ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 1938 by gezelter, Thu Oct 31 15:32:17 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #ifdef IS_MPI
42 + #include <mpi.h>
43 + #endif
44  
45   #include <cmath>
46 < #include "integrators/RNEMD.hpp"
46 > #include <sstream>
47 > #include <string>
48 >
49 > #include "rnemd/RNEMD.hpp"
50   #include "math/Vector3.hpp"
51 + #include "math/Vector.hpp"
52   #include "math/SquareMatrix3.hpp"
53   #include "math/Polynomial.hpp"
54   #include "primitives/Molecule.hpp"
55   #include "primitives/StuntDouble.hpp"
56   #include "utils/PhysicalConstants.hpp"
57   #include "utils/Tuple.hpp"
58 + #include "brains/Thermo.hpp"
59 + #include "math/ConvexHull.hpp"
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
55 < #include <mpi.h>
56 < #include "math/ParallelRandNumGen.hpp"
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68 + using namespace std;
69   namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                hasData_(false), hasDividingArea_(false),
76 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78 +    trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    int seedValue;
83 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
86 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
74 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
75 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
76 <    stringToEnumMap_["Px"] = rnemdPx;
77 <    stringToEnumMap_["Py"] = rnemdPy;
78 <    stringToEnumMap_["Pz"] = rnemdPz;
79 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
85 >    doRNEMD_ = rnemdParams->getUseRNEMD();
86 >    if (!doRNEMD_) return;
87  
88 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 <    evaluator_.loadScriptString(rnemdObjectSelection_);
90 <    seleMan_.setSelectionSet(evaluator_.evaluate());
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91  
92 <    // do some sanity checking
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109 <    int selectionCount = seleMan_.getSelectionCount();
110 <    int nIntegrable = info->getNGlobalIntegrableObjects();
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111  
112 <    if (selectionCount > nIntegrable) {
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121        sprintf(painCave.errMsg,
122 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
123 <              "\t\t%s\n"
124 <              "\thas resulted in %d selected objects.  However,\n"
125 <              "\tthe total number of integrable objects in the system\n"
126 <              "\tis only %d.  This is almost certainly not what you want\n"
127 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
128 <              "\tselector in the selection script!\n",
99 <              rnemdObjectSelection_.c_str(),
100 <              selectionCount, nIntegrable);
101 <      painCave.isFatal = 0;
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129        simError();
103
130      }
131 +
132 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 +    bool hasOutputFields = rnemdParams->haveOutputFields();
147      
148 <    const std::string st = simParams->getRNEMD_exchangeType();
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162  
163 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
164 <    i = stringToEnumMap_.find(st);
165 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
166 <    if (rnemdType_ == rnemdUnknown) {
167 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168 >      sprintf(painCave.errMsg,
169 >              "RNEMD: The current fluxType,\n"
170 >              "\t\t%s\n"
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173 >      painCave.isFatal = 1;
174 >      painCave.severity = OPENMD_ERROR;
175 >      simError();
176      }
177  
178 < #ifdef IS_MPI
179 <    if (worldRank == 0) {
180 < #endif
181 <
182 <      std::string rnemdFileName;
183 <      std::string xTempFileName;
184 <      std::string yTempFileName;
122 <      std::string zTempFileName;
123 <      switch(rnemdType_) {
124 <      case rnemdKineticSwap :
125 <      case rnemdKineticScale :
126 <        rnemdFileName = "temperature.log";
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185          break;
186 <      case rnemdPx :
187 <      case rnemdPxScale :
188 <      case rnemdPy :
189 <      case rnemdPyScale :
132 <        rnemdFileName = "momemtum.log";
133 <        xTempFileName = "temperatureX.log";
134 <        yTempFileName = "temperatureY.log";
135 <        zTempFileName = "temperatureZ.log";
136 <        xTempLog_.open(xTempFileName.c_str());
137 <        yTempLog_.open(yTempFileName.c_str());
138 <        zTempLog_.open(zTempFileName.c_str());
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190          break;
140      case rnemdPz :
141      case rnemdPzScale :
142      case rnemdUnknown :
191        default :
192 <        rnemdFileName = "rnemd.log";
192 >        methodFluxMismatch = true;
193          break;
194        }
195 <      rnemdLog_.open(rnemdFileName.c_str());
196 <
197 < #ifdef IS_MPI
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215 >      }
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258 >      }
259 >    default:
260 >      break;
261      }
151 #endif
262  
263 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
264 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
265 <    midBin_ = nBins_ / 2;
266 <    if (simParams->haveRNEMD_logWidth()) {
267 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
268 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
269 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
270 <        std::cerr << "Automaically set back to default.\n";
271 <        rnemdLogWidth_ = nBins_;
272 <      }
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284 >
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290      } else {
291 <      rnemdLogWidth_ = nBins_;
291 >      kineticFlux_ = 0.0;
292      }
293 <    valueHist_.resize(rnemdLogWidth_, 0.0);
294 <    valueCount_.resize(rnemdLogWidth_, 0);
168 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
169 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
170 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
171 <
172 <    set_RNEMD_exchange_total(0.0);
173 <    if (simParams->haveRNEMD_targetFlux()) {
174 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
293 >    if (hasMomentumFluxVector) {
294 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
295      } else {
296 <      set_RNEMD_target_flux(0.0);
296 >      momentumFluxVector_ = V3Zero;
297 >      if (hasMomentumFlux) {
298 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
299 >        switch (rnemdFluxType_) {
300 >        case rnemdPx:
301 >          momentumFluxVector_.x() = momentumFlux;
302 >          break;
303 >        case rnemdPy:
304 >          momentumFluxVector_.y() = momentumFlux;
305 >          break;
306 >        case rnemdPz:
307 >          momentumFluxVector_.z() = momentumFlux;
308 >          break;
309 >        case rnemdKePx:
310 >          momentumFluxVector_.x() = momentumFlux;
311 >          break;
312 >        case rnemdKePy:
313 >          momentumFluxVector_.y() = momentumFlux;
314 >          break;
315 >        default:
316 >          break;
317 >        }
318 >      }
319 >      if (hasAngularMomentumFluxVector) {
320 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321 >      } else {
322 >        angularMomentumFluxVector_ = V3Zero;
323 >        if (hasAngularMomentumFlux) {
324 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325 >          switch (rnemdFluxType_) {
326 >          case rnemdLx:
327 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
328 >            break;
329 >          case rnemdLy:
330 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
331 >            break;
332 >          case rnemdLz:
333 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
334 >            break;
335 >          case rnemdKeLx:
336 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
337 >            break;
338 >          case rnemdKeLy:
339 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
340 >            break;
341 >          case rnemdKeLz:
342 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
343 >            break;
344 >          default:
345 >            break;
346 >          }
347 >        }        
348 >      }
349 >
350 >      if (hasCoordinateOrigin) {
351 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352 >      } else {
353 >        coordinateOrigin_ = V3Zero;
354 >      }
355 >
356 >      // do some sanity checking
357 >
358 >      int selectionCount = seleMan_.getSelectionCount();
359 >
360 >      int nIntegrable = info->getNGlobalIntegrableObjects();
361 >
362 >      if (selectionCount > nIntegrable) {
363 >        sprintf(painCave.errMsg,
364 >                "RNEMD: The current objectSelection,\n"
365 >                "\t\t%s\n"
366 >                "\thas resulted in %d selected objects.  However,\n"
367 >                "\tthe total number of integrable objects in the system\n"
368 >                "\tis only %d.  This is almost certainly not what you want\n"
369 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
370 >                "\tselector in the selection script!\n",
371 >                rnemdObjectSelection_.c_str(),
372 >                selectionCount, nIntegrable);
373 >        painCave.isFatal = 0;
374 >        painCave.severity = OPENMD_WARNING;
375 >        simError();
376 >      }
377 >
378 >      areaAccumulator_ = new Accumulator();
379 >
380 >      nBins_ = rnemdParams->getOutputBins();
381 >      binWidth_ = rnemdParams->getOutputBinWidth();
382 >
383 >      data_.resize(RNEMD::ENDINDEX);
384 >      OutputData z;
385 >      z.units =  "Angstroms";
386 >      z.title =  "Z";
387 >      z.dataType = "RealType";
388 >      z.accumulator.reserve(nBins_);
389 >      for (int i = 0; i < nBins_; i++)
390 >        z.accumulator.push_back( new Accumulator() );
391 >      data_[Z] = z;
392 >      outputMap_["Z"] =  Z;
393 >
394 >      OutputData r;
395 >      r.units =  "Angstroms";
396 >      r.title =  "R";
397 >      r.dataType = "RealType";
398 >      r.accumulator.reserve(nBins_);
399 >      for (int i = 0; i < nBins_; i++)
400 >        r.accumulator.push_back( new Accumulator() );
401 >      data_[R] = r;
402 >      outputMap_["R"] =  R;
403 >
404 >      OutputData temperature;
405 >      temperature.units =  "K";
406 >      temperature.title =  "Temperature";
407 >      temperature.dataType = "RealType";
408 >      temperature.accumulator.reserve(nBins_);
409 >      for (int i = 0; i < nBins_; i++)
410 >        temperature.accumulator.push_back( new Accumulator() );
411 >      data_[TEMPERATURE] = temperature;
412 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
413 >
414 >      OutputData velocity;
415 >      velocity.units = "angstroms/fs";
416 >      velocity.title =  "Velocity";  
417 >      velocity.dataType = "Vector3d";
418 >      velocity.accumulator.reserve(nBins_);
419 >      for (int i = 0; i < nBins_; i++)
420 >        velocity.accumulator.push_back( new VectorAccumulator() );
421 >      data_[VELOCITY] = velocity;
422 >      outputMap_["VELOCITY"] = VELOCITY;
423 >
424 >      OutputData angularVelocity;
425 >      angularVelocity.units = "angstroms^2/fs";
426 >      angularVelocity.title =  "AngularVelocity";  
427 >      angularVelocity.dataType = "Vector3d";
428 >      angularVelocity.accumulator.reserve(nBins_);
429 >      for (int i = 0; i < nBins_; i++)
430 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 >      data_[ANGULARVELOCITY] = angularVelocity;
432 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433 >
434 >      OutputData density;
435 >      density.units =  "g cm^-3";
436 >      density.title =  "Density";
437 >      density.dataType = "RealType";
438 >      density.accumulator.reserve(nBins_);
439 >      for (int i = 0; i < nBins_; i++)
440 >        density.accumulator.push_back( new Accumulator() );
441 >      data_[DENSITY] = density;
442 >      outputMap_["DENSITY"] =  DENSITY;
443 >
444 >      if (hasOutputFields) {
445 >        parseOutputFileFormat(rnemdParams->getOutputFields());
446 >      } else {
447 >        if (usePeriodicBoundaryConditions_)
448 >          outputMask_.set(Z);
449 >        else
450 >          outputMask_.set(R);
451 >        switch (rnemdFluxType_) {
452 >        case rnemdKE:
453 >        case rnemdRotKE:
454 >        case rnemdFullKE:
455 >          outputMask_.set(TEMPERATURE);
456 >          break;
457 >        case rnemdPx:
458 >        case rnemdPy:
459 >          outputMask_.set(VELOCITY);
460 >          break;
461 >        case rnemdPz:        
462 >        case rnemdPvector:
463 >          outputMask_.set(VELOCITY);
464 >          outputMask_.set(DENSITY);
465 >          break;
466 >        case rnemdLx:
467 >        case rnemdLy:
468 >        case rnemdLz:
469 >        case rnemdLvector:
470 >          outputMask_.set(ANGULARVELOCITY);
471 >          break;
472 >        case rnemdKeLx:
473 >        case rnemdKeLy:
474 >        case rnemdKeLz:
475 >        case rnemdKeLvector:
476 >          outputMask_.set(TEMPERATURE);
477 >          outputMask_.set(ANGULARVELOCITY);
478 >          break;
479 >        case rnemdKePx:
480 >        case rnemdKePy:
481 >          outputMask_.set(TEMPERATURE);
482 >          outputMask_.set(VELOCITY);
483 >          break;
484 >        case rnemdKePvector:
485 >          outputMask_.set(TEMPERATURE);
486 >          outputMask_.set(VELOCITY);
487 >          outputMask_.set(DENSITY);        
488 >          break;
489 >        default:
490 >          break;
491 >        }
492 >      }
493 >      
494 >      if (hasOutputFileName) {
495 >        rnemdFileName_ = rnemdParams->getOutputFileName();
496 >      } else {
497 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498 >      }          
499 >
500 >      exchangeTime_ = rnemdParams->getExchangeTime();
501 >
502 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503 >      // total exchange sums are zeroed out at the beginning:
504 >
505 >      kineticExchange_ = 0.0;
506 >      momentumExchange_ = V3Zero;
507 >      angularMomentumExchange_ = V3Zero;
508 >
509 >      std::ostringstream selectionAstream;
510 >      std::ostringstream selectionBstream;
511 >    
512 >      if (hasSelectionA_) {
513 >        selectionA_ = rnemdParams->getSelectionA();
514 >      } else {
515 >        if (usePeriodicBoundaryConditions_) {    
516 >          Mat3x3d hmat = currentSnap_->getHmat();
517 >        
518 >          if (hasSlabWidth)
519 >            slabWidth_ = rnemdParams->getSlabWidth();
520 >          else
521 >            slabWidth_ = hmat(2,2) / 10.0;
522 >        
523 >          if (hasSlabACenter)
524 >            slabACenter_ = rnemdParams->getSlabACenter();
525 >          else
526 >            slabACenter_ = 0.0;
527 >        
528 >          selectionAstream << "select wrappedz > "
529 >                           << slabACenter_ - 0.5*slabWidth_
530 >                           <<  " && wrappedz < "
531 >                           << slabACenter_ + 0.5*slabWidth_;
532 >          selectionA_ = selectionAstream.str();
533 >        } else {
534 >          if (hasSphereARadius)
535 >            sphereARadius_ = rnemdParams->getSphereARadius();
536 >          else {
537 >            // use an initial guess to the size of the inner slab to be 1/10 the
538 >            // radius of an approximately spherical hull:
539 >            Thermo thermo(info);
540 >            RealType hVol = thermo.getHullVolume();
541 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542 >          }
543 >          selectionAstream << "select r < " << sphereARadius_;
544 >          selectionA_ = selectionAstream.str();
545 >        }
546 >      }
547 >    
548 >      if (hasSelectionB_) {
549 >        selectionB_ = rnemdParams->getSelectionB();
550 >
551 >      } else {
552 >        if (usePeriodicBoundaryConditions_) {    
553 >          Mat3x3d hmat = currentSnap_->getHmat();
554 >        
555 >          if (hasSlabWidth)
556 >            slabWidth_ = rnemdParams->getSlabWidth();
557 >          else
558 >            slabWidth_ = hmat(2,2) / 10.0;
559 >        
560 >          if (hasSlabBCenter)
561 >            slabBCenter_ = rnemdParams->getSlabBCenter();
562 >          else
563 >            slabBCenter_ = hmat(2,2) / 2.0;
564 >        
565 >          selectionBstream << "select wrappedz > "
566 >                           << slabBCenter_ - 0.5*slabWidth_
567 >                           <<  " && wrappedz < "
568 >                           << slabBCenter_ + 0.5*slabWidth_;
569 >          selectionB_ = selectionBstream.str();
570 >        } else {
571 >          if (hasSphereBRadius_) {
572 >            sphereBRadius_ = rnemdParams->getSphereBRadius();
573 >            selectionBstream << "select r > " << sphereBRadius_;
574 >            selectionB_ = selectionBstream.str();
575 >          } else {
576 >            selectionB_ = "select hull";
577 >            BisHull_ = true;
578 >            hasSelectionB_ = true;
579 >          }
580 >        }
581 >      }
582      }
583  
584 < #ifndef IS_MPI
585 <    if (simParams->haveSeed()) {
586 <      seedValue = simParams->getSeed();
587 <      randNumGen_ = new SeqRandNumGen(seedValue);
588 <    }else {
589 <      randNumGen_ = new SeqRandNumGen();
590 <    }    
591 < #else
592 <    if (simParams->haveSeed()) {
188 <      seedValue = simParams->getSeed();
189 <      randNumGen_ = new ParallelRandNumGen(seedValue);
190 <    }else {
191 <      randNumGen_ = new ParallelRandNumGen();
192 <    }    
193 < #endif
584 >    // object evaluator:
585 >    evaluator_.loadScriptString(rnemdObjectSelection_);
586 >    seleMan_.setSelectionSet(evaluator_.evaluate());
587 >    evaluatorA_.loadScriptString(selectionA_);
588 >    evaluatorB_.loadScriptString(selectionB_);
589 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
590 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
591 >    commonA_ = seleManA_ & seleMan_;
592 >    commonB_ = seleManB_ & seleMan_;  
593    }
594    
196  RNEMD::~RNEMD() {
197    delete randNumGen_;
595      
596 +  RNEMD::~RNEMD() {
597 +    if (!doRNEMD_) return;
598   #ifdef IS_MPI
599      if (worldRank == 0) {
600   #endif
601 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
602 <      rnemdLog_.close();
603 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
604 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
605 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207 <        xTempLog_.close();
208 <        yTempLog_.close();
209 <        zTempLog_.close();
210 <      }
601 >
602 >      writeOutputFile();
603 >
604 >      rnemdFile_.close();
605 >      
606   #ifdef IS_MPI
607      }
608   #endif
609 +
610 +    // delete all of the objects we created:
611 +    delete areaAccumulator_;    
612 +    data_.clear();
613    }
614 +  
615 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
616 +    if (!doRNEMD_) return;
617 +    int selei;
618 +    int selej;
619  
216  void RNEMD::doSwap() {
217
620      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
621      Mat3x3d hmat = currentSnap_->getHmat();
622  
221    seleMan_.setSelectionSet(evaluator_.evaluate());
222
223    int selei;
623      StuntDouble* sd;
225    int idx;
624  
625      RealType min_val;
626      bool min_found = false;  
# Line 232 | Line 630 | namespace OpenMD {
630      bool max_found = false;
631      StuntDouble* max_sd;
632  
633 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
634 <         sd = seleMan_.nextSelected(selei)) {
633 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
634 >         sd = seleManA_.nextSelected(selei)) {
635  
238      idx = sd->getLocalIndex();
239
636        Vector3d pos = sd->getPos();
637 <
637 >      
638        // wrap the stuntdouble's position back into the box:
639 <
639 >      
640        if (usePeriodicBoundaryConditions_)
641          currentSnap_->wrapVector(pos);
642 <
643 <      // which bin is this stuntdouble in?
644 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
645 <
646 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
647 <
648 <
253 <      // if we're in bin 0 or the middleBin
254 <      if (binNo == 0 || binNo == midBin_) {
642 >      
643 >      RealType mass = sd->getMass();
644 >      Vector3d vel = sd->getVel();
645 >      RealType value;
646 >      
647 >      switch(rnemdFluxType_) {
648 >      case rnemdKE :
649          
650 <        RealType mass = sd->getMass();
651 <        Vector3d vel = sd->getVel();
652 <        RealType value;
653 <
654 <        switch(rnemdType_) {
261 <        case rnemdKineticSwap :
650 >        value = mass * vel.lengthSquare();
651 >        
652 >        if (sd->isDirectional()) {
653 >          Vector3d angMom = sd->getJ();
654 >          Mat3x3d I = sd->getI();
655            
656 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
657 <                          vel[2]*vel[2]);
658 <          if (sd->isDirectional()) {
659 <            Vector3d angMom = sd->getJ();
660 <            Mat3x3d I = sd->getI();
661 <            
662 <            if (sd->isLinear()) {
663 <              int i = sd->linearAxis();
664 <              int j = (i + 1) % 3;
665 <              int k = (i + 2) % 3;
273 <              value += angMom[j] * angMom[j] / I(j, j) +
274 <                angMom[k] * angMom[k] / I(k, k);
275 <            } else {                        
276 <              value += angMom[0]*angMom[0]/I(0, 0)
277 <                + angMom[1]*angMom[1]/I(1, 1)
278 <                + angMom[2]*angMom[2]/I(2, 2);
279 <            }
656 >          if (sd->isLinear()) {
657 >            int i = sd->linearAxis();
658 >            int j = (i + 1) % 3;
659 >            int k = (i + 2) % 3;
660 >            value += angMom[j] * angMom[j] / I(j, j) +
661 >              angMom[k] * angMom[k] / I(k, k);
662 >          } else {                        
663 >            value += angMom[0]*angMom[0]/I(0, 0)
664 >              + angMom[1]*angMom[1]/I(1, 1)
665 >              + angMom[2]*angMom[2]/I(2, 2);
666            }
667 <          //make exchangeSum_ comparable between swap & scale
668 <          //temporarily without using energyConvert
669 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
670 <          value *= 0.5;
671 <          break;
672 <        case rnemdPx :
673 <          value = mass * vel[0];
674 <          break;
675 <        case rnemdPy :
676 <          value = mass * vel[1];
677 <          break;
678 <        case rnemdPz :
679 <          value = mass * vel[2];
680 <          break;
681 <        default :
682 <          break;
667 >        } //angular momenta exchange enabled
668 >        value *= 0.5;
669 >        break;
670 >      case rnemdPx :
671 >        value = mass * vel[0];
672 >        break;
673 >      case rnemdPy :
674 >        value = mass * vel[1];
675 >        break;
676 >      case rnemdPz :
677 >        value = mass * vel[2];
678 >        break;
679 >      default :
680 >        break;
681 >      }
682 >      if (!max_found) {
683 >        max_val = value;
684 >        max_sd = sd;
685 >        max_found = true;
686 >      } else {
687 >        if (max_val < value) {
688 >          max_val = value;
689 >          max_sd = sd;
690          }
691 +      }  
692 +    }
693          
694 <        if (binNo == 0) {
695 <          if (!min_found) {
696 <            min_val = value;
697 <            min_sd = sd;
698 <            min_found = true;
699 <          } else {
700 <            if (min_val > value) {
701 <              min_val = value;
702 <              min_sd = sd;
703 <            }
704 <          }
705 <        } else { //midBin_
706 <          if (!max_found) {
707 <            max_val = value;
708 <            max_sd = sd;
709 <            max_found = true;
710 <          } else {
711 <            if (max_val < value) {
712 <              max_val = value;
713 <              max_sd = sd;
714 <            }
715 <          }      
716 <        }
694 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
695 >         sd = seleManB_.nextSelected(selej)) {
696 >
697 >      Vector3d pos = sd->getPos();
698 >      
699 >      // wrap the stuntdouble's position back into the box:
700 >      
701 >      if (usePeriodicBoundaryConditions_)
702 >        currentSnap_->wrapVector(pos);
703 >      
704 >      RealType mass = sd->getMass();
705 >      Vector3d vel = sd->getVel();
706 >      RealType value;
707 >      
708 >      switch(rnemdFluxType_) {
709 >      case rnemdKE :
710 >        
711 >        value = mass * vel.lengthSquare();
712 >        
713 >        if (sd->isDirectional()) {
714 >          Vector3d angMom = sd->getJ();
715 >          Mat3x3d I = sd->getI();
716 >          
717 >          if (sd->isLinear()) {
718 >            int i = sd->linearAxis();
719 >            int j = (i + 1) % 3;
720 >            int k = (i + 2) % 3;
721 >            value += angMom[j] * angMom[j] / I(j, j) +
722 >              angMom[k] * angMom[k] / I(k, k);
723 >          } else {                        
724 >            value += angMom[0]*angMom[0]/I(0, 0)
725 >              + angMom[1]*angMom[1]/I(1, 1)
726 >              + angMom[2]*angMom[2]/I(2, 2);
727 >          }
728 >        } //angular momenta exchange enabled
729 >        value *= 0.5;
730 >        break;
731 >      case rnemdPx :
732 >        value = mass * vel[0];
733 >        break;
734 >      case rnemdPy :
735 >        value = mass * vel[1];
736 >        break;
737 >      case rnemdPz :
738 >        value = mass * vel[2];
739 >        break;
740 >      default :
741 >        break;
742        }
743 +      
744 +      if (!min_found) {
745 +        min_val = value;
746 +        min_sd = sd;
747 +        min_found = true;
748 +      } else {
749 +        if (min_val > value) {
750 +          min_val = value;
751 +          min_sd = sd;
752 +        }
753 +      }
754      }
755 <
756 < #ifdef IS_MPI
757 <    int nProc, worldRank;
758 <
328 <    nProc = MPI::COMM_WORLD.Get_size();
329 <    worldRank = MPI::COMM_WORLD.Get_rank();
330 <
755 >    
756 > #ifdef IS_MPI    
757 >    int worldRank = MPI::COMM_WORLD.Get_rank();
758 >    
759      bool my_min_found = min_found;
760      bool my_max_found = max_found;
761  
762      // Even if we didn't find a minimum, did someone else?
763 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
336 <                              1, MPI::BOOL, MPI::LAND);
337 <    
763 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
764      // Even if we didn't find a maximum, did someone else?
765 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
766 <                              1, MPI::BOOL, MPI::LAND);
767 <    
768 <    struct {
769 <      RealType val;
770 <      int rank;
771 <    } max_vals, min_vals;
772 <    
773 <    if (min_found) {
774 <      if (my_min_found)
765 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
766 > #endif
767 >
768 >    if (max_found && min_found) {
769 >
770 > #ifdef IS_MPI
771 >      struct {
772 >        RealType val;
773 >        int rank;
774 >      } max_vals, min_vals;
775 >      
776 >      if (my_min_found) {
777          min_vals.val = min_val;
778 <      else
778 >      } else {
779          min_vals.val = HONKING_LARGE_VALUE;
780 <      
780 >      }
781        min_vals.rank = worldRank;    
782        
783        // Who had the minimum?
784        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
785                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
786        min_val = min_vals.val;
359    }
787        
788 <    if (max_found) {
362 <      if (my_max_found)
788 >      if (my_max_found) {
789          max_vals.val = max_val;
790 <      else
790 >      } else {
791          max_vals.val = -HONKING_LARGE_VALUE;
792 <      
792 >      }
793        max_vals.rank = worldRank;    
794        
795        // Who had the maximum?
796        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
797                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
798        max_val = max_vals.val;
373    }
799   #endif
800 <
801 <    if (max_found && min_found) {
802 <      if (min_val< max_val) {
378 <
800 >      
801 >      if (min_val < max_val) {
802 >        
803   #ifdef IS_MPI      
804          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
805            // I have both maximum and minimum, so proceed like a single
806            // processor version:
807   #endif
808 <          // objects to be swapped: velocity & angular velocity
808 >
809            Vector3d min_vel = min_sd->getVel();
810            Vector3d max_vel = max_sd->getVel();
811            RealType temp_vel;
812            
813 <          switch(rnemdType_) {
814 <          case rnemdKineticSwap :
813 >          switch(rnemdFluxType_) {
814 >          case rnemdKE :
815              min_sd->setVel(max_vel);
816              max_sd->setVel(min_vel);
817 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
817 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
818                Vector3d min_angMom = min_sd->getJ();
819                Vector3d max_angMom = max_sd->getJ();
820                min_sd->setJ(max_angMom);
821                max_sd->setJ(min_angMom);
822 <            }
822 >            }//angular momenta exchange enabled
823 >            //assumes same rigid body identity
824              break;
825            case rnemdPx :
826              temp_vel = min_vel.x();
# Line 421 | Line 846 | namespace OpenMD {
846            default :
847              break;
848            }
849 +
850   #ifdef IS_MPI
851            // the rest of the cases only apply in parallel simulations:
852          } else if (max_vals.rank == worldRank) {
# Line 436 | Line 862 | namespace OpenMD {
862                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
863                                     min_vals.rank, 0, status);
864            
865 <          switch(rnemdType_) {
866 <          case rnemdKineticSwap :
865 >          switch(rnemdFluxType_) {
866 >          case rnemdKE :
867              max_sd->setVel(min_vel);
868 <            
868 >            //angular momenta exchange enabled
869              if (max_sd->isDirectional()) {
870                Vector3d min_angMom;
871                Vector3d max_angMom = max_sd->getJ();
872 <
872 >              
873                // point-to-point swap of the angular momentum vector
874                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
875                                         MPI::REALTYPE, min_vals.rank, 1,
876                                         min_angMom.getArrayPointer(), 3,
877                                         MPI::REALTYPE, min_vals.rank, 1,
878                                         status);
879 <
879 >              
880                max_sd->setJ(min_angMom);
881 <            }
881 >            }
882              break;
883            case rnemdPx :
884              max_vel.x() = min_vel.x();
# Line 482 | Line 908 | namespace OpenMD {
908                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
909                                     max_vals.rank, 0, status);
910            
911 <          switch(rnemdType_) {
912 <          case rnemdKineticSwap :
911 >          switch(rnemdFluxType_) {
912 >          case rnemdKE :
913              min_sd->setVel(max_vel);
914 <            
914 >            //angular momenta exchange enabled
915              if (min_sd->isDirectional()) {
916                Vector3d min_angMom = min_sd->getJ();
917                Vector3d max_angMom;
918 <
918 >              
919                // point-to-point swap of the angular momentum vector
920                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
921                                         MPI::REALTYPE, max_vals.rank, 1,
922                                         max_angMom.getArrayPointer(), 3,
923                                         MPI::REALTYPE, max_vals.rank, 1,
924                                         status);
925 <
925 >              
926                min_sd->setJ(max_angMom);
927              }
928              break;
# Line 517 | Line 943 | namespace OpenMD {
943            }
944          }
945   #endif
946 <        exchangeSum_ += max_val - min_val;
947 <      } else {
948 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
946 >        
947 >        switch(rnemdFluxType_) {
948 >        case rnemdKE:
949 >          kineticExchange_ += max_val - min_val;
950 >          break;
951 >        case rnemdPx:
952 >          momentumExchange_.x() += max_val - min_val;
953 >          break;
954 >        case rnemdPy:
955 >          momentumExchange_.y() += max_val - min_val;
956 >          break;
957 >        case rnemdPz:
958 >          momentumExchange_.z() += max_val - min_val;
959 >          break;
960 >        default:
961 >          break;
962 >        }
963 >      } else {        
964 >        sprintf(painCave.errMsg,
965 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
966 >        painCave.isFatal = 0;
967 >        painCave.severity = OPENMD_INFO;
968 >        simError();        
969          failTrialCount_++;
970        }
971      } else {
972 <      std::cerr << "exchange NOT performed!\n";
973 <      std::cerr << "at least one of the two slabs empty.\n";
972 >      sprintf(painCave.errMsg,
973 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
974 >              "\twas not present in at least one of the two slabs.\n");
975 >      painCave.isFatal = 0;
976 >      painCave.severity = OPENMD_INFO;
977 >      simError();        
978        failTrialCount_++;
979 <    }
530 <    
979 >    }    
980    }
981    
982 <  void RNEMD::doScale() {
982 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
983 >    if (!doRNEMD_) return;
984 >    int selei;
985 >    int selej;
986  
987      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
988 +    RealType time = currentSnap_->getTime();    
989      Mat3x3d hmat = currentSnap_->getHmat();
990  
538    seleMan_.setSelectionSet(evaluator_.evaluate());
539
540    int selei;
991      StuntDouble* sd;
542    int idx;
992  
993 <    std::vector<StuntDouble*> hotBin, coldBin;
993 >    vector<StuntDouble*> hotBin, coldBin;
994  
995      RealType Phx = 0.0;
996      RealType Phy = 0.0;
# Line 549 | Line 998 | namespace OpenMD {
998      RealType Khx = 0.0;
999      RealType Khy = 0.0;
1000      RealType Khz = 0.0;
1001 +    RealType Khw = 0.0;
1002      RealType Pcx = 0.0;
1003      RealType Pcy = 0.0;
1004      RealType Pcz = 0.0;
1005      RealType Kcx = 0.0;
1006      RealType Kcy = 0.0;
1007      RealType Kcz = 0.0;
1008 +    RealType Kcw = 0.0;
1009  
1010 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1011 <         sd = seleMan_.nextSelected(selei)) {
1010 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1011 >         sd = smanA.nextSelected(selei)) {
1012  
562      idx = sd->getLocalIndex();
563
1013        Vector3d pos = sd->getPos();
1014 <
1014 >      
1015        // wrap the stuntdouble's position back into the box:
1016 <
1016 >      
1017        if (usePeriodicBoundaryConditions_)
1018          currentSnap_->wrapVector(pos);
1019 <
1020 <      // which bin is this stuntdouble in?
1021 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1022 <
1023 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1024 <
1025 <      // if we're in bin 0 or the middleBin
1026 <      if (binNo == 0 || binNo == midBin_) {
1027 <        
1028 <        RealType mass = sd->getMass();
1029 <        Vector3d vel = sd->getVel();
1030 <      
1031 <        if (binNo == 0) {
1032 <          hotBin.push_back(sd);
1033 <          Phx += mass * vel.x();
1034 <          Phy += mass * vel.y();
1035 <          Phz += mass * vel.z();
1036 <          Khx += mass * vel.x() * vel.x();
1037 <          Khy += mass * vel.y() * vel.y();
1038 <          Khz += mass * vel.z() * vel.z();
1039 <        } else { //midBin_
1040 <          coldBin.push_back(sd);
1041 <          Pcx += mass * vel.x();
1042 <          Pcy += mass * vel.y();
1043 <          Pcz += mass * vel.z();
1044 <          Kcx += mass * vel.x() * vel.x();
1045 <          Kcy += mass * vel.y() * vel.y();
1046 <          Kcz += mass * vel.z() * vel.z();
1047 <        }
1048 <      }
1049 <    }
1050 <
1051 <    Khx *= 0.5;
1052 <    Khy *= 0.5;
1019 >      
1020 >      
1021 >      RealType mass = sd->getMass();
1022 >      Vector3d vel = sd->getVel();
1023 >      
1024 >      hotBin.push_back(sd);
1025 >      Phx += mass * vel.x();
1026 >      Phy += mass * vel.y();
1027 >      Phz += mass * vel.z();
1028 >      Khx += mass * vel.x() * vel.x();
1029 >      Khy += mass * vel.y() * vel.y();
1030 >      Khz += mass * vel.z() * vel.z();
1031 >      if (sd->isDirectional()) {
1032 >        Vector3d angMom = sd->getJ();
1033 >        Mat3x3d I = sd->getI();
1034 >        if (sd->isLinear()) {
1035 >          int i = sd->linearAxis();
1036 >          int j = (i + 1) % 3;
1037 >          int k = (i + 2) % 3;
1038 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1039 >            angMom[k] * angMom[k] / I(k, k);
1040 >        } else {
1041 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1042 >            + angMom[1]*angMom[1]/I(1, 1)
1043 >            + angMom[2]*angMom[2]/I(2, 2);
1044 >        }
1045 >      }
1046 >    }
1047 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1048 >         sd = smanB.nextSelected(selej)) {
1049 >      Vector3d pos = sd->getPos();
1050 >      
1051 >      // wrap the stuntdouble's position back into the box:
1052 >      
1053 >      if (usePeriodicBoundaryConditions_)
1054 >        currentSnap_->wrapVector(pos);
1055 >            
1056 >      RealType mass = sd->getMass();
1057 >      Vector3d vel = sd->getVel();
1058 >
1059 >      coldBin.push_back(sd);
1060 >      Pcx += mass * vel.x();
1061 >      Pcy += mass * vel.y();
1062 >      Pcz += mass * vel.z();
1063 >      Kcx += mass * vel.x() * vel.x();
1064 >      Kcy += mass * vel.y() * vel.y();
1065 >      Kcz += mass * vel.z() * vel.z();
1066 >      if (sd->isDirectional()) {
1067 >        Vector3d angMom = sd->getJ();
1068 >        Mat3x3d I = sd->getI();
1069 >        if (sd->isLinear()) {
1070 >          int i = sd->linearAxis();
1071 >          int j = (i + 1) % 3;
1072 >          int k = (i + 2) % 3;
1073 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1074 >            angMom[k] * angMom[k] / I(k, k);
1075 >        } else {
1076 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1077 >            + angMom[1]*angMom[1]/I(1, 1)
1078 >            + angMom[2]*angMom[2]/I(2, 2);
1079 >        }
1080 >      }
1081 >    }
1082 >    
1083 >    Khx *= 0.5;
1084 >    Khy *= 0.5;
1085      Khz *= 0.5;
1086 +    Khw *= 0.5;
1087      Kcx *= 0.5;
1088      Kcy *= 0.5;
1089      Kcz *= 0.5;
1090 +    Kcw *= 0.5;
1091  
1092   #ifdef IS_MPI
1093      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
# Line 617 | Line 1100 | namespace OpenMD {
1100      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1101      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1102      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1103 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1104 +
1105      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1106      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1107      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1108 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1109   #endif
1110  
1111 <    //use coldBin coeff's
1111 >    //solve coldBin coeff's first
1112      RealType px = Pcx / Phx;
1113      RealType py = Pcy / Phy;
1114      RealType pz = Pcz / Phz;
1115 +    RealType c, x, y, z;
1116 +    bool successfulScale = false;
1117 +    if ((rnemdFluxType_ == rnemdFullKE) ||
1118 +        (rnemdFluxType_ == rnemdRotKE)) {
1119 +      //may need sanity check Khw & Kcw > 0
1120  
1121 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
1122 <    switch(rnemdType_) {
1123 <    case rnemdKineticScale :
1124 <    /*used hotBin coeff's & only scale x & y dimensions
1125 <      RealType px = Phx / Pcx;
635 <      RealType py = Phy / Pcy;
636 <      a110 = Khy;
637 <      c0 = - Khx - Khy - targetFlux_;
638 <      a000 = Khx;
639 <      a111 = Kcy * py * py
640 <      b11 = -2.0 * Kcy * py * (1.0 + py);
641 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642 <      b01 = -2.0 * Kcx * px * (1.0 + px);
643 <      a001 = Kcx * px * px;
644 <    */
1121 >      if (rnemdFluxType_ == rnemdFullKE) {
1122 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1123 >      } else {
1124 >        c = 1.0 - kineticTarget_ / Kcw;
1125 >      }
1126  
1127 <      //scale all three dimensions, let c_x = c_y
1128 <      a000 = Kcx + Kcy;
1129 <      a110 = Kcz;
1130 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
1131 <      a001 = Khx * px * px + Khy * py * py;
1132 <      a111 = Khz * pz * pz;
1133 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1134 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1135 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1136 <         + Khz * pz * (2.0 + pz) - targetFlux_;
1137 <      break;
1138 <    case rnemdPxScale :
1139 <      c = 1 - targetFlux_ / Pcx;
1140 <      a000 = Kcy;
1141 <      a110 = Kcz;
1142 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1143 <      a001 = py * py * Khy;
1144 <      a111 = pz * pz * Khz;
1145 <      b01 = -2.0 * Khy * py * (1.0 + py);
1146 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1147 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1148 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1149 <      break;
1150 <    case rnemdPyScale :
1151 <      c = 1 - targetFlux_ / Pcy;
1152 <      a000 = Kcx;
1153 <      a110 = Kcz;
1154 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1155 <      a001 = px * px * Khx;
1156 <      a111 = pz * pz * Khz;
1157 <      b01 = -2.0 * Khx * px * (1.0 + px);
1158 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1159 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1160 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1127 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1128 >        c = sqrt(c);
1129 >
1130 >        RealType w = 0.0;
1131 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1132 >          x = 1.0 + px * (1.0 - c);
1133 >          y = 1.0 + py * (1.0 - c);
1134 >          z = 1.0 + pz * (1.0 - c);
1135 >          /* more complicated way
1136 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1137 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1138 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1139 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1140 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1141 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1142 >          */
1143 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1144 >              (fabs(z - 1.0) < 0.1)) {
1145 >            w = 1.0 + (kineticTarget_
1146 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1147 >                       + Khz * (1.0 - z * z)) / Khw;
1148 >          }//no need to calculate w if x, y or z is out of range
1149 >        } else {
1150 >          w = 1.0 + kineticTarget_ / Khw;
1151 >        }
1152 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1153 >          //if w is in the right range, so should be x, y, z.
1154 >          vector<StuntDouble*>::iterator sdi;
1155 >          Vector3d vel;
1156 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1157 >            if (rnemdFluxType_ == rnemdFullKE) {
1158 >              vel = (*sdi)->getVel() * c;
1159 >              (*sdi)->setVel(vel);
1160 >            }
1161 >            if ((*sdi)->isDirectional()) {
1162 >              Vector3d angMom = (*sdi)->getJ() * c;
1163 >              (*sdi)->setJ(angMom);
1164 >            }
1165 >          }
1166 >          w = sqrt(w);
1167 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1168 >            if (rnemdFluxType_ == rnemdFullKE) {
1169 >              vel = (*sdi)->getVel();
1170 >              vel.x() *= x;
1171 >              vel.y() *= y;
1172 >              vel.z() *= z;
1173 >              (*sdi)->setVel(vel);
1174 >            }
1175 >            if ((*sdi)->isDirectional()) {
1176 >              Vector3d angMom = (*sdi)->getJ() * w;
1177 >              (*sdi)->setJ(angMom);
1178 >            }
1179 >          }
1180 >          successfulScale = true;
1181 >          kineticExchange_ += kineticTarget_;
1182 >        }
1183 >      }
1184 >    } else {
1185 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1186 >      switch(rnemdFluxType_) {
1187 >      case rnemdKE :
1188 >        /* used hotBin coeff's & only scale x & y dimensions
1189 >           RealType px = Phx / Pcx;
1190 >           RealType py = Phy / Pcy;
1191 >           a110 = Khy;
1192 >           c0 = - Khx - Khy - kineticTarget_;
1193 >           a000 = Khx;
1194 >           a111 = Kcy * py * py;
1195 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1196 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1197 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1198 >           a001 = Kcx * px * px;
1199 >        */
1200 >        //scale all three dimensions, let c_x = c_y
1201 >        a000 = Kcx + Kcy;
1202 >        a110 = Kcz;
1203 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1204 >        a001 = Khx * px * px + Khy * py * py;
1205 >        a111 = Khz * pz * pz;
1206 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1207 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1208 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1209 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1210 >        break;
1211 >      case rnemdPx :
1212 >        c = 1 - momentumTarget_.x() / Pcx;
1213 >        a000 = Kcy;
1214 >        a110 = Kcz;
1215 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1216 >        a001 = py * py * Khy;
1217 >        a111 = pz * pz * Khz;
1218 >        b01 = -2.0 * Khy * py * (1.0 + py);
1219 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1220 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1221 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1222 >        break;
1223 >      case rnemdPy :
1224 >        c = 1 - momentumTarget_.y() / Pcy;
1225 >        a000 = Kcx;
1226 >        a110 = Kcz;
1227 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1228 >        a001 = px * px * Khx;
1229 >        a111 = pz * pz * Khz;
1230 >        b01 = -2.0 * Khx * px * (1.0 + px);
1231 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1232 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1233 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1234 >        break;
1235 >      case rnemdPz ://we don't really do this, do we?
1236 >        c = 1 - momentumTarget_.z() / Pcz;
1237 >        a000 = Kcx;
1238 >        a110 = Kcy;
1239 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1240 >        a001 = px * px * Khx;
1241 >        a111 = py * py * Khy;
1242 >        b01 = -2.0 * Khx * px * (1.0 + px);
1243 >        b11 = -2.0 * Khy * py * (1.0 + py);
1244 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1245 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1246 >        break;
1247 >      default :
1248 >        break;
1249 >      }
1250 >      
1251 >      RealType v1 = a000 * a111 - a001 * a110;
1252 >      RealType v2 = a000 * b01;
1253 >      RealType v3 = a000 * b11;
1254 >      RealType v4 = a000 * c1 - a001 * c0;
1255 >      RealType v8 = a110 * b01;
1256 >      RealType v10 = - b01 * c0;
1257 >      
1258 >      RealType u0 = v2 * v10 - v4 * v4;
1259 >      RealType u1 = -2.0 * v3 * v4;
1260 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1261 >      RealType u3 = -2.0 * v1 * v3;
1262 >      RealType u4 = - v1 * v1;
1263 >      //rescale coefficients
1264 >      RealType maxAbs = fabs(u0);
1265 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1266 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1267 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1268 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1269 >      u0 /= maxAbs;
1270 >      u1 /= maxAbs;
1271 >      u2 /= maxAbs;
1272 >      u3 /= maxAbs;
1273 >      u4 /= maxAbs;
1274 >      //max_element(start, end) is also available.
1275 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1276 >      poly.setCoefficient(4, u4);
1277 >      poly.setCoefficient(3, u3);
1278 >      poly.setCoefficient(2, u2);
1279 >      poly.setCoefficient(1, u1);
1280 >      poly.setCoefficient(0, u0);
1281 >      vector<RealType> realRoots = poly.FindRealRoots();
1282 >      
1283 >      vector<RealType>::iterator ri;
1284 >      RealType r1, r2, alpha0;
1285 >      vector<pair<RealType,RealType> > rps;
1286 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1287 >        r2 = *ri;
1288 >        //check if FindRealRoots() give the right answer
1289 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1290 >          sprintf(painCave.errMsg,
1291 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1292 >          painCave.isFatal = 0;
1293 >          simError();
1294 >          failRootCount_++;
1295 >        }
1296 >        //might not be useful w/o rescaling coefficients
1297 >        alpha0 = -c0 - a110 * r2 * r2;
1298 >        if (alpha0 >= 0.0) {
1299 >          r1 = sqrt(alpha0 / a000);
1300 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1301 >              < 1e-6)
1302 >            { rps.push_back(make_pair(r1, r2)); }
1303 >          if (r1 > 1e-6) { //r1 non-negative
1304 >            r1 = -r1;
1305 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1306 >                < 1e-6)
1307 >              { rps.push_back(make_pair(r1, r2)); }
1308 >          }
1309 >        }
1310 >      }
1311 >      // Consider combining together the solving pair part w/ the searching
1312 >      // best solution part so that we don't need the pairs vector
1313 >      if (!rps.empty()) {
1314 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1315 >        RealType diff;
1316 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1317 >        vector<pair<RealType,RealType> >::iterator rpi;
1318 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1319 >          r1 = (*rpi).first;
1320 >          r2 = (*rpi).second;
1321 >          switch(rnemdFluxType_) {
1322 >          case rnemdKE :
1323 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1324 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1325 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1326 >            break;
1327 >          case rnemdPx :
1328 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1329 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1330 >            break;
1331 >          case rnemdPy :
1332 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1333 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1334 >            break;
1335 >          case rnemdPz :
1336 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1337 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1338 >          default :
1339 >            break;
1340 >          }
1341 >          if (diff < smallestDiff) {
1342 >            smallestDiff = diff;
1343 >            bestPair = *rpi;
1344 >          }
1345 >        }
1346 > #ifdef IS_MPI
1347 >        if (worldRank == 0) {
1348 > #endif
1349 >          // sprintf(painCave.errMsg,
1350 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1351 >          //         bestPair.first, bestPair.second);
1352 >          // painCave.isFatal = 0;
1353 >          // painCave.severity = OPENMD_INFO;
1354 >          // simError();
1355 > #ifdef IS_MPI
1356 >        }
1357 > #endif
1358 >        
1359 >        switch(rnemdFluxType_) {
1360 >        case rnemdKE :
1361 >          x = bestPair.first;
1362 >          y = bestPair.first;
1363 >          z = bestPair.second;
1364 >          break;
1365 >        case rnemdPx :
1366 >          x = c;
1367 >          y = bestPair.first;
1368 >          z = bestPair.second;
1369 >          break;
1370 >        case rnemdPy :
1371 >          x = bestPair.first;
1372 >          y = c;
1373 >          z = bestPair.second;
1374 >          break;
1375 >        case rnemdPz :
1376 >          x = bestPair.first;
1377 >          y = bestPair.second;
1378 >          z = c;
1379 >          break;          
1380 >        default :
1381 >          break;
1382 >        }
1383 >        vector<StuntDouble*>::iterator sdi;
1384 >        Vector3d vel;
1385 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1386 >          vel = (*sdi)->getVel();
1387 >          vel.x() *= x;
1388 >          vel.y() *= y;
1389 >          vel.z() *= z;
1390 >          (*sdi)->setVel(vel);
1391 >        }
1392 >        //convert to hotBin coefficient
1393 >        x = 1.0 + px * (1.0 - x);
1394 >        y = 1.0 + py * (1.0 - y);
1395 >        z = 1.0 + pz * (1.0 - z);
1396 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1397 >          vel = (*sdi)->getVel();
1398 >          vel.x() *= x;
1399 >          vel.y() *= y;
1400 >          vel.z() *= z;
1401 >          (*sdi)->setVel(vel);
1402 >        }
1403 >        successfulScale = true;
1404 >        switch(rnemdFluxType_) {
1405 >        case rnemdKE :
1406 >          kineticExchange_ += kineticTarget_;
1407 >          break;
1408 >        case rnemdPx :
1409 >        case rnemdPy :
1410 >        case rnemdPz :
1411 >          momentumExchange_ += momentumTarget_;
1412 >          break;          
1413 >        default :
1414 >          break;
1415 >        }      
1416 >      }
1417 >    }
1418 >    if (successfulScale != true) {
1419 >      sprintf(painCave.errMsg,
1420 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1421 >              "\tthe constraint equations may not exist or there may be\n"
1422 >              "\tno selected objects in one or both slabs.\n");
1423 >      painCave.isFatal = 0;
1424 >      painCave.severity = OPENMD_INFO;
1425 >      simError();        
1426 >      failTrialCount_++;
1427 >    }
1428 >  }
1429 >  
1430 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1431 >    if (!doRNEMD_) return;
1432 >    int selei;
1433 >    int selej;
1434 >
1435 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1436 >    RealType time = currentSnap_->getTime();    
1437 >    Mat3x3d hmat = currentSnap_->getHmat();
1438 >
1439 >    StuntDouble* sd;
1440 >
1441 >    vector<StuntDouble*> hotBin, coldBin;
1442 >
1443 >    Vector3d Ph(V3Zero);
1444 >    Vector3d Lh(V3Zero);
1445 >    RealType Mh = 0.0;
1446 >    Mat3x3d Ih(0.0);
1447 >    RealType Kh = 0.0;
1448 >    Vector3d Pc(V3Zero);
1449 >    Vector3d Lc(V3Zero);
1450 >    RealType Mc = 0.0;
1451 >    Mat3x3d Ic(0.0);
1452 >    RealType Kc = 0.0;
1453 >
1454 >    // Constraints can be on only the linear or angular momentum, but
1455 >    // not both.  Usually, the user will specify which they want, but
1456 >    // in case they don't, the use of periodic boundaries should make
1457 >    // the choice for us.
1458 >    bool doLinearPart = false;
1459 >    bool doAngularPart = false;
1460 >
1461 >    switch (rnemdFluxType_) {
1462 >    case rnemdPx:
1463 >    case rnemdPy:
1464 >    case rnemdPz:
1465 >    case rnemdPvector:
1466 >    case rnemdKePx:
1467 >    case rnemdKePy:
1468 >    case rnemdKePvector:
1469 >      doLinearPart = true;
1470        break;
1471 <    case rnemdPzScale ://we don't really do this, do we?
1472 <      c = 1 - targetFlux_ / Pcz;
1473 <      a000 = Kcx;
1474 <      a110 = Kcy;
1475 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1476 <      a001 = px * px * Khx;
1477 <      a111 = py * py * Khy;
1478 <      b01 = -2.0 * Khx * px * (1.0 + px);
1479 <      b11 = -2.0 * Khy * py * (1.0 + py);
690 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
691 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
692 <      break;      
693 <    default :
1471 >    case rnemdLx:
1472 >    case rnemdLy:
1473 >    case rnemdLz:
1474 >    case rnemdLvector:
1475 >    case rnemdKeLx:
1476 >    case rnemdKeLy:
1477 >    case rnemdKeLz:
1478 >    case rnemdKeLvector:
1479 >      doAngularPart = true;
1480        break;
1481 +    case rnemdKE:
1482 +    case rnemdRotKE:
1483 +    case rnemdFullKE:
1484 +    default:
1485 +      if (usePeriodicBoundaryConditions_)
1486 +        doLinearPart = true;
1487 +      else
1488 +        doAngularPart = true;
1489 +      break;
1490      }
1491 +    
1492 +    for (sd = smanA.beginSelected(selei); sd != NULL;
1493 +         sd = smanA.nextSelected(selei)) {
1494  
1495 <    RealType v1 = a000 * a111 - a001 * a110;
698 <    RealType v2 = a000 * b01;
699 <    RealType v3 = a000 * b11;
700 <    RealType v4 = a000 * c1 - a001 * c0;
701 <    RealType v8 = a110 * b01;
702 <    RealType v10 = - b01 * c0;
1495 >      Vector3d pos = sd->getPos();
1496  
1497 <    RealType u0 = v2 * v10 - v4 * v4;
1498 <    RealType u1 = -2.0 * v3 * v4;
1499 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1500 <    RealType u3 = -2.0 * v1 * v3;
1501 <    RealType u4 = - v1 * v1;
1502 <    //rescale coefficients
1503 <    RealType maxAbs = fabs(u0);
1504 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1505 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1506 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1507 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1508 <    u0 /= maxAbs;
1509 <    u1 /= maxAbs;
1510 <    u2 /= maxAbs;
1511 <    u3 /= maxAbs;
1512 <    u4 /= maxAbs;
1513 <    //max_element(start, end) is also available.
1514 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
1515 <    poly.setCoefficient(4, u4);
1516 <    poly.setCoefficient(3, u3);
1517 <    poly.setCoefficient(2, u2);
1518 <    poly.setCoefficient(1, u1);
1519 <    poly.setCoefficient(0, u0);
1520 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1521 <
1522 <    std::vector<RealType>::iterator ri;
1523 <    RealType r1, r2, alpha0;
1524 <    std::vector<std::pair<RealType,RealType> > rps;
1525 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1526 <      r2 = *ri;
1527 <      //check if FindRealRoots() give the right answer
1528 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1529 <        sprintf(painCave.errMsg,
1530 <                "RNEMD Warning: polynomial solve seems to have an error!");
1531 <        painCave.isFatal = 0;
1532 <        simError();
740 <        failRootCount_++;
741 <      }
742 <      //might not be useful w/o rescaling coefficients
743 <      alpha0 = -c0 - a110 * r2 * r2;
744 <      if (alpha0 >= 0.0) {
745 <        r1 = sqrt(alpha0 / a000);
746 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
747 <          { rps.push_back(std::make_pair(r1, r2)); }
748 <        if (r1 > 1e-6) { //r1 non-negative
749 <          r1 = -r1;
750 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
751 <            { rps.push_back(std::make_pair(r1, r2)); }
1497 >      // wrap the stuntdouble's position back into the box:
1498 >      
1499 >      if (usePeriodicBoundaryConditions_)
1500 >        currentSnap_->wrapVector(pos);
1501 >      
1502 >      RealType mass = sd->getMass();
1503 >      Vector3d vel = sd->getVel();
1504 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1505 >      RealType r2;
1506 >      
1507 >      hotBin.push_back(sd);
1508 >      Ph += mass * vel;
1509 >      Mh += mass;
1510 >      Kh += mass * vel.lengthSquare();
1511 >      Lh += mass * cross(rPos, vel);
1512 >      Ih -= outProduct(rPos, rPos) * mass;
1513 >      r2 = rPos.lengthSquare();
1514 >      Ih(0, 0) += mass * r2;
1515 >      Ih(1, 1) += mass * r2;
1516 >      Ih(2, 2) += mass * r2;
1517 >      
1518 >      if (rnemdFluxType_ == rnemdFullKE) {
1519 >        if (sd->isDirectional()) {
1520 >          Vector3d angMom = sd->getJ();
1521 >          Mat3x3d I = sd->getI();
1522 >          if (sd->isLinear()) {
1523 >            int i = sd->linearAxis();
1524 >            int j = (i + 1) % 3;
1525 >            int k = (i + 2) % 3;
1526 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1527 >              angMom[k] * angMom[k] / I(k, k);
1528 >          } else {
1529 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1530 >              angMom[1] * angMom[1] / I(1, 1) +
1531 >              angMom[2] * angMom[2] / I(2, 2);
1532 >          }
1533          }
1534        }
1535      }
1536 <    // Consider combininig together the solving pair part w/ the searching
1537 <    // best solution part so that we don't need the pairs vector
1538 <    if (!rps.empty()) {
1539 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1540 <      RealType diff;
1541 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1542 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1543 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1544 <        r1 = (*rpi).first;
1545 <        r2 = (*rpi).second;
1546 <        switch(rnemdType_) {
1547 <        case rnemdKineticScale :
1548 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1549 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1550 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1551 <          break;
1552 <        case rnemdPxScale :
1553 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1554 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1555 <          break;
1556 <        case rnemdPyScale :
1557 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1558 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1559 <          break;
1560 <        case rnemdPzScale :
1561 <        default :
1562 <          break;
1536 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1537 >         sd = smanB.nextSelected(selej)) {
1538 >
1539 >      Vector3d pos = sd->getPos();
1540 >      
1541 >      // wrap the stuntdouble's position back into the box:
1542 >      
1543 >      if (usePeriodicBoundaryConditions_)
1544 >        currentSnap_->wrapVector(pos);
1545 >      
1546 >      RealType mass = sd->getMass();
1547 >      Vector3d vel = sd->getVel();
1548 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1549 >      RealType r2;
1550 >
1551 >      coldBin.push_back(sd);
1552 >      Pc += mass * vel;
1553 >      Mc += mass;
1554 >      Kc += mass * vel.lengthSquare();
1555 >      Lc += mass * cross(rPos, vel);
1556 >      Ic -= outProduct(rPos, rPos) * mass;
1557 >      r2 = rPos.lengthSquare();
1558 >      Ic(0, 0) += mass * r2;
1559 >      Ic(1, 1) += mass * r2;
1560 >      Ic(2, 2) += mass * r2;
1561 >      
1562 >      if (rnemdFluxType_ == rnemdFullKE) {
1563 >        if (sd->isDirectional()) {
1564 >          Vector3d angMom = sd->getJ();
1565 >          Mat3x3d I = sd->getI();
1566 >          if (sd->isLinear()) {
1567 >            int i = sd->linearAxis();
1568 >            int j = (i + 1) % 3;
1569 >            int k = (i + 2) % 3;
1570 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1571 >              angMom[k] * angMom[k] / I(k, k);
1572 >          } else {
1573 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1574 >              angMom[1] * angMom[1] / I(1, 1) +
1575 >              angMom[2] * angMom[2] / I(2, 2);
1576 >          }
1577          }
783        if (diff < smallestDiff) {
784          smallestDiff = diff;
785          bestPair = *rpi;
786        }
1578        }
1579 +    }
1580 +    
1581 +    Kh *= 0.5;
1582 +    Kc *= 0.5;
1583 +    
1584   #ifdef IS_MPI
1585 <      if (worldRank == 0) {
1585 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1586 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1587 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1588 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1589 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1590 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1591 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1592 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1593 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1594 >                              MPI::REALTYPE, MPI::SUM);
1595 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1596 >                              MPI::REALTYPE, MPI::SUM);
1597   #endif
1598 <        std::cerr << "we choose r1 = " << bestPair.first
792 <                  << " and r2 = " << bestPair.second << "\n";
793 < #ifdef IS_MPI
794 <      }
795 < #endif
1598 >    
1599  
1600 <      RealType x, y, z;
1601 <        switch(rnemdType_) {
1602 <        case rnemdKineticScale :
1603 <          x = bestPair.first;
1604 <          y = bestPair.first;
1605 <          z = bestPair.second;
1606 <          break;
1607 <        case rnemdPxScale :
1608 <          x = c;
1609 <          y = bestPair.first;
1610 <          z = bestPair.second;
1611 <          break;
1612 <        case rnemdPyScale :
1613 <          x = bestPair.first;
1614 <          y = c;
1615 <          z = bestPair.second;
1616 <          break;
1617 <        case rnemdPzScale :
1618 <          x = bestPair.first;
1619 <          y = bestPair.second;
1620 <          z = c;
1621 <          break;          
1622 <        default :
1623 <          break;
1624 <        }
1625 <      std::vector<StuntDouble*>::iterator sdi;
1626 <      Vector3d vel;
1627 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1628 <        vel = (*sdi)->getVel();
1629 <        vel.x() *= x;
1630 <        vel.y() *= y;
1631 <        vel.z() *= z;
1632 <        (*sdi)->setVel(vel);
1633 <      }
1634 <      //convert to hotBin coefficient
1635 <      x = 1.0 + px * (1.0 - x);
1636 <      y = 1.0 + py * (1.0 - y);
1637 <      z = 1.0 + pz * (1.0 - z);
1638 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1639 <        vel = (*sdi)->getVel();
1640 <        vel.x() *= x;
1641 <        vel.y() *= y;
1642 <        vel.z() *= z;
1643 <        (*sdi)->setVel(vel);
1600 >    Vector3d ac, acrec, bc, bcrec;
1601 >    Vector3d ah, ahrec, bh, bhrec;
1602 >
1603 >    bool successfulExchange = false;
1604 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1605 >      Vector3d vc = Pc / Mc;
1606 >      ac = -momentumTarget_ / Mc + vc;
1607 >      acrec = -momentumTarget_ / Mc;
1608 >      
1609 >      // We now need the inverse of the inertia tensor to calculate the
1610 >      // angular velocity of the cold slab;
1611 >      Mat3x3d Ici = Ic.inverse();
1612 >      Vector3d omegac = Ici * Lc;
1613 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1614 >      bcrec = bc - omegac;
1615 >      
1616 >      RealType cNumerator = Kc - kineticTarget_;
1617 >      if (doLinearPart)
1618 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1619 >      
1620 >      if (doAngularPart)
1621 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1622 >
1623 >      if (cNumerator > 0.0) {
1624 >        
1625 >        RealType cDenominator = Kc;
1626 >
1627 >        if (doLinearPart)
1628 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1629 >
1630 >        if (doAngularPart)
1631 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1632 >        
1633 >        if (cDenominator > 0.0) {
1634 >          RealType c = sqrt(cNumerator / cDenominator);
1635 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1636 >            
1637 >            Vector3d vh = Ph / Mh;
1638 >            ah = momentumTarget_ / Mh + vh;
1639 >            ahrec = momentumTarget_ / Mh;
1640 >            
1641 >            // We now need the inverse of the inertia tensor to
1642 >            // calculate the angular velocity of the hot slab;
1643 >            Mat3x3d Ihi = Ih.inverse();
1644 >            Vector3d omegah = Ihi * Lh;
1645 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1646 >            bhrec = bh - omegah;
1647 >            
1648 >            RealType hNumerator = Kh + kineticTarget_;
1649 >            if (doLinearPart)
1650 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1651 >            
1652 >            if (doAngularPart)
1653 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1654 >              
1655 >            if (hNumerator > 0.0) {
1656 >              
1657 >              RealType hDenominator = Kh;
1658 >              if (doLinearPart)
1659 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1660 >              if (doAngularPart)
1661 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1662 >              
1663 >              if (hDenominator > 0.0) {
1664 >                RealType h = sqrt(hNumerator / hDenominator);
1665 >                if ((h > 0.9) && (h < 1.1)) {
1666 >                  
1667 >                  vector<StuntDouble*>::iterator sdi;
1668 >                  Vector3d vel;
1669 >                  Vector3d rPos;
1670 >                  
1671 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1672 >                    //vel = (*sdi)->getVel();
1673 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1674 >                    if (doLinearPart)
1675 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1676 >                    if (doAngularPart)
1677 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1678 >
1679 >                    (*sdi)->setVel(vel);
1680 >                    if (rnemdFluxType_ == rnemdFullKE) {
1681 >                      if ((*sdi)->isDirectional()) {
1682 >                        Vector3d angMom = (*sdi)->getJ() * c;
1683 >                        (*sdi)->setJ(angMom);
1684 >                      }
1685 >                    }
1686 >                  }
1687 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1688 >                    //vel = (*sdi)->getVel();
1689 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1690 >                    if (doLinearPart)
1691 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1692 >                    if (doAngularPart)
1693 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1694 >
1695 >                    (*sdi)->setVel(vel);
1696 >                    if (rnemdFluxType_ == rnemdFullKE) {
1697 >                      if ((*sdi)->isDirectional()) {
1698 >                        Vector3d angMom = (*sdi)->getJ() * h;
1699 >                        (*sdi)->setJ(angMom);
1700 >                      }
1701 >                    }
1702 >                  }
1703 >                  successfulExchange = true;
1704 >                  kineticExchange_ += kineticTarget_;
1705 >                  momentumExchange_ += momentumTarget_;
1706 >                  angularMomentumExchange_ += angularMomentumTarget_;
1707 >                }
1708 >              }
1709 >            }
1710 >          }
1711 >        }
1712        }
1713 <      exchangeSum_ += targetFlux_;
1714 <      //we may want to check whether the exchange has been successful
1715 <    } else {
1716 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1713 >    }
1714 >    if (successfulExchange != true) {
1715 >      sprintf(painCave.errMsg,
1716 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1717 >              "\tthe constraint equations may not exist or there may be\n"
1718 >              "\tno selected objects in one or both slabs.\n");
1719 >      painCave.isFatal = 0;
1720 >      painCave.severity = OPENMD_INFO;
1721 >      simError();        
1722        failTrialCount_++;
1723      }
848
1724    }
1725  
1726 +  RealType RNEMD::getDividingArea() {
1727 +
1728 +    if (hasDividingArea_) return dividingArea_;
1729 +
1730 +    RealType areaA, areaB;
1731 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1732 +
1733 +    if (hasSelectionA_) {
1734 +
1735 +      if (evaluatorA_.hasSurfaceArea())
1736 +        areaA = evaluatorA_.getSurfaceArea();
1737 +      else {
1738 +        
1739 +        cerr << "selection A did not have surface area, recomputing\n";
1740 +        int isd;
1741 +        StuntDouble* sd;
1742 +        vector<StuntDouble*> aSites;
1743 +        seleManA_.setSelectionSet(evaluatorA_.evaluate());
1744 +        for (sd = seleManA_.beginSelected(isd); sd != NULL;
1745 +             sd = seleManA_.nextSelected(isd)) {
1746 +          aSites.push_back(sd);
1747 +        }
1748 + #if defined(HAVE_QHULL)
1749 +        ConvexHull* surfaceMeshA = new ConvexHull();
1750 +        surfaceMeshA->computeHull(aSites);
1751 +        areaA = surfaceMeshA->getArea();
1752 +        delete surfaceMeshA;
1753 + #else
1754 +        sprintf( painCave.errMsg,
1755 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1756 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1757 +        painCave.severity = OPENMD_ERROR;
1758 +        painCave.isFatal = 1;
1759 +        simError();
1760 + #endif
1761 +      }
1762 +
1763 +    } else {
1764 +      if (usePeriodicBoundaryConditions_) {
1765 +        // in periodic boundaries, the surface area is twice the x-y
1766 +        // area of the current box:
1767 +        areaA = 2.0 * snap->getXYarea();
1768 +      } else {
1769 +        // in non-periodic simulations, without explicitly setting
1770 +        // selections, the sphere radius sets the surface area of the
1771 +        // dividing surface:
1772 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1773 +      }
1774 +    }
1775 +
1776 +    if (hasSelectionB_) {
1777 +      if (evaluatorB_.hasSurfaceArea())
1778 +        areaB = evaluatorB_.getSurfaceArea();
1779 +      else {
1780 +        cerr << "selection B did not have surface area, recomputing\n";
1781 +
1782 +        int isd;
1783 +        StuntDouble* sd;
1784 +        vector<StuntDouble*> bSites;
1785 +        seleManB_.setSelectionSet(evaluatorB_.evaluate());
1786 +        for (sd = seleManB_.beginSelected(isd); sd != NULL;
1787 +             sd = seleManB_.nextSelected(isd)) {
1788 +          bSites.push_back(sd);
1789 +        }
1790 +        
1791 + #if defined(HAVE_QHULL)
1792 +        ConvexHull* surfaceMeshB = new ConvexHull();    
1793 +        surfaceMeshB->computeHull(bSites);
1794 +        areaB = surfaceMeshB->getArea();
1795 +        delete surfaceMeshB;
1796 + #else
1797 +        sprintf( painCave.errMsg,
1798 +                 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1799 +                 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1800 +        painCave.severity = OPENMD_ERROR;
1801 +        painCave.isFatal = 1;
1802 +        simError();
1803 + #endif
1804 +      }
1805 +      
1806 +    } else {
1807 +      if (usePeriodicBoundaryConditions_) {
1808 +        // in periodic boundaries, the surface area is twice the x-y
1809 +        // area of the current box:
1810 +        areaB = 2.0 * snap->getXYarea();
1811 +      } else {
1812 +        // in non-periodic simulations, without explicitly setting
1813 +        // selections, but if a sphereBradius has been set, just use that:
1814 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1815 +      }
1816 +    }
1817 +      
1818 +    dividingArea_ = min(areaA, areaB);
1819 +    hasDividingArea_ = true;
1820 +    return dividingArea_;
1821 +  }
1822 +  
1823    void RNEMD::doRNEMD() {
1824 +    if (!doRNEMD_) return;
1825 +    trialCount_++;
1826  
1827 <    switch(rnemdType_) {
1828 <    case rnemdKineticScale :
1829 <    case rnemdPxScale :
1830 <    case rnemdPyScale :
1831 <    case rnemdPzScale :
1832 <      doScale();
1827 >    // object evaluator:
1828 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1829 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1830 >
1831 >    evaluatorA_.loadScriptString(selectionA_);
1832 >    evaluatorB_.loadScriptString(selectionB_);
1833 >
1834 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1835 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1836 >
1837 >    commonA_ = seleManA_ & seleMan_;
1838 >    commonB_ = seleManB_ & seleMan_;
1839 >
1840 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1841 >    // dt = exchange time interval
1842 >    // flux = target flux
1843 >    // dividingArea = smallest dividing surface between the two regions
1844 >
1845 >    hasDividingArea_ = false;
1846 >    RealType area = getDividingArea();
1847 >
1848 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1849 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1850 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1851 >
1852 >    switch(rnemdMethod_) {
1853 >    case rnemdSwap:
1854 >      doSwap(commonA_, commonB_);
1855        break;
1856 <    case rnemdKineticSwap :
1857 <    case rnemdPx :
862 <    case rnemdPy :
863 <    case rnemdPz :
864 <      doSwap();
1856 >    case rnemdNIVS:
1857 >      doNIVS(commonA_, commonB_);
1858        break;
1859 <    case rnemdUnknown :
1859 >    case rnemdVSS:
1860 >      doVSS(commonA_, commonB_);
1861 >      break;
1862 >    case rnemdUnkownMethod:
1863      default :
1864        break;
1865      }
1866    }
1867  
1868    void RNEMD::collectData() {
1869 <
1869 >    if (!doRNEMD_) return;
1870      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1871 +    
1872 +    // collectData can be called more frequently than the doRNEMD, so use the
1873 +    // computed area from the last exchange time:
1874 +    RealType area = getDividingArea();
1875 +    areaAccumulator_->add(area);
1876      Mat3x3d hmat = currentSnap_->getHmat();
876
1877      seleMan_.setSelectionSet(evaluator_.evaluate());
1878  
1879 <    int selei;
1879 >    int selei(0);
1880      StuntDouble* sd;
1881 <    int idx;
1881 >    int binNo;
1882  
1883 +    vector<RealType> binMass(nBins_, 0.0);
1884 +    vector<RealType> binPx(nBins_, 0.0);
1885 +    vector<RealType> binPy(nBins_, 0.0);
1886 +    vector<RealType> binPz(nBins_, 0.0);
1887 +    vector<RealType> binOmegax(nBins_, 0.0);
1888 +    vector<RealType> binOmegay(nBins_, 0.0);
1889 +    vector<RealType> binOmegaz(nBins_, 0.0);
1890 +    vector<RealType> binKE(nBins_, 0.0);
1891 +    vector<int> binDOF(nBins_, 0);
1892 +    vector<int> binCount(nBins_, 0);
1893 +
1894 +    // alternative approach, track all molecules instead of only those
1895 +    // selected for scaling/swapping:
1896 +    /*
1897 +      SimInfo::MoleculeIterator miter;
1898 +      vector<StuntDouble*>::iterator iiter;
1899 +      Molecule* mol;
1900 +      StuntDouble* sd;
1901 +      for (mol = info_->beginMolecule(miter); mol != NULL;
1902 +      mol = info_->nextMolecule(miter))
1903 +      sd is essentially sd
1904 +      for (sd = mol->beginIntegrableObject(iiter);
1905 +      sd != NULL;
1906 +      sd = mol->nextIntegrableObject(iiter))
1907 +    */
1908 +
1909      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1910 <         sd = seleMan_.nextSelected(selei)) {
1911 <      
886 <      idx = sd->getLocalIndex();
887 <      
1910 >         sd = seleMan_.nextSelected(selei)) {    
1911 >    
1912        Vector3d pos = sd->getPos();
1913  
1914        // wrap the stuntdouble's position back into the box:
1915        
1916 <      if (usePeriodicBoundaryConditions_)
1916 >      if (usePeriodicBoundaryConditions_) {
1917          currentSnap_->wrapVector(pos);
1918 <      
1919 <      // which bin is this stuntdouble in?
1920 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1921 <      
1922 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1918 >        // which bin is this stuntdouble in?
1919 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1920 >        // Shift molecules by half a box to have bins start at 0
1921 >        // The modulo operator is used to wrap the case when we are
1922 >        // beyond the end of the bins back to the beginning.
1923 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1924 >      } else {
1925 >        Vector3d rPos = pos - coordinateOrigin_;
1926 >        binNo = int(rPos.length() / binWidth_);
1927 >      }
1928  
900      if (rnemdLogWidth_ == midBin_ + 1)
901        if (binNo > midBin_)
902          binNo = nBins_ - binNo;
903
1929        RealType mass = sd->getMass();
1930        Vector3d vel = sd->getVel();
1931 <      RealType value;
1932 <      RealType xVal, yVal, zVal;
1931 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1932 >      Vector3d aVel = cross(rPos, vel);
1933 >      
1934 >      if (binNo >= 0 && binNo < nBins_)  {
1935 >        binCount[binNo]++;
1936 >        binMass[binNo] += mass;
1937 >        binPx[binNo] += mass*vel.x();
1938 >        binPy[binNo] += mass*vel.y();
1939 >        binPz[binNo] += mass*vel.z();
1940 >        binOmegax[binNo] += aVel.x();
1941 >        binOmegay[binNo] += aVel.y();
1942 >        binOmegaz[binNo] += aVel.z();
1943 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1944 >        binDOF[binNo] += 3;
1945 >        
1946 >        if (sd->isDirectional()) {
1947 >          Vector3d angMom = sd->getJ();
1948 >          Mat3x3d I = sd->getI();
1949 >          if (sd->isLinear()) {
1950 >            int i = sd->linearAxis();
1951 >            int j = (i + 1) % 3;
1952 >            int k = (i + 2) % 3;
1953 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1954 >                                   angMom[k] * angMom[k] / I(k, k));
1955 >            binDOF[binNo] += 2;
1956 >          } else {
1957 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1958 >                                   angMom[1] * angMom[1] / I(1, 1) +
1959 >                                   angMom[2] * angMom[2] / I(2, 2));
1960 >            binDOF[binNo] += 3;
1961 >          }
1962 >        }
1963 >      }
1964 >    }
1965 >    
1966 > #ifdef IS_MPI
1967 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1968 >                              nBins_, MPI::INT, MPI::SUM);
1969 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1970 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1971 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1972 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1973 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1974 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1975 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1976 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1977 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1978 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1979 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1980 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1981 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1982 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1983 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1984 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1985 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1986 >                              nBins_, MPI::INT, MPI::SUM);
1987 > #endif
1988  
1989 <      switch(rnemdType_) {
1990 <      case rnemdKineticSwap :
1991 <      case rnemdKineticScale :
1992 <        
1993 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1994 <                        vel[2]*vel[2]);
1995 <        
1996 <        valueCount_[binNo] += 3;
1997 <        if (sd->isDirectional()) {
1998 <          Vector3d angMom = sd->getJ();
1999 <          Mat3x3d I = sd->getI();
2000 <          
2001 <          if (sd->isLinear()) {
2002 <            int i = sd->linearAxis();
2003 <            int j = (i + 1) % 3;
2004 <            int k = (i + 2) % 3;
2005 <            value += angMom[j] * angMom[j] / I(j, j) +
2006 <              angMom[k] * angMom[k] / I(k, k);
1989 >    Vector3d vel;
1990 >    Vector3d aVel;
1991 >    RealType den;
1992 >    RealType temp;
1993 >    RealType z;
1994 >    RealType r;
1995 >    for (int i = 0; i < nBins_; i++) {
1996 >      if (usePeriodicBoundaryConditions_) {
1997 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1998 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1999 >          / currentSnap_->getVolume() ;
2000 >      } else {
2001 >        r = (((RealType)i + 0.5) * binWidth_);
2002 >        RealType rinner = (RealType)i * binWidth_;
2003 >        RealType router = (RealType)(i+1) * binWidth_;
2004 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2005 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2006 >      }
2007 >      vel.x() = binPx[i] / binMass[i];
2008 >      vel.y() = binPy[i] / binMass[i];
2009 >      vel.z() = binPz[i] / binMass[i];
2010 >      aVel.x() = binOmegax[i] / binCount[i];
2011 >      aVel.y() = binOmegay[i] / binCount[i];
2012 >      aVel.z() = binOmegaz[i] / binCount[i];
2013  
2014 <            valueCount_[binNo] +=2;
2015 <
2016 <          } else {
2017 <            value += angMom[0]*angMom[0]/I(0, 0)
2018 <              + angMom[1]*angMom[1]/I(1, 1)
2019 <              + angMom[2]*angMom[2]/I(2, 2);
2020 <            valueCount_[binNo] +=3;
2021 <          }
2022 <        }
2023 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
2024 <
2025 <        break;
2026 <      case rnemdPx :
2027 <      case rnemdPxScale :
2028 <        value = mass * vel[0];
2029 <        valueCount_[binNo]++;
2030 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
2031 <          / PhysicalConstants::kb;
2032 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
2033 <          / PhysicalConstants::kb;
2034 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
2035 <          / PhysicalConstants::kb;
2036 <        xTempHist_[binNo] += xVal;
2037 <        yTempHist_[binNo] += yVal;
2038 <        zTempHist_[binNo] += zVal;
2039 <        break;
2040 <      case rnemdPy :
2041 <      case rnemdPyScale :
2042 <        value = mass * vel[1];
957 <        valueCount_[binNo]++;
958 <        break;
959 <      case rnemdPz :
960 <      case rnemdPzScale :
961 <        value = mass * vel[2];
962 <        valueCount_[binNo]++;
963 <        break;
964 <      case rnemdUnknown :
965 <      default :
966 <        break;
2014 >      if (binCount[i] > 0) {
2015 >        // only add values if there are things to add
2016 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2017 >                                 PhysicalConstants::energyConvert);
2018 >        
2019 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2020 >          if(outputMask_[j]) {
2021 >            switch(j) {
2022 >            case Z:
2023 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2024 >              break;
2025 >            case R:
2026 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2027 >              break;
2028 >            case TEMPERATURE:
2029 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2030 >              break;
2031 >            case VELOCITY:
2032 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2033 >              break;
2034 >            case ANGULARVELOCITY:  
2035 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
2036 >              break;
2037 >            case DENSITY:
2038 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2039 >              break;
2040 >            }
2041 >          }
2042 >        }
2043        }
968      valueHist_[binNo] += value;
2044      }
2045 <
2045 >    hasData_ = true;
2046    }
2047  
2048    void RNEMD::getStarted() {
2049 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2050 <    Stats& stat = currentSnap_->statData;
2051 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2049 >    if (!doRNEMD_) return;
2050 >    hasDividingArea_ = false;
2051 >    collectData();
2052 >    writeOutputFile();
2053    }
2054  
2055 <  void RNEMD::getStatus() {
2056 <
2057 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2058 <    Stats& stat = currentSnap_->statData;
2059 <    RealType time = currentSnap_->getTime();
2060 <
2061 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2062 <    //or to be more meaningful, define another item as exchangeSum_ / time
2063 <    int j;
2064 <
2055 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2056 >    if (!doRNEMD_) return;
2057 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2058 >    
2059 >    while(tokenizer.hasMoreTokens()) {
2060 >      std::string token(tokenizer.nextToken());
2061 >      toUpper(token);
2062 >      OutputMapType::iterator i = outputMap_.find(token);
2063 >      if (i != outputMap_.end()) {
2064 >        outputMask_.set(i->second);
2065 >      } else {
2066 >        sprintf( painCave.errMsg,
2067 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2068 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2069 >        painCave.isFatal = 0;
2070 >        painCave.severity = OPENMD_ERROR;
2071 >        simError();            
2072 >      }
2073 >    }  
2074 >  }
2075 >  
2076 >  void RNEMD::writeOutputFile() {
2077 >    if (!doRNEMD_) return;
2078 >    if (!hasData_) return;
2079 >    
2080   #ifdef IS_MPI
990
991    // all processors have the same number of bins, and STL vectors pack their
992    // arrays, so in theory, this should be safe:
993
994    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
995                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
996    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
997                              rnemdLogWidth_, MPI::INT, MPI::SUM);
998    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
999      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1000                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005    }
2081      // If we're the root node, should we print out the results
2082      int worldRank = MPI::COMM_WORLD.Get_rank();
2083      if (worldRank == 0) {
2084   #endif
2085 <      rnemdLog_ << time;
2086 <      for (j = 0; j < rnemdLogWidth_; j++) {
2087 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
2085 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2086 >      
2087 >      if( !rnemdFile_ ){        
2088 >        sprintf( painCave.errMsg,
2089 >                 "Could not open \"%s\" for RNEMD output.\n",
2090 >                 rnemdFileName_.c_str());
2091 >        painCave.isFatal = 1;
2092 >        simError();
2093        }
2094 <      rnemdLog_ << "\n";
2095 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
2096 <        xTempLog_ << time;      
2097 <        for (j = 0; j < rnemdLogWidth_; j++) {
2098 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
2094 >
2095 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2096 >
2097 >      RealType time = currentSnap_->getTime();
2098 >      RealType avgArea;
2099 >      areaAccumulator_->getAverage(avgArea);
2100 >
2101 >      RealType Jz(0.0);
2102 >      Vector3d JzP(V3Zero);
2103 >      Vector3d JzL(V3Zero);
2104 >      if (time >= info_->getSimParams()->getDt()) {
2105 >        Jz = kineticExchange_ / (time * avgArea)
2106 >          / PhysicalConstants::energyConvert;
2107 >        JzP = momentumExchange_ / (time * avgArea);
2108 >        JzL = angularMomentumExchange_ / (time * avgArea);
2109 >      }
2110 >
2111 >      rnemdFile_ << "#######################################################\n";
2112 >      rnemdFile_ << "# RNEMD {\n";
2113 >
2114 >      map<string, RNEMDMethod>::iterator mi;
2115 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2116 >        if ( (*mi).second == rnemdMethod_)
2117 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2118 >      }
2119 >      map<string, RNEMDFluxType>::iterator fi;
2120 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2121 >        if ( (*fi).second == rnemdFluxType_)
2122 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2123 >      }
2124 >      
2125 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2126 >
2127 >      rnemdFile_ << "#    objectSelection = \""
2128 >                 << rnemdObjectSelection_ << "\";\n";
2129 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2130 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2131 >      rnemdFile_ << "# }\n";
2132 >      rnemdFile_ << "#######################################################\n";
2133 >      rnemdFile_ << "# RNEMD report:\n";      
2134 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2135 >      rnemdFile_ << "# Target flux:\n";
2136 >      rnemdFile_ << "#           kinetic = "
2137 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2138 >                 << " (kcal/mol/A^2/fs)\n";
2139 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2140 >                 << " (amu/A/fs^2)\n";
2141 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2142 >                 << " (amu/A^2/fs^2)\n";
2143 >      rnemdFile_ << "# Target one-time exchanges:\n";
2144 >      rnemdFile_ << "#          kinetic = "
2145 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2146 >                 << " (kcal/mol)\n";
2147 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2148 >                 << " (amu*A/fs)\n";
2149 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2150 >                 << " (amu*A^2/fs)\n";
2151 >      rnemdFile_ << "# Actual exchange totals:\n";
2152 >      rnemdFile_ << "#          kinetic = "
2153 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2154 >                 << " (kcal/mol)\n";
2155 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2156 >                 << " (amu*A/fs)\n";      
2157 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2158 >                 << " (amu*A^2/fs)\n";      
2159 >      rnemdFile_ << "# Actual flux:\n";
2160 >      rnemdFile_ << "#          kinetic = " << Jz
2161 >                 << " (kcal/mol/A^2/fs)\n";
2162 >      rnemdFile_ << "#          momentum = " << JzP
2163 >                 << " (amu/A/fs^2)\n";
2164 >      rnemdFile_ << "#  angular momentum = " << JzL
2165 >                 << " (amu/A^2/fs^2)\n";
2166 >      rnemdFile_ << "# Exchange statistics:\n";
2167 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2168 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2169 >      if (rnemdMethod_ == rnemdNIVS) {
2170 >        rnemdFile_ << "#  NIVS root-check errors = "
2171 >                   << failRootCount_ << "\n";
2172 >      }
2173 >      rnemdFile_ << "#######################################################\n";
2174 >      
2175 >      
2176 >      
2177 >      //write title
2178 >      rnemdFile_ << "#";
2179 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2180 >        if (outputMask_[i]) {
2181 >          rnemdFile_ << "\t" << data_[i].title <<
2182 >            "(" << data_[i].units << ")";
2183 >          // add some extra tabs for column alignment
2184 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2185          }
2186 <        xTempLog_ << "\n";
2187 <        yTempLog_ << time;
2188 <        for (j = 0; j < rnemdLogWidth_; j++) {
2189 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
2186 >      }
2187 >      rnemdFile_ << std::endl;
2188 >      
2189 >      rnemdFile_.precision(8);
2190 >      
2191 >      for (int j = 0; j < nBins_; j++) {        
2192 >        
2193 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2194 >          if (outputMask_[i]) {
2195 >            if (data_[i].dataType == "RealType")
2196 >              writeReal(i,j);
2197 >            else if (data_[i].dataType == "Vector3d")
2198 >              writeVector(i,j);
2199 >            else {
2200 >              sprintf( painCave.errMsg,
2201 >                       "RNEMD found an unknown data type for: %s ",
2202 >                       data_[i].title.c_str());
2203 >              painCave.isFatal = 1;
2204 >              simError();
2205 >            }
2206 >          }
2207          }
2208 <        yTempLog_ << "\n";
2209 <        zTempLog_ << time;
2210 <        for (j = 0; j < rnemdLogWidth_; j++) {
2211 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
2208 >        rnemdFile_ << std::endl;
2209 >        
2210 >      }        
2211 >
2212 >      rnemdFile_ << "#######################################################\n";
2213 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2214 >      rnemdFile_ << "#######################################################\n";
2215 >
2216 >
2217 >      for (int j = 0; j < nBins_; j++) {        
2218 >        rnemdFile_ << "#";
2219 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2220 >          if (outputMask_[i]) {
2221 >            if (data_[i].dataType == "RealType")
2222 >              writeRealStdDev(i,j);
2223 >            else if (data_[i].dataType == "Vector3d")
2224 >              writeVectorStdDev(i,j);
2225 >            else {
2226 >              sprintf( painCave.errMsg,
2227 >                       "RNEMD found an unknown data type for: %s ",
2228 >                       data_[i].title.c_str());
2229 >              painCave.isFatal = 1;
2230 >              simError();
2231 >            }
2232 >          }
2233          }
2234 <        zTempLog_ << "\n";
2235 <      }
2234 >        rnemdFile_ << std::endl;
2235 >        
2236 >      }        
2237 >      
2238 >      rnemdFile_.flush();
2239 >      rnemdFile_.close();
2240 >      
2241   #ifdef IS_MPI
2242      }
2243   #endif
2244 <    for (j = 0; j < rnemdLogWidth_; j++) {
2245 <      valueCount_[j] = 0;
2246 <      valueHist_[j] = 0.0;
2244 >    
2245 >  }
2246 >  
2247 >  void RNEMD::writeReal(int index, unsigned int bin) {
2248 >    if (!doRNEMD_) return;
2249 >    assert(index >=0 && index < ENDINDEX);
2250 >    assert(int(bin) < nBins_);
2251 >    RealType s;
2252 >    int count;
2253 >    
2254 >    count = data_[index].accumulator[bin]->count();
2255 >    if (count == 0) return;
2256 >    
2257 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2258 >    
2259 >    if (! isinf(s) && ! isnan(s)) {
2260 >      rnemdFile_ << "\t" << s;
2261 >    } else{
2262 >      sprintf( painCave.errMsg,
2263 >               "RNEMD detected a numerical error writing: %s for bin %u",
2264 >               data_[index].title.c_str(), bin);
2265 >      painCave.isFatal = 1;
2266 >      simError();
2267 >    }    
2268 >  }
2269 >  
2270 >  void RNEMD::writeVector(int index, unsigned int bin) {
2271 >    if (!doRNEMD_) return;
2272 >    assert(index >=0 && index < ENDINDEX);
2273 >    assert(int(bin) < nBins_);
2274 >    Vector3d s;
2275 >    int count;
2276 >    
2277 >    count = data_[index].accumulator[bin]->count();
2278 >
2279 >    if (count == 0) return;
2280 >
2281 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2282 >    if (isinf(s[0]) || isnan(s[0]) ||
2283 >        isinf(s[1]) || isnan(s[1]) ||
2284 >        isinf(s[2]) || isnan(s[2]) ) {      
2285 >      sprintf( painCave.errMsg,
2286 >               "RNEMD detected a numerical error writing: %s for bin %u",
2287 >               data_[index].title.c_str(), bin);
2288 >      painCave.isFatal = 1;
2289 >      simError();
2290 >    } else {
2291 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2292      }
2293 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
2294 <      for (j = 0; j < rnemdLogWidth_; j++) {
2295 <        xTempHist_[j] = 0.0;
2296 <        yTempHist_[j] = 0.0;
2297 <        zTempHist_[j] = 0.0;
2298 <      }
2293 >  }  
2294 >
2295 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2296 >    if (!doRNEMD_) return;
2297 >    assert(index >=0 && index < ENDINDEX);
2298 >    assert(int(bin) < nBins_);
2299 >    RealType s;
2300 >    int count;
2301 >    
2302 >    count = data_[index].accumulator[bin]->count();
2303 >    if (count == 0) return;
2304 >    
2305 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2306 >    
2307 >    if (! isinf(s) && ! isnan(s)) {
2308 >      rnemdFile_ << "\t" << s;
2309 >    } else{
2310 >      sprintf( painCave.errMsg,
2311 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2312 >               data_[index].title.c_str(), bin);
2313 >      painCave.isFatal = 1;
2314 >      simError();
2315 >    }    
2316    }
2317 +  
2318 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2319 +    if (!doRNEMD_) return;
2320 +    assert(index >=0 && index < ENDINDEX);
2321 +    assert(int(bin) < nBins_);
2322 +    Vector3d s;
2323 +    int count;
2324 +    
2325 +    count = data_[index].accumulator[bin]->count();
2326 +    if (count == 0) return;
2327 +
2328 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2329 +    if (isinf(s[0]) || isnan(s[0]) ||
2330 +        isinf(s[1]) || isnan(s[1]) ||
2331 +        isinf(s[2]) || isnan(s[2]) ) {      
2332 +      sprintf( painCave.errMsg,
2333 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2334 +               data_[index].title.c_str(), bin);
2335 +      painCave.isFatal = 1;
2336 +      simError();
2337 +    } else {
2338 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2339 +    }
2340 +  }  
2341   }
2342 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines