ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 1793 by gezelter, Fri Aug 31 21:16:10 2012 UTC

# Line 40 | Line 40
40   */
41  
42   #include <cmath>
43 < #include "integrators/RNEMD.hpp"
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45   #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
# Line 49 | Line 49
49   #include "primitives/StuntDouble.hpp"
50   #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 <
53 < #ifndef IS_MPI
54 < #include "math/SeqRandNumGen.hpp"
55 < #else
56 < #include "math/ParallelRandNumGen.hpp"
52 > #ifdef IS_MPI
53   #include <mpi.h>
54   #endif
55  
56 + #ifdef _MSC_VER
57 + #define isnan(x) _isnan((x))
58 + #define isinf(x) (!_finite(x) && !_isnan(x))
59 + #endif
60 +
61   #define HONKING_LARGE_VALUE 1.0e10
62  
63   using namespace std;
# Line 65 | Line 66 | namespace OpenMD {
66    RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
67                                  usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
68  
69 +    trialCount_ = 0;
70      failTrialCount_ = 0;
71      failRootCount_ = 0;
72  
71    int seedValue;
73      Globals * simParams = info->getSimParams();
74 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
75  
76 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
77 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 <    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77 <    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
79 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
80 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
81 <    stringToEnumMap_["Px"] = rnemdPx;
82 <    stringToEnumMap_["Py"] = rnemdPy;
83 <    stringToEnumMap_["Pz"] = rnemdPz;
84 <    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85 <    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
76 >    doRNEMD_ = rnemdParams->getUseRNEMD();
77 >    if (!doRNEMD_) return;
78  
79 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
79 >    stringToMethod_["Swap"]  = rnemdSwap;
80 >    stringToMethod_["NIVS"]  = rnemdNIVS;
81 >    stringToMethod_["VSS"]   = rnemdVSS;
82 >
83 >    stringToFluxType_["KE"]  = rnemdKE;
84 >    stringToFluxType_["Px"]  = rnemdPx;
85 >    stringToFluxType_["Py"]  = rnemdPy;
86 >    stringToFluxType_["Pz"]  = rnemdPz;
87 >    stringToFluxType_["Pvector"]  = rnemdPvector;
88 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
89 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
90 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
91 >
92 >    runTime_ = simParams->getRunTime();
93 >    statusTime_ = simParams->getStatusTime();
94 >
95 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
96      evaluator_.loadScriptString(rnemdObjectSelection_);
97      seleMan_.setSelectionSet(evaluator_.evaluate());
98 +
99 +    const string methStr = rnemdParams->getMethod();
100 +    bool hasFluxType = rnemdParams->haveFluxType();
101 +
102 +    string fluxStr;
103 +    if (hasFluxType) {
104 +      fluxStr = rnemdParams->getFluxType();
105 +    } else {
106 +      sprintf(painCave.errMsg,
107 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
108 +              "\twhich must be one of the following values:\n"
109 +              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
110 +              "\tmust be set to use RNEMD\n");
111 +      painCave.isFatal = 1;
112 +      painCave.severity = OPENMD_ERROR;
113 +      simError();
114 +    }
115 +
116 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
117 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
118 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
119 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
120 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
121 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
122 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
123 +    bool hasOutputFields = rnemdParams->haveOutputFields();
124 +    
125 +    map<string, RNEMDMethod>::iterator i;
126 +    i = stringToMethod_.find(methStr);
127 +    if (i != stringToMethod_.end())
128 +      rnemdMethod_ = i->second;
129 +    else {
130 +      sprintf(painCave.errMsg,
131 +              "RNEMD: The current method,\n"
132 +              "\t\t%s is not one of the recognized\n"
133 +              "\texchange methods: Swap, NIVS, or VSS\n",
134 +              methStr.c_str());
135 +      painCave.isFatal = 1;
136 +      painCave.severity = OPENMD_ERROR;
137 +      simError();
138 +    }
139 +
140 +    map<string, RNEMDFluxType>::iterator j;
141 +    j = stringToFluxType_.find(fluxStr);
142 +    if (j != stringToFluxType_.end())
143 +      rnemdFluxType_ = j->second;
144 +    else {
145 +      sprintf(painCave.errMsg,
146 +              "RNEMD: The current fluxType,\n"
147 +              "\t\t%s\n"
148 +              "\tis not one of the recognized flux types.\n",
149 +              fluxStr.c_str());
150 +      painCave.isFatal = 1;
151 +      painCave.severity = OPENMD_ERROR;
152 +      simError();
153 +    }
154 +
155 +    bool methodFluxMismatch = false;
156 +    bool hasCorrectFlux = false;
157 +    switch(rnemdMethod_) {
158 +    case rnemdSwap:
159 +      switch (rnemdFluxType_) {
160 +      case rnemdKE:
161 +        hasCorrectFlux = hasKineticFlux;
162 +        break;
163 +      case rnemdPx:
164 +      case rnemdPy:
165 +      case rnemdPz:
166 +        hasCorrectFlux = hasMomentumFlux;
167 +        break;
168 +      default :
169 +        methodFluxMismatch = true;
170 +        break;
171 +      }
172 +      break;
173 +    case rnemdNIVS:
174 +      switch (rnemdFluxType_) {
175 +      case rnemdKE:
176 +      case rnemdRotKE:
177 +      case rnemdFullKE:
178 +        hasCorrectFlux = hasKineticFlux;
179 +        break;
180 +      case rnemdPx:
181 +      case rnemdPy:
182 +      case rnemdPz:
183 +        hasCorrectFlux = hasMomentumFlux;
184 +        break;
185 +      case rnemdKePx:
186 +      case rnemdKePy:
187 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
188 +        break;
189 +      default:
190 +        methodFluxMismatch = true;
191 +        break;
192 +      }
193 +      break;
194 +    case rnemdVSS:
195 +      switch (rnemdFluxType_) {
196 +      case rnemdKE:
197 +      case rnemdRotKE:
198 +      case rnemdFullKE:
199 +        hasCorrectFlux = hasKineticFlux;
200 +        break;
201 +      case rnemdPx:
202 +      case rnemdPy:
203 +      case rnemdPz:
204 +        hasCorrectFlux = hasMomentumFlux;
205 +        break;
206 +      case rnemdPvector:
207 +        hasCorrectFlux = hasMomentumFluxVector;
208 +        break;
209 +      case rnemdKePx:
210 +      case rnemdKePy:
211 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
212 +        break;
213 +      case rnemdKePvector:
214 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
215 +        break;
216 +      default:
217 +        methodFluxMismatch = true;
218 +        break;
219 +      }
220 +    default:
221 +      break;
222 +    }
223 +
224 +    if (methodFluxMismatch) {
225 +      sprintf(painCave.errMsg,
226 +              "RNEMD: The current method,\n"
227 +              "\t\t%s\n"
228 +              "\tcannot be used with the current flux type, %s\n",
229 +              methStr.c_str(), fluxStr.c_str());
230 +      painCave.isFatal = 1;
231 +      painCave.severity = OPENMD_ERROR;
232 +      simError();        
233 +    }
234 +    if (!hasCorrectFlux) {
235 +      sprintf(painCave.errMsg,
236 +              "RNEMD: The current method, %s, and flux type, %s,\n"
237 +              "\tdid not have the correct flux value specified. Options\n"
238 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
239 +              methStr.c_str(), fluxStr.c_str());
240 +      painCave.isFatal = 1;
241 +      painCave.severity = OPENMD_ERROR;
242 +      simError();        
243 +    }
244  
245 +    if (hasKineticFlux) {
246 +      // convert the kcal / mol / Angstroms^2 / fs values in the md file
247 +      // into  amu / fs^3:
248 +      kineticFlux_ = rnemdParams->getKineticFlux()
249 +        * PhysicalConstants::energyConvert;
250 +    } else {
251 +      kineticFlux_ = 0.0;
252 +    }
253 +    if (hasMomentumFluxVector) {
254 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
255 +    } else {
256 +      momentumFluxVector_ = V3Zero;
257 +      if (hasMomentumFlux) {
258 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
259 +        switch (rnemdFluxType_) {
260 +        case rnemdPx:
261 +          momentumFluxVector_.x() = momentumFlux;
262 +          break;
263 +        case rnemdPy:
264 +          momentumFluxVector_.y() = momentumFlux;
265 +          break;
266 +        case rnemdPz:
267 +          momentumFluxVector_.z() = momentumFlux;
268 +          break;
269 +        case rnemdKePx:
270 +          momentumFluxVector_.x() = momentumFlux;
271 +          break;
272 +        case rnemdKePy:
273 +          momentumFluxVector_.y() = momentumFlux;
274 +          break;
275 +        default:
276 +          break;
277 +        }
278 +      }    
279 +    }
280 +
281      // do some sanity checking
282  
283      int selectionCount = seleMan_.getSelectionCount();
# Line 96 | Line 285 | namespace OpenMD {
285  
286      if (selectionCount > nIntegrable) {
287        sprintf(painCave.errMsg,
288 <              "RNEMD: The current RNEMD_objectSelection,\n"
288 >              "RNEMD: The current objectSelection,\n"
289                "\t\t%s\n"
290                "\thas resulted in %d selected objects.  However,\n"
291                "\tthe total number of integrable objects in the system\n"
# Line 109 | Line 298 | namespace OpenMD {
298        painCave.severity = OPENMD_WARNING;
299        simError();
300      }
112    
113    const string st = simParams->getRNEMD_exchangeType();
301  
302 <    map<string, RNEMDTypeEnum>::iterator i;
116 <    i = stringToEnumMap_.find(st);
117 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
118 <    if (rnemdType_ == rnemdUnknown) {
119 <      sprintf(painCave.errMsg,
120 <              "RNEMD: The current RNEMD_exchangeType,\n"
121 <              "\t\t%s\n"
122 <              "\tis not one of the recognized exchange types.\n",
123 <              st.c_str());
124 <      painCave.isFatal = 1;
125 <      painCave.severity = OPENMD_ERROR;
126 <      simError();
127 <    }
128 <    
129 <    outputTemp_ = false;
130 <    if (simParams->haveRNEMD_outputTemperature()) {
131 <      outputTemp_ = simParams->getRNEMD_outputTemperature();
132 <    } else if ((rnemdType_ == rnemdKineticSwap) ||
133 <               (rnemdType_ == rnemdKineticScale) ||
134 <               (rnemdType_ == rnemdKineticScaleVAM) ||
135 <               (rnemdType_ == rnemdKineticScaleAM)) {
136 <      outputTemp_ = true;
137 <    }
138 <    outputVx_ = false;
139 <    if (simParams->haveRNEMD_outputVx()) {
140 <      outputVx_ = simParams->getRNEMD_outputVx();
141 <    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
142 <      outputVx_ = true;
143 <    }
144 <    outputVy_ = false;
145 <    if (simParams->haveRNEMD_outputVy()) {
146 <      outputVy_ = simParams->getRNEMD_outputVy();
147 <    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
148 <      outputVy_ = true;
149 <    }
150 <    output3DTemp_ = false;
151 <    if (simParams->haveRNEMD_outputXyzTemperature()) {
152 <      output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
153 <    }
154 <    outputRotTemp_ = false;
155 <    if (simParams->haveRNEMD_outputRotTemperature()) {
156 <      outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
157 <    }
302 >    areaAccumulator_ = new Accumulator();
303  
304 < #ifdef IS_MPI
160 <    if (worldRank == 0) {
161 < #endif
304 >    nBins_ = rnemdParams->getOutputBins();
305  
306 <      //may have rnemdWriter separately
307 <      string rnemdFileName;
306 >    data_.resize(RNEMD::ENDINDEX);
307 >    OutputData z;
308 >    z.units =  "Angstroms";
309 >    z.title =  "Z";
310 >    z.dataType = "RealType";
311 >    z.accumulator.reserve(nBins_);
312 >    for (int i = 0; i < nBins_; i++)
313 >      z.accumulator.push_back( new Accumulator() );
314 >    data_[Z] = z;
315 >    outputMap_["Z"] =  Z;
316  
317 <      if (outputTemp_) {
318 <        rnemdFileName = "temperature.log";
319 <        tempLog_.open(rnemdFileName.c_str());
320 <      }
321 <      if (outputVx_) {
322 <        rnemdFileName = "velocityX.log";
323 <        vxzLog_.open(rnemdFileName.c_str());
324 <      }
325 <      if (outputVy_) {
175 <        rnemdFileName = "velocityY.log";
176 <        vyzLog_.open(rnemdFileName.c_str());
177 <      }
317 >    OutputData temperature;
318 >    temperature.units =  "K";
319 >    temperature.title =  "Temperature";
320 >    temperature.dataType = "RealType";
321 >    temperature.accumulator.reserve(nBins_);
322 >    for (int i = 0; i < nBins_; i++)
323 >      temperature.accumulator.push_back( new Accumulator() );
324 >    data_[TEMPERATURE] = temperature;
325 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
326  
327 <      if (output3DTemp_) {
328 <        rnemdFileName = "temperatureX.log";
329 <        xTempLog_.open(rnemdFileName.c_str());
330 <        rnemdFileName = "temperatureY.log";
331 <        yTempLog_.open(rnemdFileName.c_str());
332 <        rnemdFileName = "temperatureZ.log";
333 <        zTempLog_.open(rnemdFileName.c_str());
334 <      }
335 <      if (outputRotTemp_) {
188 <        rnemdFileName = "temperatureR.log";
189 <        rotTempLog_.open(rnemdFileName.c_str());
190 <      }
327 >    OutputData velocity;
328 >    velocity.units = "angstroms/fs";
329 >    velocity.title =  "Velocity";  
330 >    velocity.dataType = "Vector3d";
331 >    velocity.accumulator.reserve(nBins_);
332 >    for (int i = 0; i < nBins_; i++)
333 >      velocity.accumulator.push_back( new VectorAccumulator() );
334 >    data_[VELOCITY] = velocity;
335 >    outputMap_["VELOCITY"] = VELOCITY;
336  
337 < #ifdef IS_MPI
338 <    }
339 < #endif
337 >    OutputData density;
338 >    density.units =  "g cm^-3";
339 >    density.title =  "Density";
340 >    density.dataType = "RealType";
341 >    density.accumulator.reserve(nBins_);
342 >    for (int i = 0; i < nBins_; i++)
343 >      density.accumulator.push_back( new Accumulator() );
344 >    data_[DENSITY] = density;
345 >    outputMap_["DENSITY"] =  DENSITY;
346  
347 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
348 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
198 <    midBin_ = nBins_ / 2;
199 <    if (simParams->haveRNEMD_binShift()) {
200 <      if (simParams->getRNEMD_binShift()) {
201 <        zShift_ = 0.5 / (RealType)(nBins_);
202 <      } else {
203 <        zShift_ = 0.0;
204 <      }
347 >    if (hasOutputFields) {
348 >      parseOutputFileFormat(rnemdParams->getOutputFields());
349      } else {
350 <      zShift_ = 0.0;
351 <    }
352 <    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
353 <    //shift slabs by half slab width, maybe useful in heterogeneous systems
354 <    //set to 0.0 if not using it; N/A in status output yet
355 <    if (simParams->haveRNEMD_logWidth()) {
356 <      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
357 <      /*arbitary rnemdLogWidth_, no checking;
358 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
359 <        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
360 <        cerr << "Automaically set back to default.\n";
361 <        rnemdLogWidth_ = nBins_;
362 <      }*/
363 <    } else {
364 <      set_RNEMD_logWidth(nBins_);
350 >      outputMask_.set(Z);
351 >      switch (rnemdFluxType_) {
352 >      case rnemdKE:
353 >      case rnemdRotKE:
354 >      case rnemdFullKE:
355 >        outputMask_.set(TEMPERATURE);
356 >        break;
357 >      case rnemdPx:
358 >      case rnemdPy:
359 >        outputMask_.set(VELOCITY);
360 >        break;
361 >      case rnemdPz:        
362 >      case rnemdPvector:
363 >        outputMask_.set(VELOCITY);
364 >        outputMask_.set(DENSITY);
365 >        break;
366 >      case rnemdKePx:
367 >      case rnemdKePy:
368 >        outputMask_.set(TEMPERATURE);
369 >        outputMask_.set(VELOCITY);
370 >        break;
371 >      case rnemdKePvector:
372 >        outputMask_.set(TEMPERATURE);
373 >        outputMask_.set(VELOCITY);
374 >        outputMask_.set(DENSITY);        
375 >        break;
376 >      default:
377 >        break;
378 >      }
379      }
380 <    tempHist_.resize(rnemdLogWidth_, 0.0);
381 <    tempCount_.resize(rnemdLogWidth_, 0);
382 <    pxzHist_.resize(rnemdLogWidth_, 0.0);
383 <    //vxzCount_.resize(rnemdLogWidth_, 0);
384 <    pyzHist_.resize(rnemdLogWidth_, 0.0);
385 <    //vyzCount_.resize(rnemdLogWidth_, 0);
380 >      
381 >    if (hasOutputFileName) {
382 >      rnemdFileName_ = rnemdParams->getOutputFileName();
383 >    } else {
384 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
385 >    }          
386  
387 <    mHist_.resize(rnemdLogWidth_, 0.0);
230 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
231 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
232 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
233 <    xyzTempCount_.resize(rnemdLogWidth_, 0);
234 <    rotTempHist_.resize(rnemdLogWidth_, 0.0);
235 <    rotTempCount_.resize(rnemdLogWidth_, 0);
387 >    exchangeTime_ = rnemdParams->getExchangeTime();
388  
389 <    set_RNEMD_exchange_total(0.0);
390 <    if (simParams->haveRNEMD_targetFlux()) {
391 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
392 <    } else {
393 <      set_RNEMD_target_flux(0.0);
394 <    }
395 <    if (simParams->haveRNEMD_targetJzKE()) {
244 <      set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
245 <    } else {
246 <      set_RNEMD_target_JzKE(0.0);
247 <    }
248 <    if (simParams->haveRNEMD_targetJzpx()) {
249 <      set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
250 <    } else {
251 <      set_RNEMD_target_jzpx(0.0);
252 <    }
253 <    jzp_.x() = targetJzpx_;
254 <    njzp_.x() = -targetJzpx_;
255 <    if (simParams->haveRNEMD_targetJzpy()) {
256 <      set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
257 <    } else {
258 <      set_RNEMD_target_jzpy(0.0);
259 <    }
260 <    jzp_.y() = targetJzpy_;
261 <    njzp_.y() = -targetJzpy_;
262 <    if (simParams->haveRNEMD_targetJzpz()) {
263 <      set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
264 <    } else {
265 <      set_RNEMD_target_jzpz(0.0);
266 <    }
267 <    jzp_.z() = targetJzpz_;
268 <    njzp_.z() = -targetJzpz_;
389 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
390 >    Mat3x3d hmat = currentSnap_->getHmat();
391 >  
392 >    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
393 >    // Lx, Ly = box dimensions in x & y
394 >    // dt = exchange time interval
395 >    // flux = target flux
396  
397 < #ifndef IS_MPI
398 <    if (simParams->haveSeed()) {
399 <      seedValue = simParams->getSeed();
400 <      randNumGen_ = new SeqRandNumGen(seedValue);
401 <    }else {
402 <      randNumGen_ = new SeqRandNumGen();
403 <    }    
404 < #else
405 <    if (simParams->haveSeed()) {
406 <      seedValue = simParams->getSeed();
407 <      randNumGen_ = new ParallelRandNumGen(seedValue);
408 <    }else {
409 <      randNumGen_ = new ParallelRandNumGen();
283 <    }    
284 < #endif
285 <  }
397 >    RealType area = currentSnap_->getXYarea();
398 >    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
399 >    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
400 >
401 >    // total exchange sums are zeroed out at the beginning:
402 >
403 >    kineticExchange_ = 0.0;
404 >    momentumExchange_ = V3Zero;
405 >
406 >    if (hasSlabWidth)
407 >      slabWidth_ = rnemdParams->getSlabWidth();
408 >    else
409 >      slabWidth_ = hmat(2,2) / 10.0;
410    
411 <  RNEMD::~RNEMD() {
412 <    delete randNumGen_;
411 >    if (hasSlabACenter)
412 >      slabACenter_ = rnemdParams->getSlabACenter();
413 >    else
414 >      slabACenter_ = 0.0;
415      
416 +    if (hasSlabBCenter)
417 +      slabBCenter_ = rnemdParams->getSlabBCenter();
418 +    else
419 +      slabBCenter_ = hmat(2,2) / 2.0;
420 +    
421 +  }
422 +  
423 +  RNEMD::~RNEMD() {
424 +    if (!doRNEMD_) return;
425   #ifdef IS_MPI
426      if (worldRank == 0) {
427   #endif
293      
294      sprintf(painCave.errMsg,
295              "RNEMD: total failed trials: %d\n",
296              failTrialCount_);
297      painCave.isFatal = 0;
298      painCave.severity = OPENMD_INFO;
299      simError();
428  
429 <      if (outputTemp_) tempLog_.close();
302 <      if (outputVx_)   vxzLog_.close();
303 <      if (outputVy_)   vyzLog_.close();
429 >      writeOutputFile();
430  
431 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
432 <          rnemdType_ == rnemdPyScale) {
307 <        sprintf(painCave.errMsg,
308 <                "RNEMD: total root-checking warnings: %d\n",
309 <                failRootCount_);
310 <        painCave.isFatal = 0;
311 <        painCave.severity = OPENMD_INFO;
312 <        simError();
313 <      }
314 <      if (output3DTemp_) {
315 <        xTempLog_.close();
316 <        yTempLog_.close();
317 <        zTempLog_.close();
318 <      }
319 <      if (outputRotTemp_) rotTempLog_.close();
320 <
431 >      rnemdFile_.close();
432 >      
433   #ifdef IS_MPI
434      }
435   #endif
436    }
437 +  
438 +  bool RNEMD::inSlabA(Vector3d pos) {
439 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
440 +  }
441 +  bool RNEMD::inSlabB(Vector3d pos) {
442 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
443 +  }
444  
445    void RNEMD::doSwap() {
446 <
446 >    if (!doRNEMD_) return;
447      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
448      Mat3x3d hmat = currentSnap_->getHmat();
449  
# Line 332 | Line 451 | namespace OpenMD {
451  
452      int selei;
453      StuntDouble* sd;
335    int idx;
454  
455      RealType min_val;
456      bool min_found = false;  
# Line 345 | Line 463 | namespace OpenMD {
463      for (sd = seleMan_.beginSelected(selei); sd != NULL;
464           sd = seleMan_.nextSelected(selei)) {
465  
348      idx = sd->getLocalIndex();
349
466        Vector3d pos = sd->getPos();
467  
468        // wrap the stuntdouble's position back into the box:
469  
470        if (usePeriodicBoundaryConditions_)
471          currentSnap_->wrapVector(pos);
472 <
473 <      // which bin is this stuntdouble in?
358 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
359 <
360 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
472 >      bool inA = inSlabA(pos);
473 >      bool inB = inSlabB(pos);
474  
475 <
363 <      // if we're in bin 0 or the middleBin
364 <      if (binNo == 0 || binNo == midBin_) {
475 >      if (inA || inB) {
476          
477          RealType mass = sd->getMass();
478          Vector3d vel = sd->getVel();
479          RealType value;
480 <
481 <        switch(rnemdType_) {
482 <        case rnemdKineticSwap :
480 >        
481 >        switch(rnemdFluxType_) {
482 >        case rnemdKE :
483            
484            value = mass * vel.lengthSquare();
485            
# Line 388 | Line 499 | namespace OpenMD {
499                  + angMom[2]*angMom[2]/I(2, 2);
500              }
501            } //angular momenta exchange enabled
391          //energyConvert temporarily disabled
392          //make exchangeSum_ comparable between swap & scale
393          //value = value * 0.5 / PhysicalConstants::energyConvert;
502            value *= 0.5;
503            break;
504          case rnemdPx :
# Line 406 | Line 514 | namespace OpenMD {
514            break;
515          }
516          
517 <        if (binNo == 0) {
517 >        if (inA == 0) {
518            if (!min_found) {
519              min_val = value;
520              min_sd = sd;
# Line 417 | Line 525 | namespace OpenMD {
525                min_sd = sd;
526              }
527            }
528 <        } else { //midBin_
528 >        } else {
529            if (!max_found) {
530              max_val = value;
531              max_sd = sd;
# Line 431 | Line 539 | namespace OpenMD {
539          }
540        }
541      }
542 <
543 < #ifdef IS_MPI
544 <    int nProc, worldRank;
545 <
438 <    nProc = MPI::COMM_WORLD.Get_size();
439 <    worldRank = MPI::COMM_WORLD.Get_rank();
440 <
542 >    
543 > #ifdef IS_MPI    
544 >    int worldRank = MPI::COMM_WORLD.Get_rank();
545 >    
546      bool my_min_found = min_found;
547      bool my_max_found = max_found;
548  
# Line 454 | Line 559 | namespace OpenMD {
559          RealType val;
560          int rank;
561        } max_vals, min_vals;
562 <    
562 >      
563        if (my_min_found) {
564          min_vals.val = min_val;
565        } else {
# Line 492 | Line 597 | namespace OpenMD {
597            Vector3d max_vel = max_sd->getVel();
598            RealType temp_vel;
599            
600 <          switch(rnemdType_) {
601 <          case rnemdKineticSwap :
600 >          switch(rnemdFluxType_) {
601 >          case rnemdKE :
602              min_sd->setVel(max_vel);
603              max_sd->setVel(min_vel);
604              if (min_sd->isDirectional() && max_sd->isDirectional()) {
# Line 544 | Line 649 | namespace OpenMD {
649                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
650                                     min_vals.rank, 0, status);
651            
652 <          switch(rnemdType_) {
653 <          case rnemdKineticSwap :
652 >          switch(rnemdFluxType_) {
653 >          case rnemdKE :
654              max_sd->setVel(min_vel);
655              //angular momenta exchange enabled
656              if (max_sd->isDirectional()) {
# Line 590 | Line 695 | namespace OpenMD {
695                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
696                                     max_vals.rank, 0, status);
697            
698 <          switch(rnemdType_) {
699 <          case rnemdKineticSwap :
698 >          switch(rnemdFluxType_) {
699 >          case rnemdKE :
700              min_sd->setVel(max_vel);
701              //angular momenta exchange enabled
702              if (min_sd->isDirectional()) {
# Line 625 | Line 730 | namespace OpenMD {
730            }
731          }
732   #endif
733 <        exchangeSum_ += max_val - min_val;
733 >        
734 >        switch(rnemdFluxType_) {
735 >        case rnemdKE:
736 >          kineticExchange_ += max_val - min_val;
737 >          break;
738 >        case rnemdPx:
739 >          momentumExchange_.x() += max_val - min_val;
740 >          break;
741 >        case rnemdPy:
742 >          momentumExchange_.y() += max_val - min_val;
743 >          break;
744 >        case rnemdPz:
745 >          momentumExchange_.z() += max_val - min_val;
746 >          break;
747 >        default:
748 >          break;
749 >        }
750        } else {        
751          sprintf(painCave.errMsg,
752 <                "RNEMD: exchange NOT performed because min_val > max_val\n");
752 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
753          painCave.isFatal = 0;
754          painCave.severity = OPENMD_INFO;
755          simError();        
# Line 636 | Line 757 | namespace OpenMD {
757        }
758      } else {
759        sprintf(painCave.errMsg,
760 <              "RNEMD: exchange NOT performed because selected object\n"
761 <              "\tnot present in at least one of the two slabs.\n");
760 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
761 >              "\twas not present in at least one of the two slabs.\n");
762        painCave.isFatal = 0;
763        painCave.severity = OPENMD_INFO;
764        simError();        
765        failTrialCount_++;
766 <    }
646 <    
766 >    }    
767    }
768    
769 <  void RNEMD::doScale() {
770 <
769 >  void RNEMD::doNIVS() {
770 >    if (!doRNEMD_) return;
771      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
772      Mat3x3d hmat = currentSnap_->getHmat();
773  
# Line 655 | Line 775 | namespace OpenMD {
775  
776      int selei;
777      StuntDouble* sd;
658    int idx;
778  
779      vector<StuntDouble*> hotBin, coldBin;
780  
# Line 677 | Line 796 | namespace OpenMD {
796      for (sd = seleMan_.beginSelected(selei); sd != NULL;
797           sd = seleMan_.nextSelected(selei)) {
798  
680      idx = sd->getLocalIndex();
681
799        Vector3d pos = sd->getPos();
800  
801        // wrap the stuntdouble's position back into the box:
# Line 687 | Line 804 | namespace OpenMD {
804          currentSnap_->wrapVector(pos);
805  
806        // which bin is this stuntdouble in?
807 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
807 >      bool inA = inSlabA(pos);
808 >      bool inB = inSlabB(pos);
809  
810 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
811 <
694 <      // if we're in bin 0 or the middleBin
695 <      if (binNo == 0 || binNo == midBin_) {
696 <        
810 >      if (inA || inB) {
811 >              
812          RealType mass = sd->getMass();
813          Vector3d vel = sd->getVel();
814        
815 <        if (binNo == 0) {
815 >        if (inA) {
816            hotBin.push_back(sd);
817            Phx += mass * vel.x();
818            Phy += mass * vel.y();
# Line 705 | Line 820 | namespace OpenMD {
820            Khx += mass * vel.x() * vel.x();
821            Khy += mass * vel.y() * vel.y();
822            Khz += mass * vel.z() * vel.z();
708          //if (rnemdType_ == rnemdKineticScaleVAM) {
823            if (sd->isDirectional()) {
824              Vector3d angMom = sd->getJ();
825              Mat3x3d I = sd->getI();
# Line 721 | Line 835 | namespace OpenMD {
835                  + angMom[2]*angMom[2]/I(2, 2);
836              }
837            }
838 <          //}
725 <        } else { //midBin_
838 >        } else {
839            coldBin.push_back(sd);
840            Pcx += mass * vel.x();
841            Pcy += mass * vel.y();
# Line 730 | Line 843 | namespace OpenMD {
843            Kcx += mass * vel.x() * vel.x();
844            Kcy += mass * vel.y() * vel.y();
845            Kcz += mass * vel.z() * vel.z();
733          //if (rnemdType_ == rnemdKineticScaleVAM) {
846            if (sd->isDirectional()) {
847              Vector3d angMom = sd->getJ();
848              Mat3x3d I = sd->getI();
# Line 746 | Line 858 | namespace OpenMD {
858                  + angMom[2]*angMom[2]/I(2, 2);
859              }
860            }
749          //}
861          }
862        }
863      }
# Line 760 | Line 871 | namespace OpenMD {
871      Kcz *= 0.5;
872      Kcw *= 0.5;
873  
763    std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
764              << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
765              << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
766    std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
767              << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
768
874   #ifdef IS_MPI
875      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
876      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
# Line 791 | Line 896 | namespace OpenMD {
896      RealType pz = Pcz / Phz;
897      RealType c, x, y, z;
898      bool successfulScale = false;
899 <    if ((rnemdType_ == rnemdKineticScaleVAM) ||
900 <        (rnemdType_ == rnemdKineticScaleAM)) {
899 >    if ((rnemdFluxType_ == rnemdFullKE) ||
900 >        (rnemdFluxType_ == rnemdRotKE)) {
901        //may need sanity check Khw & Kcw > 0
902  
903 <      if (rnemdType_ == rnemdKineticScaleVAM) {
904 <        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
903 >      if (rnemdFluxType_ == rnemdFullKE) {
904 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
905        } else {
906 <        c = 1.0 - targetFlux_ / Kcw;
906 >        c = 1.0 - kineticTarget_ / Kcw;
907        }
908  
909        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
910          c = sqrt(c);
911 <        std::cerr << "cold slab scaling coefficient: " << c << endl;
911 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
912          //now convert to hotBin coefficient
913          RealType w = 0.0;
914 <        if (rnemdType_ ==  rnemdKineticScaleVAM) {
914 >        if (rnemdFluxType_ ==  rnemdFullKE) {
915            x = 1.0 + px * (1.0 - c);
916            y = 1.0 + py * (1.0 - c);
917            z = 1.0 + pz * (1.0 - c);
# Line 820 | Line 925 | namespace OpenMD {
925            */
926            if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
927                (fabs(z - 1.0) < 0.1)) {
928 <            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
928 >            w = 1.0 + (kineticTarget_
929 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
930                         + Khz * (1.0 - z * z)) / Khw;
931            }//no need to calculate w if x, y or z is out of range
932          } else {
933 <          w = 1.0 + targetFlux_ / Khw;
933 >          w = 1.0 + kineticTarget_ / Khw;
934          }
935          if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
936            //if w is in the right range, so should be x, y, z.
937            vector<StuntDouble*>::iterator sdi;
938            Vector3d vel;
939            for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
940 <            if (rnemdType_ == rnemdKineticScaleVAM) {
940 >            if (rnemdFluxType_ == rnemdFullKE) {
941                vel = (*sdi)->getVel() * c;
836              //vel.x() *= c;
837              //vel.y() *= c;
838              //vel.z() *= c;
942                (*sdi)->setVel(vel);
943              }
944              if ((*sdi)->isDirectional()) {
945                Vector3d angMom = (*sdi)->getJ() * c;
843              //angMom[0] *= c;
844              //angMom[1] *= c;
845              //angMom[2] *= c;
946                (*sdi)->setJ(angMom);
947              }
948            }
949            w = sqrt(w);
950 <          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951 <                    << "\twh= " << w << endl;
950 >          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951 >          //           << "\twh= " << w << endl;
952            for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
953 <            if (rnemdType_ == rnemdKineticScaleVAM) {
953 >            if (rnemdFluxType_ == rnemdFullKE) {
954                vel = (*sdi)->getVel();
955                vel.x() *= x;
956                vel.y() *= y;
# Line 859 | Line 959 | namespace OpenMD {
959              }
960              if ((*sdi)->isDirectional()) {
961                Vector3d angMom = (*sdi)->getJ() * w;
862              //angMom[0] *= w;
863              //angMom[1] *= w;
864              //angMom[2] *= w;
962                (*sdi)->setJ(angMom);
963              }
964            }
965            successfulScale = true;
966 <          exchangeSum_ += targetFlux_;
966 >          kineticExchange_ += kineticTarget_;
967          }
968        }
969      } else {
970        RealType a000, a110, c0, a001, a111, b01, b11, c1;
971 <      switch(rnemdType_) {
972 <      case rnemdKineticScale :
971 >      switch(rnemdFluxType_) {
972 >      case rnemdKE :
973          /* used hotBin coeff's & only scale x & y dimensions
974             RealType px = Phx / Pcx;
975             RealType py = Phy / Pcy;
976             a110 = Khy;
977 <           c0 = - Khx - Khy - targetFlux_;
977 >           c0 = - Khx - Khy - kineticTarget_;
978             a000 = Khx;
979             a111 = Kcy * py * py;
980             b11 = -2.0 * Kcy * py * (1.0 + py);
981 <           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
981 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
982             b01 = -2.0 * Kcx * px * (1.0 + px);
983             a001 = Kcx * px * px;
984          */
985          //scale all three dimensions, let c_x = c_y
986          a000 = Kcx + Kcy;
987          a110 = Kcz;
988 <        c0 = targetFlux_ - Kcx - Kcy - Kcz;
988 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
989          a001 = Khx * px * px + Khy * py * py;
990          a111 = Khz * pz * pz;
991          b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
992          b11 = -2.0 * Khz * pz * (1.0 + pz);
993          c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
994 <          + Khz * pz * (2.0 + pz) - targetFlux_;
994 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
995          break;
996 <      case rnemdPxScale :
997 <        c = 1 - targetFlux_ / Pcx;
996 >      case rnemdPx :
997 >        c = 1 - momentumTarget_.x() / Pcx;
998          a000 = Kcy;
999          a110 = Kcz;
1000          c0 = Kcx * c * c - Kcx - Kcy - Kcz;
# Line 908 | Line 1005 | namespace OpenMD {
1005          c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1006            + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1007          break;
1008 <      case rnemdPyScale :
1009 <        c = 1 - targetFlux_ / Pcy;
1008 >      case rnemdPy :
1009 >        c = 1 - momentumTarget_.y() / Pcy;
1010          a000 = Kcx;
1011          a110 = Kcz;
1012          c0 = Kcy * c * c - Kcx - Kcy - Kcz;
# Line 920 | Line 1017 | namespace OpenMD {
1017          c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1018            + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1019          break;
1020 <      case rnemdPzScale ://we don't really do this, do we?
1021 <        c = 1 - targetFlux_ / Pcz;
1020 >      case rnemdPz ://we don't really do this, do we?
1021 >        c = 1 - momentumTarget_.z() / Pcz;
1022          a000 = Kcx;
1023          a110 = Kcy;
1024          c0 = Kcz * c * c - Kcx - Kcy - Kcz;
# Line 1006 | Line 1103 | namespace OpenMD {
1103          for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1104            r1 = (*rpi).first;
1105            r2 = (*rpi).second;
1106 <          switch(rnemdType_) {
1107 <          case rnemdKineticScale :
1106 >          switch(rnemdFluxType_) {
1107 >          case rnemdKE :
1108              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1109                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1110                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1111              break;
1112 <          case rnemdPxScale :
1112 >          case rnemdPx :
1113              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1114                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1115              break;
1116 <          case rnemdPyScale :
1116 >          case rnemdPy :
1117              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118                + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1119              break;
1120 <          case rnemdPzScale :
1120 >          case rnemdPz :
1121              diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1122                + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1123            default :
# Line 1034 | Line 1131 | namespace OpenMD {
1131   #ifdef IS_MPI
1132          if (worldRank == 0) {
1133   #endif
1134 <          sprintf(painCave.errMsg,
1135 <                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1136 <                  bestPair.first, bestPair.second);
1137 <          painCave.isFatal = 0;
1138 <          painCave.severity = OPENMD_INFO;
1139 <          simError();
1134 >          // sprintf(painCave.errMsg,
1135 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1136 >          //         bestPair.first, bestPair.second);
1137 >          // painCave.isFatal = 0;
1138 >          // painCave.severity = OPENMD_INFO;
1139 >          // simError();
1140   #ifdef IS_MPI
1141          }
1142   #endif
1143          
1144 <        switch(rnemdType_) {
1145 <        case rnemdKineticScale :
1144 >        switch(rnemdFluxType_) {
1145 >        case rnemdKE :
1146            x = bestPair.first;
1147            y = bestPair.first;
1148            z = bestPair.second;
1149            break;
1150 <        case rnemdPxScale :
1150 >        case rnemdPx :
1151            x = c;
1152            y = bestPair.first;
1153            z = bestPair.second;
1154            break;
1155 <        case rnemdPyScale :
1155 >        case rnemdPy :
1156            x = bestPair.first;
1157            y = c;
1158            z = bestPair.second;
1159            break;
1160 <        case rnemdPzScale :
1160 >        case rnemdPz :
1161            x = bestPair.first;
1162            y = bestPair.second;
1163            z = c;
# Line 1089 | Line 1186 | namespace OpenMD {
1186            (*sdi)->setVel(vel);
1187          }
1188          successfulScale = true;
1189 <        exchangeSum_ += targetFlux_;
1189 >        switch(rnemdFluxType_) {
1190 >        case rnemdKE :
1191 >          kineticExchange_ += kineticTarget_;
1192 >          break;
1193 >        case rnemdPx :
1194 >        case rnemdPy :
1195 >        case rnemdPz :
1196 >          momentumExchange_ += momentumTarget_;
1197 >          break;          
1198 >        default :
1199 >          break;
1200 >        }      
1201        }
1202      }
1203      if (successfulScale != true) {
1204        sprintf(painCave.errMsg,
1205 <              "RNEMD: exchange NOT performed!\n");
1205 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1206 >              "\tthe constraint equations may not exist or there may be\n"
1207 >              "\tno selected objects in one or both slabs.\n");
1208        painCave.isFatal = 0;
1209        painCave.severity = OPENMD_INFO;
1210        simError();        
# Line 1102 | Line 1212 | namespace OpenMD {
1212      }
1213    }
1214  
1215 <  void RNEMD::doShiftScale() {
1216 <
1215 >  void RNEMD::doVSS() {
1216 >    if (!doRNEMD_) return;
1217      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1218 +    RealType time = currentSnap_->getTime();    
1219      Mat3x3d hmat = currentSnap_->getHmat();
1220  
1221      seleMan_.setSelectionSet(evaluator_.evaluate());
1222  
1223      int selei;
1224      StuntDouble* sd;
1114    int idx;
1225  
1226      vector<StuntDouble*> hotBin, coldBin;
1227  
# Line 1121 | Line 1231 | namespace OpenMD {
1231      Vector3d Pc(V3Zero);
1232      RealType Mc = 0.0;
1233      RealType Kc = 0.0;
1234 +    
1235  
1236      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1237           sd = seleMan_.nextSelected(selei)) {
1238  
1128      idx = sd->getLocalIndex();
1129
1239        Vector3d pos = sd->getPos();
1240  
1241        // wrap the stuntdouble's position back into the box:
# Line 1135 | Line 1244 | namespace OpenMD {
1244          currentSnap_->wrapVector(pos);
1245  
1246        // which bin is this stuntdouble in?
1247 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1248 <
1249 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1250 <
1142 <      // if we're in bin 0 or the middleBin
1143 <      if (binNo == 0 || binNo == midBin_) {
1247 >      bool inA = inSlabA(pos);
1248 >      bool inB = inSlabB(pos);
1249 >      
1250 >      if (inA || inB) {
1251          
1252          RealType mass = sd->getMass();
1253          Vector3d vel = sd->getVel();
1254        
1255 <        if (binNo == 0) {
1255 >        if (inA) {
1256            hotBin.push_back(sd);
1257            //std::cerr << "before, velocity = " << vel << endl;
1258            Ph += mass * vel;
1259            //std::cerr << "after, velocity = " << vel << endl;
1260            Mh += mass;
1261            Kh += mass * vel.lengthSquare();
1262 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1262 >          if (rnemdFluxType_ == rnemdFullKE) {
1263              if (sd->isDirectional()) {
1264                Vector3d angMom = sd->getJ();
1265                Mat3x3d I = sd->getI();
# Line 1174 | Line 1281 | namespace OpenMD {
1281            Pc += mass * vel;
1282            Mc += mass;
1283            Kc += mass * vel.lengthSquare();
1284 <          if (rnemdType_ == rnemdShiftScaleVAM) {
1284 >          if (rnemdFluxType_ == rnemdFullKE) {
1285              if (sd->isDirectional()) {
1286                Vector3d angMom = sd->getJ();
1287                Mat3x3d I = sd->getI();
# Line 1198 | Line 1305 | namespace OpenMD {
1305      Kh *= 0.5;
1306      Kc *= 0.5;
1307  
1308 <    std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1309 <              << "\tKc= " << Kc << endl;
1310 <    std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1311 <
1308 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1309 >    //        << "\tKc= " << Kc << endl;
1310 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1311 >    
1312   #ifdef IS_MPI
1313      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1314      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
# Line 1214 | Line 1321 | namespace OpenMD {
1321      bool successfulExchange = false;
1322      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1323        Vector3d vc = Pc / Mc;
1324 <      Vector3d ac = njzp_ / Mc + vc;
1325 <      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1324 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1325 >      Vector3d acrec = -momentumTarget_ / Mc;
1326 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1327        if (cNumerator > 0.0) {
1328          RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1329          if (cDenominator > 0.0) {
1330            RealType c = sqrt(cNumerator / cDenominator);
1331            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1332              Vector3d vh = Ph / Mh;
1333 <            Vector3d ah = jzp_ / Mh + vh;
1334 <            RealType hNumerator = Kh + targetJzKE_
1333 >            Vector3d ah = momentumTarget_ / Mh + vh;
1334 >            Vector3d ahrec = momentumTarget_ / Mh;
1335 >            RealType hNumerator = Kh + kineticTarget_
1336                - 0.5 * Mh * ah.lengthSquare();
1337              if (hNumerator > 0.0) {
1338                RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1339                if (hDenominator > 0.0) {
1340                  RealType h = sqrt(hNumerator / hDenominator);
1341                  if ((h > 0.9) && (h < 1.1)) {
1342 <                  std::cerr << "cold slab scaling coefficient: " << c << "\n";
1343 <                  std::cerr << "hot slab scaling coefficient: " << h << "\n";
1342 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1343 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1344                    vector<StuntDouble*>::iterator sdi;
1345                    Vector3d vel;
1346                    for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1347                      //vel = (*sdi)->getVel();
1348                      vel = ((*sdi)->getVel() - vc) * c + ac;
1349                      (*sdi)->setVel(vel);
1350 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1350 >                    if (rnemdFluxType_ == rnemdFullKE) {
1351                        if ((*sdi)->isDirectional()) {
1352                          Vector3d angMom = (*sdi)->getJ() * c;
1353                          (*sdi)->setJ(angMom);
# Line 1249 | Line 1358 | namespace OpenMD {
1358                      //vel = (*sdi)->getVel();
1359                      vel = ((*sdi)->getVel() - vh) * h + ah;
1360                      (*sdi)->setVel(vel);
1361 <                    if (rnemdType_ == rnemdShiftScaleVAM) {
1361 >                    if (rnemdFluxType_ == rnemdFullKE) {
1362                        if ((*sdi)->isDirectional()) {
1363                          Vector3d angMom = (*sdi)->getJ() * h;
1364                          (*sdi)->setJ(angMom);
# Line 1257 | Line 1366 | namespace OpenMD {
1366                      }
1367                    }
1368                    successfulExchange = true;
1369 <                  exchangeSum_ += targetFlux_;
1370 <                  // this is a redundant variable for doShiftScale() so that
1262 <                  // RNEMD can output one exchange quantity needed in a job.
1263 <                  // need a better way to do this.
1369 >                  kineticExchange_ += kineticTarget_;
1370 >                  momentumExchange_ += momentumTarget_;
1371                  }
1372                }
1373              }
# Line 1270 | Line 1377 | namespace OpenMD {
1377      }
1378      if (successfulExchange != true) {
1379        sprintf(painCave.errMsg,
1380 <              "RNEMD: exchange NOT performed!\n");
1380 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1381 >              "\tthe constraint equations may not exist or there may be\n"
1382 >              "\tno selected objects in one or both slabs.\n");
1383        painCave.isFatal = 0;
1384        painCave.severity = OPENMD_INFO;
1385        simError();        
# Line 1279 | Line 1388 | namespace OpenMD {
1388    }
1389  
1390    void RNEMD::doRNEMD() {
1391 <
1392 <    switch(rnemdType_) {
1393 <    case rnemdKineticScale :
1394 <    case rnemdKineticScaleVAM :
1286 <    case rnemdKineticScaleAM :
1287 <    case rnemdPxScale :
1288 <    case rnemdPyScale :
1289 <    case rnemdPzScale :
1290 <      doScale();
1291 <      break;
1292 <    case rnemdKineticSwap :
1293 <    case rnemdPx :
1294 <    case rnemdPy :
1295 <    case rnemdPz :
1391 >    if (!doRNEMD_) return;
1392 >    trialCount_++;
1393 >    switch(rnemdMethod_) {
1394 >    case rnemdSwap:
1395        doSwap();
1396        break;
1397 <    case rnemdShiftScaleV :
1398 <    case rnemdShiftScaleVAM :
1300 <      doShiftScale();
1397 >    case rnemdNIVS:
1398 >      doNIVS();
1399        break;
1400 <    case rnemdUnknown :
1400 >    case rnemdVSS:
1401 >      doVSS();
1402 >      break;
1403 >    case rnemdUnkownMethod:
1404      default :
1405        break;
1406      }
1407    }
1408  
1409    void RNEMD::collectData() {
1410 <
1410 >    if (!doRNEMD_) return;
1411      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1412      Mat3x3d hmat = currentSnap_->getHmat();
1413  
1414 +    areaAccumulator_->add(currentSnap_->getXYarea());
1415 +
1416      seleMan_.setSelectionSet(evaluator_.evaluate());
1417  
1418      int selei;
1419      StuntDouble* sd;
1317    int idx;
1420  
1421 +    vector<RealType> binMass(nBins_, 0.0);
1422 +    vector<RealType> binPx(nBins_, 0.0);
1423 +    vector<RealType> binPy(nBins_, 0.0);
1424 +    vector<RealType> binPz(nBins_, 0.0);
1425 +    vector<RealType> binKE(nBins_, 0.0);
1426 +    vector<int> binDOF(nBins_, 0);
1427 +    vector<int> binCount(nBins_, 0);
1428 +
1429      // alternative approach, track all molecules instead of only those
1430      // selected for scaling/swapping:
1431      /*
1432      SimInfo::MoleculeIterator miter;
1433      vector<StuntDouble*>::iterator iiter;
1434      Molecule* mol;
1435 <    StuntDouble* integrableObject;
1435 >    StuntDouble* sd;
1436      for (mol = info_->beginMolecule(miter); mol != NULL;
1437 <         mol = info_->nextMolecule(miter))
1438 <      integrableObject is essentially sd
1439 <        for (integrableObject = mol->beginIntegrableObject(iiter);
1440 <             integrableObject != NULL;
1441 <             integrableObject = mol->nextIntegrableObject(iiter))
1437 >      mol = info_->nextMolecule(miter))
1438 >      sd is essentially sd
1439 >        for (sd = mol->beginIntegrableObject(iiter);
1440 >             sd != NULL;
1441 >             sd = mol->nextIntegrableObject(iiter))
1442      */
1443      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1444 <         sd = seleMan_.nextSelected(selei)) {
1444 >         sd = seleMan_.nextSelected(selei)) {    
1445        
1336      idx = sd->getLocalIndex();
1337      
1446        Vector3d pos = sd->getPos();
1447  
1448        // wrap the stuntdouble's position back into the box:
1449        
1450        if (usePeriodicBoundaryConditions_)
1451          currentSnap_->wrapVector(pos);
1452 <      
1452 >
1453 >
1454        // which bin is this stuntdouble in?
1455        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1456 <      
1457 <      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1458 <        rnemdLogWidth_;
1459 <      // no symmetrization allowed due to arbitary rnemdLogWidth_
1460 <      /*
1461 <      if (rnemdLogWidth_ == midBin_ + 1)
1462 <        if (binNo > midBin_)
1354 <          binNo = nBins_ - binNo;
1355 <      */
1356 <      RealType mass = sd->getMass();
1357 <      mHist_[binNo] += mass;
1358 <      Vector3d vel = sd->getVel();
1359 <      RealType value;
1360 <      //RealType xVal, yVal, zVal;
1456 >      // Shift molecules by half a box to have bins start at 0
1457 >      // The modulo operator is used to wrap the case when we are
1458 >      // beyond the end of the bins back to the beginning.
1459 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1460 >    
1461 >      RealType mass = sd->getMass();
1462 >      Vector3d vel = sd->getVel();
1463  
1464 <      if (outputTemp_) {
1465 <        value = mass * vel.lengthSquare();
1466 <        tempCount_[binNo] += 3;
1467 <        if (sd->isDirectional()) {
1468 <          Vector3d angMom = sd->getJ();
1469 <          Mat3x3d I = sd->getI();
1470 <          if (sd->isLinear()) {
1369 <            int i = sd->linearAxis();
1370 <            int j = (i + 1) % 3;
1371 <            int k = (i + 2) % 3;
1372 <            value += angMom[j] * angMom[j] / I(j, j) +
1373 <              angMom[k] * angMom[k] / I(k, k);
1374 <            tempCount_[binNo] +=2;
1375 <          } else {
1376 <            value += angMom[0] * angMom[0] / I(0, 0) +
1377 <              angMom[1]*angMom[1]/I(1, 1) +
1378 <              angMom[2]*angMom[2]/I(2, 2);
1379 <            tempCount_[binNo] +=3;
1380 <          }
1381 <        }
1382 <        value = value / PhysicalConstants::energyConvert
1383 <          / PhysicalConstants::kb;//may move to getStatus()
1384 <        tempHist_[binNo] += value;
1385 <      }
1386 <      if (outputVx_) {
1387 <        value = mass * vel[0];
1388 <        //vxzCount_[binNo]++;
1389 <        pxzHist_[binNo] += value;
1390 <      }
1391 <      if (outputVy_) {
1392 <        value = mass * vel[1];
1393 <        //vyzCount_[binNo]++;
1394 <        pyzHist_[binNo] += value;
1395 <      }
1464 >      binCount[binNo]++;
1465 >      binMass[binNo] += mass;
1466 >      binPx[binNo] += mass*vel.x();
1467 >      binPy[binNo] += mass*vel.y();
1468 >      binPz[binNo] += mass*vel.z();
1469 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1470 >      binDOF[binNo] += 3;
1471  
1472 <      if (output3DTemp_) {
1473 <        value = mass * vel.x() * vel.x();
1474 <        xTempHist_[binNo] += value;
1475 <        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1476 <          / PhysicalConstants::kb;
1477 <        yTempHist_[binNo] += value;
1478 <        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1479 <          / PhysicalConstants::kb;
1480 <        zTempHist_[binNo] += value;
1481 <        xyzTempCount_[binNo]++;
1472 >      if (sd->isDirectional()) {
1473 >        Vector3d angMom = sd->getJ();
1474 >        Mat3x3d I = sd->getI();
1475 >        if (sd->isLinear()) {
1476 >          int i = sd->linearAxis();
1477 >          int j = (i + 1) % 3;
1478 >          int k = (i + 2) % 3;
1479 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1480 >                                 angMom[k] * angMom[k] / I(k, k));
1481 >          binDOF[binNo] += 2;
1482 >        } else {
1483 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1484 >                                 angMom[1] * angMom[1] / I(1, 1) +
1485 >                                 angMom[2] * angMom[2] / I(2, 2));
1486 >          binDOF[binNo] += 3;
1487 >        }
1488        }
1489 <      if (outputRotTemp_) {
1490 <        if (sd->isDirectional()) {
1410 <          Vector3d angMom = sd->getJ();
1411 <          Mat3x3d I = sd->getI();
1412 <          if (sd->isLinear()) {
1413 <            int i = sd->linearAxis();
1414 <            int j = (i + 1) % 3;
1415 <            int k = (i + 2) % 3;
1416 <            value = angMom[j] * angMom[j] / I(j, j) +
1417 <              angMom[k] * angMom[k] / I(k, k);
1418 <            rotTempCount_[binNo] +=2;
1419 <          } else {
1420 <            value = angMom[0] * angMom[0] / I(0, 0) +
1421 <              angMom[1] * angMom[1] / I(1, 1) +
1422 <              angMom[2] * angMom[2] / I(2, 2);
1423 <            rotTempCount_[binNo] +=3;
1424 <          }
1425 <        }
1426 <        value = value / PhysicalConstants::energyConvert
1427 <          / PhysicalConstants::kb;//may move to getStatus()
1428 <        rotTempHist_[binNo] += value;
1429 <      }
1489 >    }
1490 >    
1491  
1492 + #ifdef IS_MPI
1493 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1494 +                              nBins_, MPI::INT, MPI::SUM);
1495 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1496 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1497 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1498 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1499 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1500 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1501 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1502 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1503 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1504 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1505 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1506 +                              nBins_, MPI::INT, MPI::SUM);
1507 + #endif
1508 +
1509 +    Vector3d vel;
1510 +    RealType den;
1511 +    RealType temp;
1512 +    RealType z;
1513 +    for (int i = 0; i < nBins_; i++) {
1514 +      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1515 +      vel.x() = binPx[i] / binMass[i];
1516 +      vel.y() = binPy[i] / binMass[i];
1517 +      vel.z() = binPz[i] / binMass[i];
1518 +
1519 +      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1520 +        / currentSnap_->getVolume() ;
1521 +
1522 +      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1523 +                               PhysicalConstants::energyConvert);
1524 +
1525 +      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1526 +        if(outputMask_[j]) {
1527 +          switch(j) {
1528 +          case Z:
1529 +            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1530 +            break;
1531 +          case TEMPERATURE:
1532 +            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1533 +            break;
1534 +          case VELOCITY:
1535 +            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1536 +            break;
1537 +          case DENSITY:
1538 +            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1539 +            break;
1540 +          }
1541 +        }
1542 +      }
1543      }
1544    }
1545  
1546    void RNEMD::getStarted() {
1547 +    if (!doRNEMD_) return;
1548      collectData();
1549 <    /*now can output profile in step 0, but might not be useful;
1437 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1438 <    Stats& stat = currentSnap_->statData;
1439 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1440 <    */
1441 <    //may output a header for the log file here
1442 <    getStatus();
1549 >    writeOutputFile();
1550    }
1551  
1552 <  void RNEMD::getStatus() {
1553 <
1554 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1555 <    Stats& stat = currentSnap_->statData;
1556 <    RealType time = currentSnap_->getTime();
1557 <
1558 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1559 <    //or to be more meaningful, define another item as exchangeSum_ / time
1560 <    int j;
1561 <
1552 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1553 >    if (!doRNEMD_) return;
1554 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1555 >    
1556 >    while(tokenizer.hasMoreTokens()) {
1557 >      std::string token(tokenizer.nextToken());
1558 >      toUpper(token);
1559 >      OutputMapType::iterator i = outputMap_.find(token);
1560 >      if (i != outputMap_.end()) {
1561 >        outputMask_.set(i->second);
1562 >      } else {
1563 >        sprintf( painCave.errMsg,
1564 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1565 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1566 >        painCave.isFatal = 0;
1567 >        painCave.severity = OPENMD_ERROR;
1568 >        simError();            
1569 >      }
1570 >    }  
1571 >  }
1572 >  
1573 >  void RNEMD::writeOutputFile() {
1574 >    if (!doRNEMD_) return;
1575 >    
1576   #ifdef IS_MPI
1456
1457    // all processors have the same number of bins, and STL vectors pack their
1458    // arrays, so in theory, this should be safe:
1459
1460    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1461                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1462    if (outputTemp_) {
1463      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1464                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1465      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1466                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1467    }
1468    if (outputVx_) {
1469      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1470                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1471      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1472      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1473    }
1474    if (outputVy_) {
1475      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1476                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1477      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1478      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1479    }
1480    if (output3DTemp_) {
1481      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1482                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1483      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1484                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1485      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1486                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1487      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1488                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1489    }
1490    if (outputRotTemp_) {
1491      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1492                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1493      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1494                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1495    }
1496
1577      // If we're the root node, should we print out the results
1578      int worldRank = MPI::COMM_WORLD.Get_rank();
1579      if (worldRank == 0) {
1580   #endif
1581 +      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1582 +      
1583 +      if( !rnemdFile_ ){        
1584 +        sprintf( painCave.errMsg,
1585 +                 "Could not open \"%s\" for RNEMD output.\n",
1586 +                 rnemdFileName_.c_str());
1587 +        painCave.isFatal = 1;
1588 +        simError();
1589 +      }
1590  
1591 <      if (outputTemp_) {
1592 <        tempLog_ << time;
1593 <        for (j = 0; j < rnemdLogWidth_; j++) {
1594 <          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1595 <        }
1596 <        tempLog_ << endl;
1591 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1592 >
1593 >      RealType time = currentSnap_->getTime();
1594 >      RealType avgArea;
1595 >      areaAccumulator_->getAverage(avgArea);
1596 >      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1597 >        / PhysicalConstants::energyConvert;
1598 >      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1599 >
1600 >      rnemdFile_ << "#######################################################\n";
1601 >      rnemdFile_ << "# RNEMD {\n";
1602 >
1603 >      map<string, RNEMDMethod>::iterator mi;
1604 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1605 >        if ( (*mi).second == rnemdMethod_)
1606 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1607        }
1608 <      if (outputVx_) {
1609 <        vxzLog_ << time;
1610 <        for (j = 0; j < rnemdLogWidth_; j++) {
1611 <          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1513 <        }
1514 <        vxzLog_ << endl;
1608 >      map<string, RNEMDFluxType>::iterator fi;
1609 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1610 >        if ( (*fi).second == rnemdFluxType_)
1611 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1612        }
1613 <      if (outputVy_) {
1614 <        vyzLog_ << time;
1518 <        for (j = 0; j < rnemdLogWidth_; j++) {
1519 <          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1520 <        }
1521 <        vyzLog_ << endl;
1522 <      }
1613 >      
1614 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1615  
1616 <      if (output3DTemp_) {
1617 <        RealType temp;
1618 <        xTempLog_ << time;
1619 <        for (j = 0; j < rnemdLogWidth_; j++) {
1620 <          if (outputVx_)
1621 <            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1622 <          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1623 <            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1624 <          xTempLog_ << "\t" << temp;
1616 >      rnemdFile_ << "#    objectSelection = \""
1617 >                 << rnemdObjectSelection_ << "\";\n";
1618 >      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1619 >      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1620 >      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1621 >      rnemdFile_ << "# }\n";
1622 >      rnemdFile_ << "#######################################################\n";
1623 >      rnemdFile_ << "# RNEMD report:\n";      
1624 >      rnemdFile_ << "#     running time = " << time << " fs\n";
1625 >      rnemdFile_ << "#     target flux:\n";
1626 >      rnemdFile_ << "#         kinetic = "
1627 >                 << kineticFlux_ / PhysicalConstants::energyConvert
1628 >                 << " (kcal/mol/A^2/fs)\n";
1629 >      rnemdFile_ << "#         momentum = " << momentumFluxVector_
1630 >                 << " (amu/A/fs^2)\n";
1631 >      rnemdFile_ << "#     target one-time exchanges:\n";
1632 >      rnemdFile_ << "#         kinetic = "
1633 >                 << kineticTarget_ / PhysicalConstants::energyConvert
1634 >                 << " (kcal/mol)\n";
1635 >      rnemdFile_ << "#         momentum = " << momentumTarget_
1636 >                 << " (amu*A/fs)\n";
1637 >      rnemdFile_ << "#     actual exchange totals:\n";
1638 >      rnemdFile_ << "#         kinetic = "
1639 >                 << kineticExchange_ / PhysicalConstants::energyConvert
1640 >                 << " (kcal/mol)\n";
1641 >      rnemdFile_ << "#         momentum = " << momentumExchange_
1642 >                 << " (amu*A/fs)\n";      
1643 >      rnemdFile_ << "#     actual flux:\n";
1644 >      rnemdFile_ << "#         kinetic = " << Jz
1645 >                 << " (kcal/mol/A^2/fs)\n";
1646 >      rnemdFile_ << "#         momentum = " << JzP
1647 >                 << " (amu/A/fs^2)\n";
1648 >      rnemdFile_ << "#     exchange statistics:\n";
1649 >      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1650 >      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1651 >      if (rnemdMethod_ == rnemdNIVS) {
1652 >        rnemdFile_ << "#         NIVS root-check errors = "
1653 >                   << failRootCount_ << "\n";
1654 >      }
1655 >      rnemdFile_ << "#######################################################\n";
1656 >      
1657 >      
1658 >      
1659 >      //write title
1660 >      rnemdFile_ << "#";
1661 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1662 >        if (outputMask_[i]) {
1663 >          rnemdFile_ << "\t" << data_[i].title <<
1664 >            "(" << data_[i].units << ")";
1665 >          // add some extra tabs for column alignment
1666 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1667          }
1534        xTempLog_ << endl;
1535        yTempLog_ << time;
1536        for (j = 0; j < rnemdLogWidth_; j++) {
1537          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1538        }
1539        yTempLog_ << endl;
1540        zTempLog_ << time;
1541        for (j = 0; j < rnemdLogWidth_; j++) {
1542          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1543        }
1544        zTempLog_ << endl;
1668        }
1669 <      if (outputRotTemp_) {
1670 <        rotTempLog_ << time;
1671 <        for (j = 0; j < rnemdLogWidth_; j++) {
1672 <          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1673 <        }
1674 <        rotTempLog_ << endl;
1675 <      }
1669 >      rnemdFile_ << std::endl;
1670 >      
1671 >      rnemdFile_.precision(8);
1672 >      
1673 >      for (int j = 0; j < nBins_; j++) {        
1674 >        
1675 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1676 >          if (outputMask_[i]) {
1677 >            if (data_[i].dataType == "RealType")
1678 >              writeReal(i,j);
1679 >            else if (data_[i].dataType == "Vector3d")
1680 >              writeVector(i,j);
1681 >            else {
1682 >              sprintf( painCave.errMsg,
1683 >                       "RNEMD found an unknown data type for: %s ",
1684 >                       data_[i].title.c_str());
1685 >              painCave.isFatal = 1;
1686 >              simError();
1687 >            }
1688 >          }
1689 >        }
1690 >        rnemdFile_ << std::endl;
1691 >        
1692 >      }        
1693  
1694 +      rnemdFile_ << "#######################################################\n";
1695 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1696 +      rnemdFile_ << "#######################################################\n";
1697 +
1698 +
1699 +      for (int j = 0; j < nBins_; j++) {        
1700 +        rnemdFile_ << "#";
1701 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1702 +          if (outputMask_[i]) {
1703 +            if (data_[i].dataType == "RealType")
1704 +              writeRealStdDev(i,j);
1705 +            else if (data_[i].dataType == "Vector3d")
1706 +              writeVectorStdDev(i,j);
1707 +            else {
1708 +              sprintf( painCave.errMsg,
1709 +                       "RNEMD found an unknown data type for: %s ",
1710 +                       data_[i].title.c_str());
1711 +              painCave.isFatal = 1;
1712 +              simError();
1713 +            }
1714 +          }
1715 +        }
1716 +        rnemdFile_ << std::endl;
1717 +        
1718 +      }        
1719 +      
1720 +      rnemdFile_.flush();
1721 +      rnemdFile_.close();
1722 +      
1723   #ifdef IS_MPI
1724      }
1725   #endif
1726 <
1727 <    for (j = 0; j < rnemdLogWidth_; j++) {
1728 <      mHist_[j] = 0.0;
1726 >    
1727 >  }
1728 >  
1729 >  void RNEMD::writeReal(int index, unsigned int bin) {
1730 >    if (!doRNEMD_) return;
1731 >    assert(index >=0 && index < ENDINDEX);
1732 >    assert(bin < nBins_);
1733 >    RealType s;
1734 >    
1735 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
1736 >    
1737 >    if (! isinf(s) && ! isnan(s)) {
1738 >      rnemdFile_ << "\t" << s;
1739 >    } else{
1740 >      sprintf( painCave.errMsg,
1741 >               "RNEMD detected a numerical error writing: %s for bin %d",
1742 >               data_[index].title.c_str(), bin);
1743 >      painCave.isFatal = 1;
1744 >      simError();
1745 >    }    
1746 >  }
1747 >  
1748 >  void RNEMD::writeVector(int index, unsigned int bin) {
1749 >    if (!doRNEMD_) return;
1750 >    assert(index >=0 && index < ENDINDEX);
1751 >    assert(bin < nBins_);
1752 >    Vector3d s;
1753 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1754 >    if (isinf(s[0]) || isnan(s[0]) ||
1755 >        isinf(s[1]) || isnan(s[1]) ||
1756 >        isinf(s[2]) || isnan(s[2]) ) {      
1757 >      sprintf( painCave.errMsg,
1758 >               "RNEMD detected a numerical error writing: %s for bin %d",
1759 >               data_[index].title.c_str(), bin);
1760 >      painCave.isFatal = 1;
1761 >      simError();
1762 >    } else {
1763 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1764      }
1765 <    if (outputTemp_)
1562 <      for (j = 0; j < rnemdLogWidth_; j++) {
1563 <        tempCount_[j] = 0;
1564 <        tempHist_[j] = 0.0;
1565 <      }
1566 <    if (outputVx_)
1567 <      for (j = 0; j < rnemdLogWidth_; j++) {
1568 <        //pxzCount_[j] = 0;
1569 <        pxzHist_[j] = 0.0;
1570 <      }
1571 <    if (outputVy_)
1572 <      for (j = 0; j < rnemdLogWidth_; j++) {
1573 <        //pyzCount_[j] = 0;
1574 <        pyzHist_[j] = 0.0;
1575 <      }
1765 >  }  
1766  
1767 <    if (output3DTemp_)
1768 <      for (j = 0; j < rnemdLogWidth_; j++) {
1769 <        xTempHist_[j] = 0.0;
1770 <        yTempHist_[j] = 0.0;
1771 <        zTempHist_[j] = 0.0;
1772 <        xyzTempCount_[j] = 0;
1773 <      }
1774 <    if (outputRotTemp_)
1775 <      for (j = 0; j < rnemdLogWidth_; j++) {
1776 <        rotTempCount_[j] = 0;
1777 <        rotTempHist_[j] = 0.0;
1778 <      }
1767 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1768 >    if (!doRNEMD_) return;
1769 >    assert(index >=0 && index < ENDINDEX);
1770 >    assert(bin < nBins_);
1771 >    RealType s;
1772 >    
1773 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
1774 >    
1775 >    if (! isinf(s) && ! isnan(s)) {
1776 >      rnemdFile_ << "\t" << s;
1777 >    } else{
1778 >      sprintf( painCave.errMsg,
1779 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1780 >               data_[index].title.c_str(), bin);
1781 >      painCave.isFatal = 1;
1782 >      simError();
1783 >    }    
1784    }
1785 +  
1786 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1787 +    if (!doRNEMD_) return;
1788 +    assert(index >=0 && index < ENDINDEX);
1789 +    assert(bin < nBins_);
1790 +    Vector3d s;
1791 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1792 +    if (isinf(s[0]) || isnan(s[0]) ||
1793 +        isinf(s[1]) || isnan(s[1]) ||
1794 +        isinf(s[2]) || isnan(s[2]) ) {      
1795 +      sprintf( painCave.errMsg,
1796 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1797 +               data_[index].title.c_str(), bin);
1798 +      painCave.isFatal = 1;
1799 +      simError();
1800 +    } else {
1801 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1802 +    }
1803 +  }  
1804   }
1805  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines