ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1774 by gezelter, Wed Aug 8 16:03:02 2012 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 1801 by gezelter, Mon Oct 1 18:21:15 2012 UTC

# Line 53 | Line 53
53   #include <mpi.h>
54   #endif
55  
56 + #ifdef _MSC_VER
57 + #define isnan(x) _isnan((x))
58 + #define isinf(x) (!_finite(x) && !_isnan(x))
59 + #endif
60 +
61   #define HONKING_LARGE_VALUE 1.0e10
62  
63   using namespace std;
# Line 65 | Line 70 | namespace OpenMD {
70      failTrialCount_ = 0;
71      failRootCount_ = 0;
72  
68    int seedValue;
73      Globals * simParams = info->getSimParams();
74      RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
75  
76 +    doRNEMD_ = rnemdParams->getUseRNEMD();
77 +    if (!doRNEMD_) return;
78 +
79      stringToMethod_["Swap"]  = rnemdSwap;
80      stringToMethod_["NIVS"]  = rnemdNIVS;
81      stringToMethod_["VSS"]   = rnemdVSS;
# Line 77 | Line 84 | namespace OpenMD {
84      stringToFluxType_["Px"]  = rnemdPx;
85      stringToFluxType_["Py"]  = rnemdPy;
86      stringToFluxType_["Pz"]  = rnemdPz;
87 +    stringToFluxType_["Pvector"]  = rnemdPvector;
88      stringToFluxType_["KE+Px"]  = rnemdKePx;
89      stringToFluxType_["KE+Py"]  = rnemdKePy;
90      stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
# Line 98 | Line 106 | namespace OpenMD {
106        sprintf(painCave.errMsg,
107                "RNEMD: No fluxType was set in the md file.  This parameter,\n"
108                "\twhich must be one of the following values:\n"
109 <              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
110 <              "\tuse RNEMD\n");
109 >              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
110 >              "\tmust be set to use RNEMD\n");
111        painCave.isFatal = 1;
112        painCave.severity = OPENMD_ERROR;
113        simError();
# Line 197 | Line 205 | namespace OpenMD {
205          break;
206        case rnemdPvector:
207          hasCorrectFlux = hasMomentumFluxVector;
208 +        break;
209        case rnemdKePx:
210        case rnemdKePy:
211          hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
# Line 224 | Line 233 | namespace OpenMD {
233      }
234      if (!hasCorrectFlux) {
235        sprintf(painCave.errMsg,
236 <              "RNEMD: The current method,\n"
228 <              "\t%s, and flux type %s\n"
236 >              "RNEMD: The current method, %s, and flux type, %s,\n"
237                "\tdid not have the correct flux value specified. Options\n"
238                "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
239                methStr.c_str(), fluxStr.c_str());
# Line 235 | Line 243 | namespace OpenMD {
243      }
244  
245      if (hasKineticFlux) {
246 <      kineticFlux_ = rnemdParams->getKineticFlux();
246 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
247 >      // into  amu / fs^3:
248 >      kineticFlux_ = rnemdParams->getKineticFlux()
249 >        * PhysicalConstants::energyConvert;
250      } else {
251        kineticFlux_ = 0.0;
252      }
# Line 270 | Line 281 | namespace OpenMD {
281      // do some sanity checking
282  
283      int selectionCount = seleMan_.getSelectionCount();
284 +
285      int nIntegrable = info->getNGlobalIntegrableObjects();
286  
287      if (selectionCount > nIntegrable) {
# Line 298 | Line 310 | namespace OpenMD {
310      z.title =  "Z";
311      z.dataType = "RealType";
312      z.accumulator.reserve(nBins_);
313 <    for (unsigned int i = 0; i < nBins_; i++)
313 >    for (int i = 0; i < nBins_; i++)
314        z.accumulator.push_back( new Accumulator() );
315      data_[Z] = z;
316      outputMap_["Z"] =  Z;
# Line 308 | Line 320 | namespace OpenMD {
320      temperature.title =  "Temperature";
321      temperature.dataType = "RealType";
322      temperature.accumulator.reserve(nBins_);
323 <    for (unsigned int i = 0; i < nBins_; i++)
323 >    for (int i = 0; i < nBins_; i++)
324        temperature.accumulator.push_back( new Accumulator() );
325      data_[TEMPERATURE] = temperature;
326      outputMap_["TEMPERATURE"] =  TEMPERATURE;
327  
328      OutputData velocity;
329 <    velocity.units = "amu/fs";
329 >    velocity.units = "angstroms/fs";
330      velocity.title =  "Velocity";  
331      velocity.dataType = "Vector3d";
332      velocity.accumulator.reserve(nBins_);
333 <    for (unsigned int i = 0; i < nBins_; i++)
333 >    for (int i = 0; i < nBins_; i++)
334        velocity.accumulator.push_back( new VectorAccumulator() );
335      data_[VELOCITY] = velocity;
336      outputMap_["VELOCITY"] = VELOCITY;
# Line 328 | Line 340 | namespace OpenMD {
340      density.title =  "Density";
341      density.dataType = "RealType";
342      density.accumulator.reserve(nBins_);
343 <    for (unsigned int i = 0; i < nBins_; i++)
343 >    for (int i = 0; i < nBins_; i++)
344        density.accumulator.push_back( new Accumulator() );
345      data_[DENSITY] = density;
346      outputMap_["DENSITY"] =  DENSITY;
# Line 410 | Line 422 | namespace OpenMD {
422    }
423    
424    RNEMD::~RNEMD() {
425 <    
425 >    if (!doRNEMD_) return;
426   #ifdef IS_MPI
427      if (worldRank == 0) {
428   #endif
# Line 432 | Line 444 | namespace OpenMD {
444    }
445  
446    void RNEMD::doSwap() {
447 <
447 >    if (!doRNEMD_) return;
448      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
449      Mat3x3d hmat = currentSnap_->getHmat();
450  
# Line 440 | Line 452 | namespace OpenMD {
452  
453      int selei;
454      StuntDouble* sd;
443    int idx;
455  
456      RealType min_val;
457      bool min_found = false;  
# Line 453 | Line 464 | namespace OpenMD {
464      for (sd = seleMan_.beginSelected(selei); sd != NULL;
465           sd = seleMan_.nextSelected(selei)) {
466  
456      idx = sd->getLocalIndex();
457
467        Vector3d pos = sd->getPos();
468  
469        // wrap the stuntdouble's position back into the box:
# Line 491 | Line 500 | namespace OpenMD {
500                  + angMom[2]*angMom[2]/I(2, 2);
501              }
502            } //angular momenta exchange enabled
494          //energyConvert temporarily disabled
495          //make kineticExchange_ comparable between swap & scale
496          //value = value * 0.5 / PhysicalConstants::energyConvert;
503            value *= 0.5;
504            break;
505          case rnemdPx :
# Line 535 | Line 541 | namespace OpenMD {
541        }
542      }
543      
544 < #ifdef IS_MPI
545 <    int nProc, worldRank;
544 > #ifdef IS_MPI    
545 >    int worldRank = MPI::COMM_WORLD.Get_rank();
546      
541    nProc = MPI::COMM_WORLD.Get_size();
542    worldRank = MPI::COMM_WORLD.Get_rank();
543
547      bool my_min_found = min_found;
548      bool my_max_found = max_found;
549  
# Line 731 | Line 734 | namespace OpenMD {
734          
735          switch(rnemdFluxType_) {
736          case rnemdKE:
734          cerr << "KE\n";
737            kineticExchange_ += max_val - min_val;
738            break;
739          case rnemdPx:
# Line 744 | Line 746 | namespace OpenMD {
746            momentumExchange_.z() += max_val - min_val;
747            break;
748          default:
747          cerr << "default\n";
749            break;
750          }
751        } else {        
# Line 767 | Line 768 | namespace OpenMD {
768    }
769    
770    void RNEMD::doNIVS() {
771 <
771 >    if (!doRNEMD_) return;
772      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
773      Mat3x3d hmat = currentSnap_->getHmat();
774  
# Line 775 | Line 776 | namespace OpenMD {
776  
777      int selei;
778      StuntDouble* sd;
778    int idx;
779  
780      vector<StuntDouble*> hotBin, coldBin;
781  
# Line 797 | Line 797 | namespace OpenMD {
797      for (sd = seleMan_.beginSelected(selei); sd != NULL;
798           sd = seleMan_.nextSelected(selei)) {
799  
800      idx = sd->getLocalIndex();
801
800        Vector3d pos = sd->getPos();
801  
802        // wrap the stuntdouble's position back into the box:
# Line 911 | Line 909 | namespace OpenMD {
909  
910        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
911          c = sqrt(c);
912 <        //std::cerr << "cold slab scaling coefficient: " << c << endl;
915 <        //now convert to hotBin coefficient
912 >
913          RealType w = 0.0;
914          if (rnemdFluxType_ ==  rnemdFullKE) {
915            x = 1.0 + px * (1.0 - c);
# Line 950 | Line 947 | namespace OpenMD {
947              }
948            }
949            w = sqrt(w);
953          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
954          //           << "\twh= " << w << endl;
950            for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
951              if (rnemdFluxType_ == rnemdFullKE) {
952                vel = (*sdi)->getVel();
# Line 1216 | Line 1211 | namespace OpenMD {
1211    }
1212  
1213    void RNEMD::doVSS() {
1214 <
1214 >    if (!doRNEMD_) return;
1215      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1216      RealType time = currentSnap_->getTime();    
1217      Mat3x3d hmat = currentSnap_->getHmat();
# Line 1225 | Line 1220 | namespace OpenMD {
1220  
1221      int selei;
1222      StuntDouble* sd;
1228    int idx;
1223  
1224      vector<StuntDouble*> hotBin, coldBin;
1225  
# Line 1240 | Line 1234 | namespace OpenMD {
1234      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1235           sd = seleMan_.nextSelected(selei)) {
1236  
1243      idx = sd->getLocalIndex();
1244
1237        Vector3d pos = sd->getPos();
1238  
1239        // wrap the stuntdouble's position back into the box:
# Line 1260 | Line 1252 | namespace OpenMD {
1252        
1253          if (inA) {
1254            hotBin.push_back(sd);
1263          //std::cerr << "before, velocity = " << vel << endl;
1255            Ph += mass * vel;
1265          //std::cerr << "after, velocity = " << vel << endl;
1256            Mh += mass;
1257            Kh += mass * vel.lengthSquare();
1258            if (rnemdFluxType_ == rnemdFullKE) {
# Line 1310 | Line 1300 | namespace OpenMD {
1300      
1301      Kh *= 0.5;
1302      Kc *= 0.5;
1313
1314    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1315    //        << "\tKc= " << Kc << endl;
1316    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1303      
1304   #ifdef IS_MPI
1305      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
# Line 1345 | Line 1331 | namespace OpenMD {
1331                if (hDenominator > 0.0) {
1332                  RealType h = sqrt(hNumerator / hDenominator);
1333                  if ((h > 0.9) && (h < 1.1)) {
1334 <                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1349 <                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1334 >
1335                    vector<StuntDouble*>::iterator sdi;
1336                    Vector3d vel;
1337                    for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
# Line 1394 | Line 1379 | namespace OpenMD {
1379    }
1380  
1381    void RNEMD::doRNEMD() {
1382 <
1382 >    if (!doRNEMD_) return;
1383      trialCount_++;
1384      switch(rnemdMethod_) {
1385      case rnemdSwap:
# Line 1413 | Line 1398 | namespace OpenMD {
1398    }
1399  
1400    void RNEMD::collectData() {
1401 <
1401 >    if (!doRNEMD_) return;
1402      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1403      Mat3x3d hmat = currentSnap_->getHmat();
1404  
# Line 1421 | Line 1406 | namespace OpenMD {
1406  
1407      seleMan_.setSelectionSet(evaluator_.evaluate());
1408  
1409 <    int selei;
1409 >    int selei(0);
1410      StuntDouble* sd;
1426    int idx;
1411  
1412      vector<RealType> binMass(nBins_, 0.0);
1413      vector<RealType> binPx(nBins_, 0.0);
# Line 1447 | Line 1431 | namespace OpenMD {
1431               sd != NULL;
1432               sd = mol->nextIntegrableObject(iiter))
1433      */
1434 +
1435      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1436 <         sd = seleMan_.nextSelected(selei)) {
1437 <      
1453 <      idx = sd->getLocalIndex();
1454 <      
1436 >         sd = seleMan_.nextSelected(selei)) {    
1437 >    
1438        Vector3d pos = sd->getPos();
1439  
1440        // wrap the stuntdouble's position back into the box:
# Line 1466 | Line 1449 | namespace OpenMD {
1449        // The modulo operator is used to wrap the case when we are
1450        // beyond the end of the bins back to the beginning.
1451        int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1452 <    
1452 >
1453        RealType mass = sd->getMass();
1454        Vector3d vel = sd->getVel();
1455  
# Line 1497 | Line 1480 | namespace OpenMD {
1480        }
1481      }
1482      
1500
1483   #ifdef IS_MPI
1484      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1485                                nBins_, MPI::INT, MPI::SUM);
# Line 1524 | Line 1506 | namespace OpenMD {
1506        vel.x() = binPx[i] / binMass[i];
1507        vel.y() = binPy[i] / binMass[i];
1508        vel.z() = binPz[i] / binMass[i];
1509 <      den = binCount[i] * nBins_ / currentSnap_->getVolume();
1509 >
1510 >      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1511 >        / currentSnap_->getVolume() ;
1512 >
1513        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1514                                 PhysicalConstants::energyConvert);
1515 <
1515 >  
1516        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1517          if(outputMask_[j]) {
1518            switch(j) {
1519            case Z:
1520 <            (data_[j].accumulator[i])->add(z);
1520 >            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1521              break;
1522            case TEMPERATURE:
1523 <            data_[j].accumulator[i]->add(temp);
1523 >            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1524              break;
1525            case VELOCITY:
1526              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1527              break;
1528            case DENSITY:
1529 <            data_[j].accumulator[i]->add(den);
1529 >            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1530              break;
1531            }
1532          }
# Line 1550 | Line 1535 | namespace OpenMD {
1535    }
1536  
1537    void RNEMD::getStarted() {
1538 +    if (!doRNEMD_) return;
1539      collectData();
1540      writeOutputFile();
1541    }
1542  
1543    void RNEMD::parseOutputFileFormat(const std::string& format) {
1544 +    if (!doRNEMD_) return;
1545      StringTokenizer tokenizer(format, " ,;|\t\n\r");
1546      
1547      while(tokenizer.hasMoreTokens()) {
# Line 1575 | Line 1562 | namespace OpenMD {
1562    }
1563    
1564    void RNEMD::writeOutputFile() {
1565 +    if (!doRNEMD_) return;
1566      
1567   #ifdef IS_MPI
1568      // If we're the root node, should we print out the results
# Line 1596 | Line 1584 | namespace OpenMD {
1584        RealType time = currentSnap_->getTime();
1585        RealType avgArea;
1586        areaAccumulator_->getAverage(avgArea);
1587 <      RealType Jz = kineticExchange_ / (2.0 * time * avgArea);
1587 >      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1588 >        / PhysicalConstants::energyConvert;
1589        Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1590  
1591        rnemdFile_ << "#######################################################\n";
# Line 1613 | Line 1602 | namespace OpenMD {
1602            rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1603        }
1604        
1605 <      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << "; fs\n";
1605 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1606  
1607        rnemdFile_ << "#    objectSelection = \""
1608                   << rnemdObjectSelection_ << "\";\n";
# Line 1625 | Line 1614 | namespace OpenMD {
1614        rnemdFile_ << "# RNEMD report:\n";      
1615        rnemdFile_ << "#     running time = " << time << " fs\n";
1616        rnemdFile_ << "#     target flux:\n";
1617 <      rnemdFile_ << "#         kinetic = " << kineticFlux_ << "\n";
1618 <      rnemdFile_ << "#         momentum = " << momentumFluxVector_ << "\n";
1619 <      rnemdFile_ << "#     target one-time exchanges:\n";
1620 <      rnemdFile_ << "#         kinetic = " << kineticTarget_ << "\n";
1621 <      rnemdFile_ << "#         momentum = " << momentumTarget_ << "\n";
1617 >      rnemdFile_ << "#         kinetic = "
1618 >                 << kineticFlux_ / PhysicalConstants::energyConvert
1619 >                 << " (kcal/mol/A^2/fs)\n";
1620 >      rnemdFile_ << "#         momentum = " << momentumFluxVector_
1621 >                 << " (amu/A/fs^2)\n";
1622 >      rnemdFile_ << "#     target one-time exchanges:\n";
1623 >      rnemdFile_ << "#         kinetic = "
1624 >                 << kineticTarget_ / PhysicalConstants::energyConvert
1625 >                 << " (kcal/mol)\n";
1626 >      rnemdFile_ << "#         momentum = " << momentumTarget_
1627 >                 << " (amu*A/fs)\n";
1628        rnemdFile_ << "#     actual exchange totals:\n";
1629 <      rnemdFile_ << "#         kinetic = " << kineticExchange_ << "\n";
1630 <      rnemdFile_ << "#         momentum = " << momentumExchange_  << "\n";
1629 >      rnemdFile_ << "#         kinetic = "
1630 >                 << kineticExchange_ / PhysicalConstants::energyConvert
1631 >                 << " (kcal/mol)\n";
1632 >      rnemdFile_ << "#         momentum = " << momentumExchange_
1633 >                 << " (amu*A/fs)\n";      
1634        rnemdFile_ << "#     actual flux:\n";
1635 <      rnemdFile_ << "#         kinetic = " << Jz << "\n";
1636 <      rnemdFile_ << "#         momentum = " << JzP  << "\n";
1635 >      rnemdFile_ << "#         kinetic = " << Jz
1636 >                 << " (kcal/mol/A^2/fs)\n";
1637 >      rnemdFile_ << "#         momentum = " << JzP
1638 >                 << " (amu/A/fs^2)\n";
1639        rnemdFile_ << "#     exchange statistics:\n";
1640        rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1641        rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
# Line 1653 | Line 1653 | namespace OpenMD {
1653          if (outputMask_[i]) {
1654            rnemdFile_ << "\t" << data_[i].title <<
1655              "(" << data_[i].units << ")";
1656 +          // add some extra tabs for column alignment
1657 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1658          }
1659        }
1660        rnemdFile_ << std::endl;
1661        
1662        rnemdFile_.precision(8);
1663        
1664 <      for (unsigned int j = 0; j < nBins_; j++) {        
1664 >      for (int j = 0; j < nBins_; j++) {        
1665          
1666          for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1667            if (outputMask_[i]) {
# Line 1685 | Line 1687 | namespace OpenMD {
1687        rnemdFile_ << "#######################################################\n";
1688  
1689  
1690 <      for (unsigned int j = 0; j < nBins_; j++) {        
1690 >      for (int j = 0; j < nBins_; j++) {        
1691          rnemdFile_ << "#";
1692          for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1693            if (outputMask_[i]) {
# Line 1716 | Line 1718 | namespace OpenMD {
1718    }
1719    
1720    void RNEMD::writeReal(int index, unsigned int bin) {
1721 +    if (!doRNEMD_) return;
1722      assert(index >=0 && index < ENDINDEX);
1723      assert(bin < nBins_);
1724      RealType s;
1725      
1726 <    data_[index].accumulator[bin]->getAverage(s);
1726 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
1727      
1728      if (! isinf(s) && ! isnan(s)) {
1729        rnemdFile_ << "\t" << s;
# Line 1734 | Line 1737 | namespace OpenMD {
1737    }
1738    
1739    void RNEMD::writeVector(int index, unsigned int bin) {
1740 +    if (!doRNEMD_) return;
1741      assert(index >=0 && index < ENDINDEX);
1742      assert(bin < nBins_);
1743      Vector3d s;
# Line 1752 | Line 1756 | namespace OpenMD {
1756    }  
1757  
1758    void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1759 +    if (!doRNEMD_) return;
1760      assert(index >=0 && index < ENDINDEX);
1761      assert(bin < nBins_);
1762      RealType s;
1763      
1764 <    data_[index].accumulator[bin]->getStdDev(s);
1764 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
1765      
1766      if (! isinf(s) && ! isnan(s)) {
1767        rnemdFile_ << "\t" << s;
# Line 1770 | Line 1775 | namespace OpenMD {
1775    }
1776    
1777    void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1778 +    if (!doRNEMD_) return;
1779      assert(index >=0 && index < ENDINDEX);
1780      assert(bin < nBins_);
1781      Vector3d s;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines