 >        (rnemdFluxType_ == rnemdRotKE)) {
1154 >      //may need sanity check Khw & Kcw > 0
1155 >
1156 >      if (rnemdFluxType_ == rnemdFullKE) {
1157 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1158 >      } else {
1159 >        c = 1.0 - kineticTarget_ / Kcw;
1160 >      }
1161 >
1162 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1163 >        c = sqrt(c);
1164 >
1165 >        RealType w = 0.0;
1166 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1167 >          x = 1.0 + px * (1.0 - c);
1168 >          y = 1.0 + py * (1.0 - c);
1169 >          z = 1.0 + pz * (1.0 - c);
1170 >          /* more complicated way
1171 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1172 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1173 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1174 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1175 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1176 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1177 >          */
1178 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1179 >              (fabs(z - 1.0) < 0.1)) {
1180 >            w = 1.0 + (kineticTarget_
1181 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1182 >                       + Khz * (1.0 - z * z)) / Khw;
1183 >          }//no need to calculate w if x, y or z is out of range
1184 >        } else {
1185 >          w = 1.0 + kineticTarget_ / Khw;
1186 >        }
1187 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1188 >          //if w is in the right range, so should be x, y, z.
1189 >          vector<StuntDouble*>::iterator sdi;
1190 >          Vector3d vel;
1191 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1192 >            if (rnemdFluxType_ == rnemdFullKE) {
1193 >              vel = (*sdi)->getVel() * c;
1194 >              (*sdi)->setVel(vel);
1195 >            }
1196 >            if ((*sdi)->isDirectional()) {
1197 >              Vector3d angMom = (*sdi)->getJ() * c;
1198 >              (*sdi)->setJ(angMom);
1199 >            }
1200 >          }
1201 >          w = sqrt(w);
1202 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1203 >            if (rnemdFluxType_ == rnemdFullKE) {
1204 >              vel = (*sdi)->getVel();
1205 >              vel.x() *= x;
1206 >              vel.y() *= y;
1207 >              vel.z() *= z;
1208 >              (*sdi)->setVel(vel);
1209 >            }
1210 >            if ((*sdi)->isDirectional()) {
1211 >              Vector3d angMom = (*sdi)->getJ() * w;
1212 >              (*sdi)->setJ(angMom);
1213 >            }
1214 >          }
1215 >          successfulScale = true;
1216 >          kineticExchange_ += kineticTarget_;
1217 >        }
1218 >      }
1219 >    } else {
1220 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1221 >      switch(rnemdFluxType_) {
1222 >      case rnemdKE :
1223 >        /* used hotBin coeff's & only scale x & y dimensions
1224 >           RealType px = Phx / Pcx;
1225 >           RealType py = Phy / Pcy;
1226 >           a110 = Khy;
1227 >           c0 = - Khx - Khy - kineticTarget_;
1228 >           a000 = Khx;
1229 >           a111 = Kcy * py * py;
1230 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1231 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1232 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1233 >           a001 = Kcx * px * px;
1234 >        */
1235 >        //scale all three dimensions, let c_x = c_y
1236 >        a000 = Kcx + Kcy;
1237 >        a110 = Kcz;
1238 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1239 >        a001 = Khx * px * px + Khy * py * py;
1240 >        a111 = Khz * pz * pz;
1241 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1242 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1243 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1244 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1245 >        break;
1246 >      case rnemdPx :
1247 >        c = 1 - momentumTarget_.x() / Pcx;
1248 >        a000 = Kcy;
1249 >        a110 = Kcz;
1250 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1251 >        a001 = py * py * Khy;
1252 >        a111 = pz * pz * Khz;
1253 >        b01 = -2.0 * Khy * py * (1.0 + py);
1254 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1255 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1256 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1257 >        break;
1258 >      case rnemdPy :
1259 >        c = 1 - momentumTarget_.y() / Pcy;
1260 >        a000 = Kcx;
1261 >        a110 = Kcz;
1262 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1263 >        a001 = px * px * Khx;
1264 >        a111 = pz * pz * Khz;
1265 >        b01 = -2.0 * Khx * px * (1.0 + px);
1266 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1267 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1268 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1269 >        break;
1270 >      case rnemdPz ://we don't really do this, do we?
1271 >        c = 1 - momentumTarget_.z() / Pcz;
1272 >        a000 = Kcx;
1273 >        a110 = Kcy;
1274 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1275 >        a001 = px * px * Khx;
1276 >        a111 = py * py * Khy;
1277 >        b01 = -2.0 * Khx * px * (1.0 + px);
1278 >        b11 = -2.0 * Khy * py * (1.0 + py);
1279 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1280 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1281 >        break;
1282 >      default :
1283 >        break;
1284 >      }
1285 >      
1286 >      RealType v1 = a000 * a111 - a001 * a110;
1287 >      RealType v2 = a000 * b01;
1288 >      RealType v3 = a000 * b11;
1289 >      RealType v4 = a000 * c1 - a001 * c0;
1290 >      RealType v8 = a110 * b01;
1291 >      RealType v10 = - b01 * c0;
1292 >      
1293 >      RealType u0 = v2 * v10 - v4 * v4;
1294 >      RealType u1 = -2.0 * v3 * v4;
1295 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1296 >      RealType u3 = -2.0 * v1 * v3;
1297 >      RealType u4 = - v1 * v1;
1298 >      //rescale coefficients
1299 >      RealType maxAbs = fabs(u0);
1300 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1301 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1302 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1303 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1304 >      u0 /= maxAbs;
1305 >      u1 /= maxAbs;
1306 >      u2 /= maxAbs;
1307 >      u3 /= maxAbs;
1308 >      u4 /= maxAbs;
1309 >      //max_element(start, end) is also available.
1310 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1311 >      poly.setCoefficient(4, u4);
1312 >      poly.setCoefficient(3, u3);
1313 >      poly.setCoefficient(2, u2);
1314 >      poly.setCoefficient(1, u1);
1315 >      poly.setCoefficient(0, u0);
1316 >      vector<RealType> realRoots = poly.FindRealRoots();
1317 >      
1318 >      vector<RealType>::iterator ri;
1319 >      RealType r1, r2, alpha0;
1320 >      vector<pair<RealType,RealType> > rps;
1321 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1322 >        r2 = *ri;
1323 >        //check if FindRealRoots() give the right answer
1324 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1325 >          sprintf(painCave.errMsg,
1326 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1327 >          painCave.isFatal = 0;
1328 >          simError();
1329 >          failRootCount_++;
1330 >        }
1331 >        //might not be useful w/o rescaling coefficients
1332 >        alpha0 = -c0 - a110 * r2 * r2;
1333 >        if (alpha0 >= 0.0) {
1334 >          r1 = sqrt(alpha0 / a000);
1335 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1336 >              < 1e-6)
1337 >            { rps.push_back(make_pair(r1, r2)); }
1338 >          if (r1 > 1e-6) { //r1 non-negative
1339 >            r1 = -r1;
1340 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1341 >                < 1e-6)
1342 >              { rps.push_back(make_pair(r1, r2)); }
1343 >          }
1344 >        }
1345 >      }
1346 >      // Consider combining together the solving pair part w/ the searching
1347 >      // best solution part so that we don't need the pairs vector
1348 >      if (!rps.empty()) {
1349 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1350 >        RealType diff;
1351 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1352 >        vector<pair<RealType,RealType> >::iterator rpi;
1353 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1354 >          r1 = (*rpi).first;
1355 >          r2 = (*rpi).second;
1356 >          switch(rnemdFluxType_) {
1357 >          case rnemdKE :
1358 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1359 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1360 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1361 >            break;
1362 >          case rnemdPx :
1363 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1364 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1365 >            break;
1366 >          case rnemdPy :
1367 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1368 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1369 >            break;
1370 >          case rnemdPz :
1371 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1372 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1373 >          default :
1374 >            break;
1375 >          }
1376 >          if (diff < smallestDiff) {
1377 >            smallestDiff = diff;
1378 >            bestPair = *rpi;
1379 >          }
1380 >        }
1381 > #ifdef IS_MPI
1382 >        if (worldRank == 0) {
1383 > #endif
1384 >          // sprintf(painCave.errMsg,
1385 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1386 >          //         bestPair.first, bestPair.second);
1387 >          // painCave.isFatal = 0;
1388 >          // painCave.severity = OPENMD_INFO;
1389 >          // simError();
1390 > #ifdef IS_MPI
1391 >        }
1392 > #endif
1393 >        
1394 >        switch(rnemdFluxType_) {
1395 >        case rnemdKE :
1396 >          x = bestPair.first;
1397 >          y = bestPair.first;
1398 >          z = bestPair.second;
1399 >          break;
1400 >        case rnemdPx :
1401 >          x = c;
1402 >          y = bestPair.first;
1403 >          z = bestPair.second;
1404 >          break;
1405 >        case rnemdPy :
1406 >          x = bestPair.first;
1407 >          y = c;
1408 >          z = bestPair.second;
1409 >          break;
1410 >        case rnemdPz :
1411 >          x = bestPair.first;
1412 >          y = bestPair.second;
1413 >          z = c;
1414 >          break;          
1415 >        default :
1416 >          break;
1417 >        }
1418 >        vector<StuntDouble*>::iterator sdi;
1419 >        Vector3d vel;
1420 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1421 >          vel = (*sdi)->getVel();
1422 >          vel.x() *= x;
1423 >          vel.y() *= y;
1424 >          vel.z() *= z;
1425 >          (*sdi)->setVel(vel);
1426 >        }
1427 >        //convert to hotBin coefficient
1428 >        x = 1.0 + px * (1.0 - x);
1429 >        y = 1.0 + py * (1.0 - y);
1430 >        z = 1.0 + pz * (1.0 - z);
1431 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1432 >          vel = (*sdi)->getVel();
1433 >          vel.x() *= x;
1434 >          vel.y() *= y;
1435 >          vel.z() *= z;
1436 >          (*sdi)->setVel(vel);
1437 >        }
1438 >        successfulScale = true;
1439 >        switch(rnemdFluxType_) {
1440 >        case rnemdKE :
1441 >          kineticExchange_ += kineticTarget_;
1442 >          break;
1443 >        case rnemdPx :
1444 >        case rnemdPy :
1445 >        case rnemdPz :
1446 >          momentumExchange_ += momentumTarget_;
1447 >          break;          
1448 >        default :
1449 >          break;
1450 >        }      
1451 >      }
1452 >    }
1453 >    if (successfulScale != true) {
1454 >      sprintf(painCave.errMsg,
1455 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1456 >              "\tthe constraint equations may not exist or there may be\n"
1457 >              "\tno selected objects in one or both slabs.\n");
1458 >      painCave.isFatal = 0;
1459 >      painCave.severity = OPENMD_INFO;
1460 >      simError();        
1461 >      failTrialCount_++;
1462 >    }
1463 >  }
1464 >  
1465 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1466 >    if (!doRNEMD_) return;
1467 >    int selei;
1468 >    int selej;
1469 >
1470 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1471 >    RealType time = currentSnap_->getTime();    
1472 >    Mat3x3d hmat = currentSnap_->getHmat();
1473 >
1474 >    StuntDouble* sd;
1475 >
1476 >    vector<StuntDouble*> hotBin, coldBin;
1477 >
1478 >    Vector3d Ph(V3Zero);
1479 >    Vector3d Lh(V3Zero);
1480 >    RealType Mh = 0.0;
1481 >    Mat3x3d Ih(0.0);
1482 >    RealType Kh = 0.0;
1483 >    Vector3d Pc(V3Zero);
1484 >    Vector3d Lc(V3Zero);
1485 >    RealType Mc = 0.0;
1486 >    Mat3x3d Ic(0.0);
1487 >    RealType Kc = 0.0;
1488 >
1489 >    // Constraints can be on only the linear or angular momentum, but
1490 >    // not both.  Usually, the user will specify which they want, but
1491 >    // in case they don't, the use of periodic boundaries should make
1492 >    // the choice for us.
1493 >    bool doLinearPart = false;
1494 >    bool doAngularPart = false;
1495 >
1496 >    switch (rnemdFluxType_) {
1497 >    case rnemdPx:
1498 >    case rnemdPy:
1499 >    case rnemdPz:
1500 >    case rnemdPvector:
1501 >    case rnemdKePx:
1502 >    case rnemdKePy:
1503 >    case rnemdKePvector:
1504 >      doLinearPart = true;
1505 >      break;
1506 >    case rnemdLx:
1507 >    case rnemdLy:
1508 >    case rnemdLz:
1509 >    case rnemdLvector:
1510 >    case rnemdKeLx:
1511 >    case rnemdKeLy:
1512 >    case rnemdKeLz:
1513 >    case rnemdKeLvector:
1514 >      doAngularPart = true;
1515 >      break;
1516 >    case rnemdKE:
1517 >    case rnemdRotKE:
1518 >    case rnemdFullKE:
1519 >    default:
1520 >      if (usePeriodicBoundaryConditions_)
1521 >        doLinearPart = true;
1522 >      else
1523 >        doAngularPart = true;
1524 >      break;
1525 >    }
1526 >    
1527 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1528 >         sd = smanA.nextSelected(selei)) {
1529 >
1530 >      Vector3d pos = sd->getPos();
1531 >
1532 >      // wrap the stuntdouble's position back into the box:
1533 >      
1534 >      if (usePeriodicBoundaryConditions_)
1535 >        currentSnap_->wrapVector(pos);
1536 >      
1537 >      RealType mass = sd->getMass();
1538 >      Vector3d vel = sd->getVel();
1539 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1540 >      RealType r2;
1541 >      
1542 >      hotBin.push_back(sd);
1543 >      Ph += mass * vel;
1544 >      Mh += mass;
1545 >      Kh += mass * vel.lengthSquare();
1546 >      Lh += mass * cross(rPos, vel);
1547 >      Ih -= outProduct(rPos, rPos) * mass;
1548 >      r2 = rPos.lengthSquare();
1549 >      Ih(0, 0) += mass * r2;
1550 >      Ih(1, 1) += mass * r2;
1551 >      Ih(2, 2) += mass * r2;
1552 >      
1553 >      if (rnemdFluxType_ == rnemdFullKE) {
1554 >        if (sd->isDirectional()) {
1555 >          Vector3d angMom = sd->getJ();
1556 >          Mat3x3d I = sd->getI();
1557 >          if (sd->isLinear()) {
1558 >            int i = sd->linearAxis();
1559 >            int j = (i + 1) % 3;
1560 >            int k = (i + 2) % 3;
1561 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1562 >              angMom[k] * angMom[k] / I(k, k);
1563 >          } else {
1564 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1565 >              angMom[1] * angMom[1] / I(1, 1) +
1566 >              angMom[2] * angMom[2] / I(2, 2);
1567 >          }
1568 >        }
1569 >      }
1570 >    }
1571 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1572 >         sd = smanB.nextSelected(selej)) {
1573 >
1574 >      Vector3d pos = sd->getPos();
1575 >      
1576 >      // wrap the stuntdouble's position back into the box:
1577 >      
1578 >      if (usePeriodicBoundaryConditions_)
1579 >        currentSnap_->wrapVector(pos);
1580 >      
1581 >      RealType mass = sd->getMass();
1582 >      Vector3d vel = sd->getVel();
1583 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1584 >      RealType r2;
1585 >
1586 >      coldBin.push_back(sd);
1587 >      Pc += mass * vel;
1588 >      Mc += mass;
1589 >      Kc += mass * vel.lengthSquare();
1590 >      Lc += mass * cross(rPos, vel);
1591 >      Ic -= outProduct(rPos, rPos) * mass;
1592 >      r2 = rPos.lengthSquare();
1593 >      Ic(0, 0) += mass * r2;
1594 >      Ic(1, 1) += mass * r2;
1595 >      Ic(2, 2) += mass * r2;
1596 >      
1597 >      if (rnemdFluxType_ == rnemdFullKE) {
1598 >        if (sd->isDirectional()) {
1599 >          Vector3d angMom = sd->getJ();
1600 >          Mat3x3d I = sd->getI();
1601 >          if (sd->isLinear()) {
1602 >            int i = sd->linearAxis();
1603 >            int j = (i + 1) % 3;
1604 >            int k = (i + 2) % 3;
1605 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1606 >              angMom[k] * angMom[k] / I(k, k);
1607 >          } else {
1608 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1609 >              angMom[1] * angMom[1] / I(1, 1) +
1610 >              angMom[2] * angMom[2] / I(2, 2);
1611 >          }
1612 >        }
1613 >      }
1614 >    }
1615 >    
1616 >    Kh *= 0.5;
1617 >    Kc *= 0.5;
1618 >    
1619 > #ifdef IS_MPI
1620 >    MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1621 >                  MPI_COMM_WORLD);
1622 >    MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1623 >                  MPI_COMM_WORLD);
1624 >    MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1625 >                  MPI_COMM_WORLD);
1626 >    MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1627 >                  MPI_COMM_WORLD);
1628 >    MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1629 >    MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1630 >    MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1631 >    MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632 >    MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1633 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634 >    MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1635 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1636 > #endif
1637 >    
1638 >
1639 >    Vector3d ac, acrec, bc, bcrec;
1640 >    Vector3d ah, ahrec, bh, bhrec;
1641 >
1642 >    bool successfulExchange = false;
1643 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1644 >      Vector3d vc = Pc / Mc;
1645 >      ac = -momentumTarget_ / Mc + vc;
1646 >      acrec = -momentumTarget_ / Mc;
1647 >      
1648 >      // We now need the inverse of the inertia tensor to calculate the
1649 >      // angular velocity of the cold slab;
1650 >      Mat3x3d Ici = Ic.inverse();
1651 >      Vector3d omegac = Ici * Lc;
1652 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1653 >      bcrec = bc - omegac;
1654 >      
1655 >      RealType cNumerator = Kc - kineticTarget_;
1656 >      if (doLinearPart)
1657 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1658 >      
1659 >      if (doAngularPart)
1660 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1661 >
1662 >      if (cNumerator > 0.0) {
1663 >        
1664 >        RealType cDenominator = Kc;
1665 >
1666 >        if (doLinearPart)
1667 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1668 >
1669 >        if (doAngularPart)
1670 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1671 >        
1672 >        if (cDenominator > 0.0) {
1673 >          RealType c = sqrt(cNumerator / cDenominator);
1674 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1675 >            
1676 >            Vector3d vh = Ph / Mh;
1677 >            ah = momentumTarget_ / Mh + vh;
1678 >            ahrec = momentumTarget_ / Mh;
1679 >            
1680 >            // We now need the inverse of the inertia tensor to
1681 >            // calculate the angular velocity of the hot slab;
1682 >            Mat3x3d Ihi = Ih.inverse();
1683 >            Vector3d omegah = Ihi * Lh;
1684 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1685 >            bhrec = bh - omegah;
1686 >            
1687 >            RealType hNumerator = Kh + kineticTarget_;
1688 >            if (doLinearPart)
1689 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1690 >            
1691 >            if (doAngularPart)
1692 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1693 >              
1694 >            if (hNumerator > 0.0) {
1695 >              
1696 >              RealType hDenominator = Kh;
1697 >              if (doLinearPart)
1698 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1699 >              if (doAngularPart)
1700 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1701 >              
1702 >              if (hDenominator > 0.0) {
1703 >                RealType h = sqrt(hNumerator / hDenominator);
1704 >                if ((h > 0.9) && (h < 1.1)) {
1705 >                  
1706 >                  vector<StuntDouble*>::iterator sdi;
1707 >                  Vector3d vel;
1708 >                  Vector3d rPos;
1709 >                  
1710 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1711 >                    //vel = (*sdi)->getVel();
1712 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1713 >                    if (doLinearPart)
1714 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1715 >                    if (doAngularPart)
1716 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1717 >
1718 >                    (*sdi)->setVel(vel);
1719 >                    if (rnemdFluxType_ == rnemdFullKE) {
1720 >                      if ((*sdi)->isDirectional()) {
1721 >                        Vector3d angMom = (*sdi)->getJ() * c;
1722 >                        (*sdi)->setJ(angMom);
1723 >                      }
1724 >                    }
1725 >                  }
1726 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1727 >                    //vel = (*sdi)->getVel();
1728 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1729 >                    if (doLinearPart)
1730 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1731 >                    if (doAngularPart)
1732 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1733 >
1734 >                    (*sdi)->setVel(vel);
1735 >                    if (rnemdFluxType_ == rnemdFullKE) {
1736 >                      if ((*sdi)->isDirectional()) {
1737 >                        Vector3d angMom = (*sdi)->getJ() * h;
1738 >                        (*sdi)->setJ(angMom);
1739 >                      }
1740 >                    }
1741 >                  }
1742 >                  successfulExchange = true;
1743 >                  kineticExchange_ += kineticTarget_;
1744 >                  momentumExchange_ += momentumTarget_;
1745 >                  angularMomentumExchange_ += angularMomentumTarget_;
1746 >                }
1747 >              }
1748 >            }
1749 >          }
1750 >        }
1751 >      }
1752 >    }
1753 >    if (successfulExchange != true) {
1754 >      sprintf(painCave.errMsg,
1755 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1756 >              "\tthe constraint equations may not exist or there may be\n"
1757 >              "\tno selected objects in one or both slabs.\n");
1758 >      painCave.isFatal = 0;
1759 >      painCave.severity = OPENMD_INFO;
1760 >      simError();        
1761 >      failTrialCount_++;
1762 >    }
1763 >  }
1764 >
1765 >  RealType RNEMD::getDividingArea() {
1766 >
1767 >    if (hasDividingArea_) return dividingArea_;
1768 >
1769 >    RealType areaA, areaB;
1770 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1771 >
1772 >    if (hasSelectionA_) {
1773 >
1774 >      if (evaluatorA_.hasSurfaceArea())
1775 >        areaA = evaluatorA_.getSurfaceArea();
1776 >      else {
1777 >        
1778 >        int isd;
1779 >        StuntDouble* sd;
1780 >        vector<StuntDouble*> aSites;
1781 >        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1782 >        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1783 >             sd = seleManA_.nextSelected(isd)) {
1784 >          aSites.push_back(sd);
1785 >        }
1786 > #if defined(HAVE_QHULL)
1787 >        ConvexHull* surfaceMeshA = new ConvexHull();
1788 >        surfaceMeshA->computeHull(aSites);
1789 >        areaA = surfaceMeshA->getArea();
1790 >        delete surfaceMeshA;
1791 > #else
1792 >        sprintf( painCave.errMsg,
1793 >               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1794 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1795 >        painCave.severity = OPENMD_ERROR;
1796 >        painCave.isFatal = 1;
1797 >        simError();
1798 > #endif
1799 >      }
1800 >
1801 >    } else {
1802 >      if (usePeriodicBoundaryConditions_) {
1803 >        // in periodic boundaries, the surface area is twice the x-y
1804 >        // area of the current box:
1805 >        areaA = 2.0 * snap->getXYarea();
1806 >      } else {
1807 >        // in non-periodic simulations, without explicitly setting
1808 >        // selections, the sphere radius sets the surface area of the
1809 >        // dividing surface:
1810 >        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1811 >      }
1812 >    }
1813 >
1814 >    if (hasSelectionB_) {
1815 >      if (evaluatorB_.hasSurfaceArea()) {
1816 >        areaB = evaluatorB_.getSurfaceArea();
1817 >      } else {
1818 >
1819 >        int isd;
1820 >        StuntDouble* sd;
1821 >        vector<StuntDouble*> bSites;
1822 >        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1823 >        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1824 >             sd = seleManB_.nextSelected(isd)) {
1825 >          bSites.push_back(sd);
1826 >        }
1827 >        
1828 > #if defined(HAVE_QHULL)
1829 >        ConvexHull* surfaceMeshB = new ConvexHull();    
1830 >        surfaceMeshB->computeHull(bSites);
1831 >        areaB = surfaceMeshB->getArea();
1832 >        delete surfaceMeshB;
1833 > #else
1834 >        sprintf( painCave.errMsg,
1835 >                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1836 >                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1837 >        painCave.severity = OPENMD_ERROR;
1838 >        painCave.isFatal = 1;
1839 >        simError();
1840 > #endif
1841 >      }
1842 >      
1843 >    } else {
1844 >      if (usePeriodicBoundaryConditions_) {
1845 >        // in periodic boundaries, the surface area is twice the x-y
1846 >        // area of the current box:
1847 >        areaB = 2.0 * snap->getXYarea();
1848 >      } else {
1849 >        // in non-periodic simulations, without explicitly setting
1850 >        // selections, but if a sphereBradius has been set, just use that:
1851 >        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1852 >      }
1853 >    }
1854 >      
1855 >    dividingArea_ = min(areaA, areaB);
1856 >    hasDividingArea_ = true;
1857 >    return dividingArea_;
1858 >  }
1859 >  
1860 >  void RNEMD::doRNEMD() {
1861 >    if (!doRNEMD_) return;
1862 >    trialCount_++;
1863 >
1864 >    // object evaluator:
1865 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1866 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1867 >
1868 >    evaluatorA_.loadScriptString(selectionA_);
1869 >    evaluatorB_.loadScriptString(selectionB_);
1870 >
1871 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1872 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1873 >
1874 >    commonA_ = seleManA_ & seleMan_;
1875 >    commonB_ = seleManB_ & seleMan_;
1876 >
1877 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1878 >    // dt = exchange time interval
1879 >    // flux = target flux
1880 >    // dividingArea = smallest dividing surface between the two regions
1881 >
1882 >    hasDividingArea_ = false;
1883 >    RealType area = getDividingArea();
1884 >
1885 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1886 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1887 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1888 >
1889 >    switch(rnemdMethod_) {
1890 >    case rnemdSwap:
1891 >      doSwap(commonA_, commonB_);
1892 >      break;
1893 >    case rnemdNIVS:
1894 >      doNIVS(commonA_, commonB_);
1895 >      break;
1896 >    case rnemdVSS:
1897 >      doVSS(commonA_, commonB_);
1898 >      break;
1899 >    case rnemdUnkownMethod:
1900 >    default :
1901 >      break;
1902 >    }
1903 >  }
1904 >
1905 >  void RNEMD::collectData() {
1906 >    if (!doRNEMD_) return;
1907 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1908 >
1909 >    // collectData can be called more frequently than the doRNEMD, so use the
1910 >    // computed area from the last exchange time:
1911 >    RealType area = getDividingArea();
1912 >    areaAccumulator_->add(area);
1913 >    Mat3x3d hmat = currentSnap_->getHmat();
1914 >    Vector3d u = angularMomentumFluxVector_;
1915 >    u.normalize();
1916 >
1917 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1918 >
1919 >    int selei(0);
1920 >    StuntDouble* sd;
1921 >    int binNo;
1922 >    RealType mass;
1923 >    Vector3d vel;
1924 >    Vector3d rPos;
1925 >    RealType KE;
1926 >    Vector3d L;
1927 >    Mat3x3d I;
1928 >    RealType r2;
1929 >
1930 >    vector<RealType> binMass(nBins_, 0.0);
1931 >    vector<Vector3d> binP(nBins_, V3Zero);
1932 >    vector<RealType> binOmega(nBins_, 0.0);
1933 >    vector<Vector3d> binL(nBins_, V3Zero);
1934 >    vector<Mat3x3d>  binI(nBins_);
1935 >    vector<RealType> binKE(nBins_, 0.0);
1936 >    vector<int> binDOF(nBins_, 0);
1937 >    vector<int> binCount(nBins_, 0);
1938 >
1939 >    // alternative approach, track all molecules instead of only those
1940 >    // selected for scaling/swapping:
1941 >    /*
1942 >      SimInfo::MoleculeIterator miter;
1943 >      vector<StuntDouble*>::iterator iiter;
1944 >      Molecule* mol;
1945 >      StuntDouble* sd;
1946 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1947 >      mol = info_->nextMolecule(miter))
1948 >      sd is essentially sd
1949 >      for (sd = mol->beginIntegrableObject(iiter);
1950 >      sd != NULL;
1951 >      sd = mol->nextIntegrableObject(iiter))
1952 >    */
1953 >
1954 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1955 >         sd = seleMan_.nextSelected(selei)) {    
1956 >    
1957 >      Vector3d pos = sd->getPos();
1958 >
1959 >      // wrap the stuntdouble's position back into the box:
1960 >      
1961 >      if (usePeriodicBoundaryConditions_) {
1962 >        currentSnap_->wrapVector(pos);
1963 >        // which bin is this stuntdouble in?
1964 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1965 >        // Shift molecules by half a box to have bins start at 0
1966 >        // The modulo operator is used to wrap the case when we are
1967 >        // beyond the end of the bins back to the beginning.
1968 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1969 >      } else {
1970 >        Vector3d rPos = pos - coordinateOrigin_;
1971 >        binNo = int(rPos.length() / binWidth_);
1972 >      }
1973 >
1974 >      mass = sd->getMass();
1975 >      vel = sd->getVel();
1976 >      rPos = sd->getPos() - coordinateOrigin_;
1977 >      KE = 0.5 * mass * vel.lengthSquare();
1978 >      L = mass * cross(rPos, vel);
1979 >      I = outProduct(rPos, rPos) * mass;
1980 >      r2 = rPos.lengthSquare();
1981 >      I(0, 0) += mass * r2;
1982 >      I(1, 1) += mass * r2;
1983 >      I(2, 2) += mass * r2;
1984 >
1985 >      // Project the relative position onto a plane perpendicular to
1986 >      // the angularMomentumFluxVector:
1987 >      // Vector3d rProj = rPos - dot(rPos, u) * u;
1988 >      // Project the velocity onto a plane perpendicular to the
1989 >      // angularMomentumFluxVector:
1990 >      // Vector3d vProj = vel  - dot(vel, u) * u;
1991 >      // Compute angular velocity vector (should be nearly parallel to
1992 >      // angularMomentumFluxVector
1993 >      // Vector3d aVel = cross(rProj, vProj);
1994 >
1995 >      if (binNo >= 0 && binNo < nBins_)  {
1996 >        binCount[binNo]++;
1997 >        binMass[binNo] += mass;
1998 >        binP[binNo] += mass*vel;
1999 >        binKE[binNo] += KE;
2000 >        binI[binNo] += I;
2001 >        binL[binNo] += L;
2002 >        binDOF[binNo] += 3;
2003 >        
2004 >        if (sd->isDirectional()) {
2005 >          Vector3d angMom = sd->getJ();
2006 >          Mat3x3d Ia = sd->getI();
2007 >          if (sd->isLinear()) {
2008 >            int i = sd->linearAxis();
2009 >            int j = (i + 1) % 3;
2010 >            int k = (i + 2) % 3;
2011 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2012 >                                   angMom[k] * angMom[k] / Ia(k, k));
2013 >            binDOF[binNo] += 2;
2014 >          } else {
2015 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2016 >                                   angMom[1] * angMom[1] / Ia(1, 1) +
2017 >                                   angMom[2] * angMom[2] / Ia(2, 2));
2018 >            binDOF[binNo] += 3;
2019 >          }
2020 >        }
2021 >      }
2022 >    }
2023 >
2024 > #ifdef IS_MPI
2025 >
2026 >    for (int i = 0; i < nBins_; i++) {
2027 >      
2028 >      MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2029 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2030 >      MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2031 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2032 >      MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2033 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 >      MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2035 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 >      MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2037 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038 >      MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2039 >                    1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2040 >      MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2041 >                    1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2042 >      //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2043 >      //                          1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2044 >    }
2045 >    
2046 > #endif
2047 >
2048 >    Vector3d omega;
2049 >    RealType den;
2050 >    RealType temp;
2051 >    RealType z;
2052 >    RealType r;
2053 >    for (int i = 0; i < nBins_; i++) {
2054 >      if (usePeriodicBoundaryConditions_) {
2055 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2056 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2057 >          / currentSnap_->getVolume() ;
2058 >      } else {
2059 >        r = (((RealType)i + 0.5) * binWidth_);
2060 >        RealType rinner = (RealType)i * binWidth_;
2061 >        RealType router = (RealType)(i+1) * binWidth_;
2062 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2063 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2064 >      }
2065 >      vel = binP[i] / binMass[i];
2066 >
2067 >      omega = binI[i].inverse() * binL[i];
2068 >
2069 >      // omega = binOmega[i] / binCount[i];
2070 >
2071 >      if (binCount[i] > 0) {
2072 >        // only add values if there are things to add
2073 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2074 >                                 PhysicalConstants::energyConvert);
2075 >        
2076 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2077 >          if(outputMask_[j]) {
2078 >            switch(j) {
2079 >            case Z:
2080 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2081 >              break;
2082 >            case R:
2083 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2084 >              break;
2085 >            case TEMPERATURE:
2086 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2087 >              break;
2088 >            case VELOCITY:
2089 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2090 >              break;
2091 >            case ANGULARVELOCITY:  
2092 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2093 >              break;
2094 >            case DENSITY:
2095 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2096 >              break;
2097 >            }
2098 >          }
2099 >        }
2100 >      }
2101 >    }
2102 >    hasData_ = true;
2103 >  }
2104 >
2105 >  void RNEMD::getStarted() {
2106 >    if (!doRNEMD_) return;
2107 >    hasDividingArea_ = false;
2108 >    collectData();
2109 >    writeOutputFile();
2110 >  }
2111 >
2112 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2113 >    if (!doRNEMD_) return;
2114 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2115 >    
2116 >    while(tokenizer.hasMoreTokens()) {
2117 >      std::string token(tokenizer.nextToken());
2118 >      toUpper(token);
2119 >      OutputMapType::iterator i = outputMap_.find(token);
2120 >      if (i != outputMap_.end()) {
2121 >        outputMask_.set(i->second);
2122 >      } else {
2123 >        sprintf( painCave.errMsg,
2124 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2125 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2126 >        painCave.isFatal = 0;
2127 >        painCave.severity = OPENMD_ERROR;
2128 >        simError();            
2129 >      }
2130 >    }
2131 >  }
2132 >  
2133 >  void RNEMD::writeOutputFile() {
2134 >    if (!doRNEMD_) return;
2135 >    if (!hasData_) return;
2136 >    
2137 > #ifdef IS_MPI
2138 >    // If we're the root node, should we print out the results
2139 >    int worldRank;
2140 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2141 >
2142 >    if (worldRank == 0) {
2143 > #endif
2144 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2145 >      
2146 >      if( !rnemdFile_ ){        
2147 >        sprintf( painCave.errMsg,
2148 >                 "Could not open \"%s\" for RNEMD output.\n",
2149 >                 rnemdFileName_.c_str());
2150 >        painCave.isFatal = 1;
2151 >        simError();
2152 >      }
2153 >
2154 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2155 >
2156 >      RealType time = currentSnap_->getTime();
2157 >      RealType avgArea;
2158 >      areaAccumulator_->getAverage(avgArea);
2159 >
2160 >      RealType Jz(0.0);
2161 >      Vector3d JzP(V3Zero);
2162 >      Vector3d JzL(V3Zero);
2163 >      if (time >= info_->getSimParams()->getDt()) {
2164 >        Jz = kineticExchange_ / (time * avgArea)
2165 >          / PhysicalConstants::energyConvert;
2166 >        JzP = momentumExchange_ / (time * avgArea);
2167 >        JzL = angularMomentumExchange_ / (time * avgArea);
2168 >      }
2169 >
2170 >      rnemdFile_ << "#######################################################\n";
2171 >      rnemdFile_ << "# RNEMD {\n";
2172 >
2173 >      map<string, RNEMDMethod>::iterator mi;
2174 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2175 >        if ( (*mi).second == rnemdMethod_)
2176 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2177 >      }
2178 >      map<string, RNEMDFluxType>::iterator fi;
2179 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2180 >        if ( (*fi).second == rnemdFluxType_)
2181 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2182 >      }
2183 >      
2184 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2185 >
2186 >      rnemdFile_ << "#    objectSelection = \""
2187 >                 << rnemdObjectSelection_ << "\";\n";
2188 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2189 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2190 >      rnemdFile_ << "# }\n";
2191 >      rnemdFile_ << "#######################################################\n";
2192 >      rnemdFile_ << "# RNEMD report:\n";      
2193 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2194 >      rnemdFile_ << "# Target flux:\n";
2195 >      rnemdFile_ << "#           kinetic = "
2196 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2197 >                 << " (kcal/mol/A^2/fs)\n";
2198 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2199 >                 << " (amu/A/fs^2)\n";
2200 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2201 >                 << " (amu/A^2/fs^2)\n";
2202 >      rnemdFile_ << "# Target one-time exchanges:\n";
2203 >      rnemdFile_ << "#          kinetic = "
2204 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2205 >                 << " (kcal/mol)\n";
2206 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2207 >                 << " (amu*A/fs)\n";
2208 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2209 >                 << " (amu*A^2/fs)\n";
2210 >      rnemdFile_ << "# Actual exchange totals:\n";
2211 >      rnemdFile_ << "#          kinetic = "
2212 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2213 >                 << " (kcal/mol)\n";
2214 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2215 >                 << " (amu*A/fs)\n";      
2216 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2217 >                 << " (amu*A^2/fs)\n";      
2218 >      rnemdFile_ << "# Actual flux:\n";
2219 >      rnemdFile_ << "#          kinetic = " << Jz
2220 >                 << " (kcal/mol/A^2/fs)\n";
2221 >      rnemdFile_ << "#          momentum = " << JzP
2222 >                 << " (amu/A/fs^2)\n";
2223 >      rnemdFile_ << "#  angular momentum = " << JzL
2224 >                 << " (amu/A^2/fs^2)\n";
2225 >      rnemdFile_ << "# Exchange statistics:\n";
2226 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2227 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2228 >      if (rnemdMethod_ == rnemdNIVS) {
2229 >        rnemdFile_ << "#  NIVS root-check errors = "
2230 >                   << failRootCount_ << "\n";
2231 >      }
2232 >      rnemdFile_ << "#######################################################\n";
2233 >      
2234 >      
2235 >      
2236 >      //write title
2237 >      rnemdFile_ << "#";
2238 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2239 >        if (outputMask_[i]) {
2240 >          rnemdFile_ << "\t" << data_[i].title <<
2241 >            "(" << data_[i].units << ")";
2242 >          // add some extra tabs for column alignment
2243 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2244 >        }
2245 >      }
2246 >      rnemdFile_ << std::endl;
2247 >      
2248 >      rnemdFile_.precision(8);
2249 >      
2250 >      for (int j = 0; j < nBins_; j++) {        
2251 >        
2252 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2253 >          if (outputMask_[i]) {
2254 >            if (data_[i].dataType == "RealType")
2255 >              writeReal(i,j);
2256 >            else if (data_[i].dataType == "Vector3d")
2257 >              writeVector(i,j);
2258 >            else {
2259 >              sprintf( painCave.errMsg,
2260 >                       "RNEMD found an unknown data type for: %s ",
2261 >                       data_[i].title.c_str());
2262 >              painCave.isFatal = 1;
2263 >              simError();
2264 >            }
2265 >          }
2266 >        }
2267 >        rnemdFile_ << std::endl;
2268 >        
2269 >      }        
2270 >
2271 >      rnemdFile_ << "#######################################################\n";
2272 >      rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2273 >      rnemdFile_ << "#######################################################\n";
2274 >
2275 >
2276 >      for (int j = 0; j < nBins_; j++) {        
2277 >        rnemdFile_ << "#";
2278 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2279 >          if (outputMask_[i]) {
2280 >            if (data_[i].dataType == "RealType")
2281 >              writeRealErrorBars(i,j);
2282 >            else if (data_[i].dataType == "Vector3d")
2283 >              writeVectorErrorBars(i,j);
2284 >            else {
2285 >              sprintf( painCave.errMsg,
2286 >                       "RNEMD found an unknown data type for: %s ",
2287 >                       data_[i].title.c_str());
2288 >              painCave.isFatal = 1;
2289 >              simError();
2290 >            }
2291 >          }
2292 >        }
2293 >        rnemdFile_ << std::endl;
2294 >        
2295 >      }        
2296 >      
2297 >      rnemdFile_.flush();
2298 >      rnemdFile_.close();
2299 >      
2300 > #ifdef IS_MPI
2301 >    }
2302 > #endif
2303 >    
2304 >  }
2305 >  
2306 >  void RNEMD::writeReal(int index, unsigned int bin) {
2307 >    if (!doRNEMD_) return;
2308 >    assert(index >=0 && index < ENDINDEX);
2309 >    assert(int(bin) < nBins_);
2310 >    RealType s;
2311 >    int count;
2312 >    
2313 >    count = data_[index].accumulator[bin]->count();
2314 >    if (count == 0) return;
2315 >    
2316 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2317 >    
2318 >    if (! isinf(s) && ! isnan(s)) {
2319 >      rnemdFile_ << "\t" << s;
2320 >    } else{
2321 >      sprintf( painCave.errMsg,
2322 >               "RNEMD detected a numerical error writing: %s for bin %u",
2323 >               data_[index].title.c_str(), bin);
2324 >      painCave.isFatal = 1;
2325 >      simError();
2326 >    }    
2327 >  }
2328 >  
2329 >  void RNEMD::writeVector(int index, unsigned int bin) {
2330 >    if (!doRNEMD_) return;
2331 >    assert(index >=0 && index < ENDINDEX);
2332 >    assert(int(bin) < nBins_);
2333 >    Vector3d s;
2334 >    int count;
2335 >    
2336 >    count = data_[index].accumulator[bin]->count();
2337 >
2338 >    if (count == 0) return;
2339 >
2340 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2341 >    if (isinf(s[0]) || isnan(s[0]) ||
2342 >        isinf(s[1]) || isnan(s[1]) ||
2343 >        isinf(s[2]) || isnan(s[2]) ) {      
2344 >      sprintf( painCave.errMsg,
2345 >               "RNEMD detected a numerical error writing: %s for bin %u",
2346 >               data_[index].title.c_str(), bin);
2347 >      painCave.isFatal = 1;
2348 >      simError();
2349 >    } else {
2350 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2351 >    }
2352 >  }  
2353 >
2354 >  void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2355 >    if (!doRNEMD_) return;
2356 >    assert(index >=0 && index < ENDINDEX);
2357 >    assert(int(bin) < nBins_);
2358 >    RealType s;
2359 >    int count;
2360 >    
2361 >    count = data_[index].accumulator[bin]->count();
2362 >    if (count == 0) return;
2363 >    
2364 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2365 >    
2366 >    if (! isinf(s) && ! isnan(s)) {
2367 >      rnemdFile_ << "\t" << s;
2368 >    } else{
2369 >      sprintf( painCave.errMsg,
2370 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2371 >               data_[index].title.c_str(), bin);
2372 >      painCave.isFatal = 1;
2373 >      simError();
2374 >    }    
2375 >  }
2376 >  
2377 >  void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2378 >    if (!doRNEMD_) return;
2379 >    assert(index >=0 && index < ENDINDEX);
2380 >    assert(int(bin) < nBins_);
2381 >    Vector3d s;
2382 >    int count;
2383 >    
2384 >    count = data_[index].accumulator[bin]->count();
2385 >    if (count == 0) return;
2386 >
2387 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2388 >    if (isinf(s[0]) || isnan(s[0]) ||
2389 >        isinf(s[1]) || isnan(s[1]) ||
2390 >        isinf(s[2]) || isnan(s[2]) ) {      
2391 >      sprintf( painCave.errMsg,
2392 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2393 >               data_[index].title.c_str(), bin);
2394 >      painCave.isFatal = 1;
2395 >      simError();
2396 >    } else {
2397 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2398 >    }
2399 >  }  
2400 > }
2401 >

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
trunk/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 2056 by gezelter, Fri Feb 20 15:12:07 2015 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines