ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 1789 by gezelter, Wed Aug 29 20:52:19 2012 UTC

# Line 40 | Line 40
40   */
41  
42   #include <cmath>
43 < #include "integrators/RNEMD.hpp"
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47   #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50   #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 <
52 < #ifndef IS_MPI
53 < #include "math/SeqRandNumGen.hpp"
54 < #else
52 > #ifdef IS_MPI
53   #include <mpi.h>
56 #include "math/ParallelRandNumGen.hpp"
54   #endif
55  
56 + #ifdef _MSC_VER
57 + #define isnan(x) _isnan((x))
58 + #define isinf(x) (!_finite(x) && !_isnan(x))
59 + #endif
60 +
61   #define HONKING_LARGE_VALUE 1.0e10
62  
63 + using namespace std;
64   namespace OpenMD {
65    
66 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
66 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
67 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
68  
69 +    trialCount_ = 0;
70      failTrialCount_ = 0;
71      failRootCount_ = 0;
72  
68    int seedValue;
73      Globals * simParams = info->getSimParams();
74 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
75  
76 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
77 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
74 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
75 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
76 <    stringToEnumMap_["Px"] = rnemdPx;
77 <    stringToEnumMap_["Py"] = rnemdPy;
78 <    stringToEnumMap_["Pz"] = rnemdPz;
79 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
76 >    doRNEMD_ = rnemdParams->getUseRNEMD();
77 >    if (!doRNEMD_) return;
78  
79 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
79 >    stringToMethod_["Swap"]  = rnemdSwap;
80 >    stringToMethod_["NIVS"]  = rnemdNIVS;
81 >    stringToMethod_["VSS"]   = rnemdVSS;
82 >
83 >    stringToFluxType_["KE"]  = rnemdKE;
84 >    stringToFluxType_["Px"]  = rnemdPx;
85 >    stringToFluxType_["Py"]  = rnemdPy;
86 >    stringToFluxType_["Pz"]  = rnemdPz;
87 >    stringToFluxType_["Pvector"]  = rnemdPvector;
88 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
89 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
90 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
91 >
92 >    runTime_ = simParams->getRunTime();
93 >    statusTime_ = simParams->getStatusTime();
94 >
95 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
96      evaluator_.loadScriptString(rnemdObjectSelection_);
97      seleMan_.setSelectionSet(evaluator_.evaluate());
98  
99 +    const string methStr = rnemdParams->getMethod();
100 +    bool hasFluxType = rnemdParams->haveFluxType();
101 +
102 +    string fluxStr;
103 +    if (hasFluxType) {
104 +      fluxStr = rnemdParams->getFluxType();
105 +    } else {
106 +      sprintf(painCave.errMsg,
107 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
108 +              "\twhich must be one of the following values:\n"
109 +              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
110 +              "\tmust be set to use RNEMD\n");
111 +      painCave.isFatal = 1;
112 +      painCave.severity = OPENMD_ERROR;
113 +      simError();
114 +    }
115 +
116 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
117 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
118 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
119 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
120 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
121 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
122 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
123 +    bool hasOutputFields = rnemdParams->haveOutputFields();
124 +    
125 +    map<string, RNEMDMethod>::iterator i;
126 +    i = stringToMethod_.find(methStr);
127 +    if (i != stringToMethod_.end())
128 +      rnemdMethod_ = i->second;
129 +    else {
130 +      sprintf(painCave.errMsg,
131 +              "RNEMD: The current method,\n"
132 +              "\t\t%s is not one of the recognized\n"
133 +              "\texchange methods: Swap, NIVS, or VSS\n",
134 +              methStr.c_str());
135 +      painCave.isFatal = 1;
136 +      painCave.severity = OPENMD_ERROR;
137 +      simError();
138 +    }
139 +
140 +    map<string, RNEMDFluxType>::iterator j;
141 +    j = stringToFluxType_.find(fluxStr);
142 +    if (j != stringToFluxType_.end())
143 +      rnemdFluxType_ = j->second;
144 +    else {
145 +      sprintf(painCave.errMsg,
146 +              "RNEMD: The current fluxType,\n"
147 +              "\t\t%s\n"
148 +              "\tis not one of the recognized flux types.\n",
149 +              fluxStr.c_str());
150 +      painCave.isFatal = 1;
151 +      painCave.severity = OPENMD_ERROR;
152 +      simError();
153 +    }
154 +
155 +    bool methodFluxMismatch = false;
156 +    bool hasCorrectFlux = false;
157 +    switch(rnemdMethod_) {
158 +    case rnemdSwap:
159 +      switch (rnemdFluxType_) {
160 +      case rnemdKE:
161 +        hasCorrectFlux = hasKineticFlux;
162 +        break;
163 +      case rnemdPx:
164 +      case rnemdPy:
165 +      case rnemdPz:
166 +        hasCorrectFlux = hasMomentumFlux;
167 +        break;
168 +      default :
169 +        methodFluxMismatch = true;
170 +        break;
171 +      }
172 +      break;
173 +    case rnemdNIVS:
174 +      switch (rnemdFluxType_) {
175 +      case rnemdKE:
176 +      case rnemdRotKE:
177 +      case rnemdFullKE:
178 +        hasCorrectFlux = hasKineticFlux;
179 +        break;
180 +      case rnemdPx:
181 +      case rnemdPy:
182 +      case rnemdPz:
183 +        hasCorrectFlux = hasMomentumFlux;
184 +        break;
185 +      case rnemdKePx:
186 +      case rnemdKePy:
187 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
188 +        break;
189 +      default:
190 +        methodFluxMismatch = true;
191 +        break;
192 +      }
193 +      break;
194 +    case rnemdVSS:
195 +      switch (rnemdFluxType_) {
196 +      case rnemdKE:
197 +      case rnemdRotKE:
198 +      case rnemdFullKE:
199 +        hasCorrectFlux = hasKineticFlux;
200 +        break;
201 +      case rnemdPx:
202 +      case rnemdPy:
203 +      case rnemdPz:
204 +        hasCorrectFlux = hasMomentumFlux;
205 +        break;
206 +      case rnemdPvector:
207 +        hasCorrectFlux = hasMomentumFluxVector;
208 +        break;
209 +      case rnemdKePx:
210 +      case rnemdKePy:
211 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
212 +        break;
213 +      case rnemdKePvector:
214 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
215 +        break;
216 +      default:
217 +        methodFluxMismatch = true;
218 +        break;
219 +      }
220 +    default:
221 +      break;
222 +    }
223 +
224 +    if (methodFluxMismatch) {
225 +      sprintf(painCave.errMsg,
226 +              "RNEMD: The current method,\n"
227 +              "\t\t%s\n"
228 +              "\tcannot be used with the current flux type, %s\n",
229 +              methStr.c_str(), fluxStr.c_str());
230 +      painCave.isFatal = 1;
231 +      painCave.severity = OPENMD_ERROR;
232 +      simError();        
233 +    }
234 +    if (!hasCorrectFlux) {
235 +      sprintf(painCave.errMsg,
236 +              "RNEMD: The current method, %s, and flux type, %s,\n"
237 +              "\tdid not have the correct flux value specified. Options\n"
238 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
239 +              methStr.c_str(), fluxStr.c_str());
240 +      painCave.isFatal = 1;
241 +      painCave.severity = OPENMD_ERROR;
242 +      simError();        
243 +    }
244 +
245 +    if (hasKineticFlux) {
246 +      // convert the kcal / mol / Angstroms^2 / fs values in the md file
247 +      // into  amu / fs^3:
248 +      kineticFlux_ = rnemdParams->getKineticFlux()
249 +        * PhysicalConstants::energyConvert;
250 +    } else {
251 +      kineticFlux_ = 0.0;
252 +    }
253 +    if (hasMomentumFluxVector) {
254 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
255 +    } else {
256 +      momentumFluxVector_ = V3Zero;
257 +      if (hasMomentumFlux) {
258 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
259 +        switch (rnemdFluxType_) {
260 +        case rnemdPx:
261 +          momentumFluxVector_.x() = momentumFlux;
262 +          break;
263 +        case rnemdPy:
264 +          momentumFluxVector_.y() = momentumFlux;
265 +          break;
266 +        case rnemdPz:
267 +          momentumFluxVector_.z() = momentumFlux;
268 +          break;
269 +        case rnemdKePx:
270 +          momentumFluxVector_.x() = momentumFlux;
271 +          break;
272 +        case rnemdKePy:
273 +          momentumFluxVector_.y() = momentumFlux;
274 +          break;
275 +        default:
276 +          break;
277 +        }
278 +      }    
279 +    }
280 +
281      // do some sanity checking
282  
283      int selectionCount = seleMan_.getSelectionCount();
# Line 89 | Line 285 | namespace OpenMD {
285  
286      if (selectionCount > nIntegrable) {
287        sprintf(painCave.errMsg,
288 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
288 >              "RNEMD: The current objectSelection,\n"
289                "\t\t%s\n"
290                "\thas resulted in %d selected objects.  However,\n"
291                "\tthe total number of integrable objects in the system\n"
# Line 99 | Line 295 | namespace OpenMD {
295                rnemdObjectSelection_.c_str(),
296                selectionCount, nIntegrable);
297        painCave.isFatal = 0;
298 +      painCave.severity = OPENMD_WARNING;
299        simError();
103
300      }
105    
106    const std::string st = simParams->getRNEMD_exchangeType();
301  
302 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
109 <    i = stringToEnumMap_.find(st);
110 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
111 <    if (rnemdType_ == rnemdUnknown) {
112 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
113 <    }
302 >    areaAccumulator_ = new Accumulator();
303  
304 < #ifdef IS_MPI
116 <    if (worldRank == 0) {
117 < #endif
304 >    nBins_ = rnemdParams->getOutputBins();
305  
306 <      std::string rnemdFileName;
307 <      std::string xTempFileName;
308 <      std::string yTempFileName;
309 <      std::string zTempFileName;
310 <      switch(rnemdType_) {
311 <      case rnemdKineticSwap :
312 <      case rnemdKineticScale :
313 <        rnemdFileName = "temperature.log";
306 >    data_.resize(RNEMD::ENDINDEX);
307 >    OutputData z;
308 >    z.units =  "Angstroms";
309 >    z.title =  "Z";
310 >    z.dataType = "RealType";
311 >    z.accumulator.reserve(nBins_);
312 >    for (int i = 0; i < nBins_; i++)
313 >      z.accumulator.push_back( new Accumulator() );
314 >    data_[Z] = z;
315 >    outputMap_["Z"] =  Z;
316 >
317 >    OutputData temperature;
318 >    temperature.units =  "K";
319 >    temperature.title =  "Temperature";
320 >    temperature.dataType = "RealType";
321 >    temperature.accumulator.reserve(nBins_);
322 >    for (int i = 0; i < nBins_; i++)
323 >      temperature.accumulator.push_back( new Accumulator() );
324 >    data_[TEMPERATURE] = temperature;
325 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
326 >
327 >    OutputData velocity;
328 >    velocity.units = "angstroms/fs";
329 >    velocity.title =  "Velocity";  
330 >    velocity.dataType = "Vector3d";
331 >    velocity.accumulator.reserve(nBins_);
332 >    for (int i = 0; i < nBins_; i++)
333 >      velocity.accumulator.push_back( new VectorAccumulator() );
334 >    data_[VELOCITY] = velocity;
335 >    outputMap_["VELOCITY"] = VELOCITY;
336 >
337 >    OutputData density;
338 >    density.units =  "g cm^-3";
339 >    density.title =  "Density";
340 >    density.dataType = "RealType";
341 >    density.accumulator.reserve(nBins_);
342 >    for (int i = 0; i < nBins_; i++)
343 >      density.accumulator.push_back( new Accumulator() );
344 >    data_[DENSITY] = density;
345 >    outputMap_["DENSITY"] =  DENSITY;
346 >
347 >    if (hasOutputFields) {
348 >      parseOutputFileFormat(rnemdParams->getOutputFields());
349 >    } else {
350 >      outputMask_.set(Z);
351 >      switch (rnemdFluxType_) {
352 >      case rnemdKE:
353 >      case rnemdRotKE:
354 >      case rnemdFullKE:
355 >        outputMask_.set(TEMPERATURE);
356          break;
357 <      case rnemdPx :
358 <      case rnemdPxScale :
359 <      case rnemdPy :
131 <      case rnemdPyScale :
132 <        rnemdFileName = "momemtum.log";
133 <        xTempFileName = "temperatureX.log";
134 <        yTempFileName = "temperatureY.log";
135 <        zTempFileName = "temperatureZ.log";
136 <        xTempLog_.open(xTempFileName.c_str());
137 <        yTempLog_.open(yTempFileName.c_str());
138 <        zTempLog_.open(zTempFileName.c_str());
357 >      case rnemdPx:
358 >      case rnemdPy:
359 >        outputMask_.set(VELOCITY);
360          break;
361 <      case rnemdPz :
362 <      case rnemdPzScale :
363 <      case rnemdUnknown :
364 <      default :
144 <        rnemdFileName = "rnemd.log";
361 >      case rnemdPz:        
362 >      case rnemdPvector:
363 >        outputMask_.set(VELOCITY);
364 >        outputMask_.set(DENSITY);
365          break;
366 +      case rnemdKePx:
367 +      case rnemdKePy:
368 +        outputMask_.set(TEMPERATURE);
369 +        outputMask_.set(VELOCITY);
370 +        break;
371 +      case rnemdKePvector:
372 +        outputMask_.set(TEMPERATURE);
373 +        outputMask_.set(VELOCITY);
374 +        outputMask_.set(DENSITY);        
375 +        break;
376 +      default:
377 +        break;
378        }
147      rnemdLog_.open(rnemdFileName.c_str());
148
149 #ifdef IS_MPI
379      }
380 < #endif
381 <
382 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
154 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
155 <    midBin_ = nBins_ / 2;
156 <    if (simParams->haveRNEMD_logWidth()) {
157 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
158 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
159 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
160 <        std::cerr << "Automaically set back to default.\n";
161 <        rnemdLogWidth_ = nBins_;
162 <      }
380 >      
381 >    if (hasOutputFileName) {
382 >      rnemdFileName_ = rnemdParams->getOutputFileName();
383      } else {
384 <      rnemdLogWidth_ = nBins_;
385 <    }
166 <    valueHist_.resize(rnemdLogWidth_, 0.0);
167 <    valueCount_.resize(rnemdLogWidth_, 0);
168 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
169 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
170 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
384 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
385 >    }          
386  
387 <    set_RNEMD_exchange_total(0.0);
173 <    if (simParams->haveRNEMD_targetFlux()) {
174 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
175 <    } else {
176 <      set_RNEMD_target_flux(0.0);
177 <    }
387 >    exchangeTime_ = rnemdParams->getExchangeTime();
388  
389 < #ifndef IS_MPI
390 <    if (simParams->haveSeed()) {
181 <      seedValue = simParams->getSeed();
182 <      randNumGen_ = new SeqRandNumGen(seedValue);
183 <    }else {
184 <      randNumGen_ = new SeqRandNumGen();
185 <    }    
186 < #else
187 <    if (simParams->haveSeed()) {
188 <      seedValue = simParams->getSeed();
189 <      randNumGen_ = new ParallelRandNumGen(seedValue);
190 <    }else {
191 <      randNumGen_ = new ParallelRandNumGen();
192 <    }    
193 < #endif
194 <  }
389 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
390 >    Mat3x3d hmat = currentSnap_->getHmat();
391    
392 <  RNEMD::~RNEMD() {
393 <    delete randNumGen_;
392 >    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
393 >    // Lx, Ly = box dimensions in x & y
394 >    // dt = exchange time interval
395 >    // flux = target flux
396 >
397 >    RealType area = currentSnap_->getXYarea();
398 >    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
399 >    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
400 >
401 >    // total exchange sums are zeroed out at the beginning:
402 >
403 >    kineticExchange_ = 0.0;
404 >    momentumExchange_ = V3Zero;
405 >
406 >    if (hasSlabWidth)
407 >      slabWidth_ = rnemdParams->getSlabWidth();
408 >    else
409 >      slabWidth_ = hmat(2,2) / 10.0;
410 >  
411 >    if (hasSlabACenter)
412 >      slabACenter_ = rnemdParams->getSlabACenter();
413 >    else
414 >      slabACenter_ = 0.0;
415      
416 +    if (hasSlabBCenter)
417 +      slabBCenter_ = rnemdParams->getSlabBCenter();
418 +    else
419 +      slabBCenter_ = hmat(2,2) / 2.0;
420 +    
421 +  }
422 +  
423 +  RNEMD::~RNEMD() {
424 +    if (!doRNEMD_) return;
425   #ifdef IS_MPI
426      if (worldRank == 0) {
427   #endif
428 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
429 <      rnemdLog_.close();
430 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
431 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
432 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207 <        xTempLog_.close();
208 <        yTempLog_.close();
209 <        zTempLog_.close();
210 <      }
428 >
429 >      writeOutputFile();
430 >
431 >      rnemdFile_.close();
432 >      
433   #ifdef IS_MPI
434      }
435   #endif
436    }
437 +  
438 +  bool RNEMD::inSlabA(Vector3d pos) {
439 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
440 +  }
441 +  bool RNEMD::inSlabB(Vector3d pos) {
442 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
443 +  }
444  
445    void RNEMD::doSwap() {
446 <
446 >    if (!doRNEMD_) return;
447      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
448      Mat3x3d hmat = currentSnap_->getHmat();
449  
# Line 243 | Line 472 | namespace OpenMD {
472  
473        if (usePeriodicBoundaryConditions_)
474          currentSnap_->wrapVector(pos);
475 +      bool inA = inSlabA(pos);
476 +      bool inB = inSlabB(pos);
477  
478 <      // which bin is this stuntdouble in?
248 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
249 <
250 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
251 <
252 <
253 <      // if we're in bin 0 or the middleBin
254 <      if (binNo == 0 || binNo == midBin_) {
478 >      if (inA || inB) {
479          
480          RealType mass = sd->getMass();
481          Vector3d vel = sd->getVel();
482          RealType value;
483 <
484 <        switch(rnemdType_) {
485 <        case rnemdKineticSwap :
483 >        
484 >        switch(rnemdFluxType_) {
485 >        case rnemdKE :
486            
487 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
488 <                          vel[2]*vel[2]);
489 <          if (sd->isDirectional()) {
487 >          value = mass * vel.lengthSquare();
488 >          
489 >          if (sd->isDirectional()) {
490              Vector3d angMom = sd->getJ();
491              Mat3x3d I = sd->getI();
492              
493              if (sd->isLinear()) {
494 <              int i = sd->linearAxis();
495 <              int j = (i + 1) % 3;
496 <              int k = (i + 2) % 3;
497 <              value += angMom[j] * angMom[j] / I(j, j) +
498 <                angMom[k] * angMom[k] / I(k, k);
494 >              int i = sd->linearAxis();
495 >              int j = (i + 1) % 3;
496 >              int k = (i + 2) % 3;
497 >              value += angMom[j] * angMom[j] / I(j, j) +
498 >                angMom[k] * angMom[k] / I(k, k);
499              } else {                        
500 <              value += angMom[0]*angMom[0]/I(0, 0)
501 <                + angMom[1]*angMom[1]/I(1, 1)
502 <                + angMom[2]*angMom[2]/I(2, 2);
500 >              value += angMom[0]*angMom[0]/I(0, 0)
501 >                + angMom[1]*angMom[1]/I(1, 1)
502 >                + angMom[2]*angMom[2]/I(2, 2);
503              }
504 <          }
281 <          //make exchangeSum_ comparable between swap & scale
282 <          //temporarily without using energyConvert
283 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
504 >          } //angular momenta exchange enabled
505            value *= 0.5;
506            break;
507          case rnemdPx :
# Line 296 | Line 517 | namespace OpenMD {
517            break;
518          }
519          
520 <        if (binNo == 0) {
520 >        if (inA == 0) {
521            if (!min_found) {
522              min_val = value;
523              min_sd = sd;
# Line 307 | Line 528 | namespace OpenMD {
528                min_sd = sd;
529              }
530            }
531 <        } else { //midBin_
531 >        } else {
532            if (!max_found) {
533              max_val = value;
534              max_sd = sd;
# Line 321 | Line 542 | namespace OpenMD {
542          }
543        }
544      }
545 <
545 >    
546   #ifdef IS_MPI
547      int nProc, worldRank;
548 <
548 >    
549      nProc = MPI::COMM_WORLD.Get_size();
550      worldRank = MPI::COMM_WORLD.Get_rank();
551  
# Line 332 | Line 553 | namespace OpenMD {
553      bool my_max_found = max_found;
554  
555      // Even if we didn't find a minimum, did someone else?
556 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
336 <                              1, MPI::BOOL, MPI::LAND);
337 <    
556 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
557      // Even if we didn't find a maximum, did someone else?
558 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
559 <                              1, MPI::BOOL, MPI::LAND);
560 <    
561 <    struct {
562 <      RealType val;
563 <      int rank;
564 <    } max_vals, min_vals;
565 <    
566 <    if (min_found) {
567 <      if (my_min_found)
558 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
559 > #endif
560 >
561 >    if (max_found && min_found) {
562 >
563 > #ifdef IS_MPI
564 >      struct {
565 >        RealType val;
566 >        int rank;
567 >      } max_vals, min_vals;
568 >      
569 >      if (my_min_found) {
570          min_vals.val = min_val;
571 <      else
571 >      } else {
572          min_vals.val = HONKING_LARGE_VALUE;
573 <      
573 >      }
574        min_vals.rank = worldRank;    
575        
576        // Who had the minimum?
577        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
578                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
579        min_val = min_vals.val;
359    }
580        
581 <    if (max_found) {
362 <      if (my_max_found)
581 >      if (my_max_found) {
582          max_vals.val = max_val;
583 <      else
583 >      } else {
584          max_vals.val = -HONKING_LARGE_VALUE;
585 <      
585 >      }
586        max_vals.rank = worldRank;    
587        
588        // Who had the maximum?
589        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
590                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
591        max_val = max_vals.val;
373    }
592   #endif
593 <
594 <    if (max_found && min_found) {
595 <      if (min_val< max_val) {
378 <
593 >      
594 >      if (min_val < max_val) {
595 >        
596   #ifdef IS_MPI      
597          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
598            // I have both maximum and minimum, so proceed like a single
599            // processor version:
600   #endif
601 <          // objects to be swapped: velocity & angular velocity
601 >
602            Vector3d min_vel = min_sd->getVel();
603            Vector3d max_vel = max_sd->getVel();
604            RealType temp_vel;
605            
606 <          switch(rnemdType_) {
607 <          case rnemdKineticSwap :
606 >          switch(rnemdFluxType_) {
607 >          case rnemdKE :
608              min_sd->setVel(max_vel);
609              max_sd->setVel(min_vel);
610 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
610 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
611                Vector3d min_angMom = min_sd->getJ();
612                Vector3d max_angMom = max_sd->getJ();
613                min_sd->setJ(max_angMom);
614                max_sd->setJ(min_angMom);
615 <            }
615 >            }//angular momenta exchange enabled
616 >            //assumes same rigid body identity
617              break;
618            case rnemdPx :
619              temp_vel = min_vel.x();
# Line 421 | Line 639 | namespace OpenMD {
639            default :
640              break;
641            }
642 +
643   #ifdef IS_MPI
644            // the rest of the cases only apply in parallel simulations:
645          } else if (max_vals.rank == worldRank) {
# Line 436 | Line 655 | namespace OpenMD {
655                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
656                                     min_vals.rank, 0, status);
657            
658 <          switch(rnemdType_) {
659 <          case rnemdKineticSwap :
658 >          switch(rnemdFluxType_) {
659 >          case rnemdKE :
660              max_sd->setVel(min_vel);
661 <            
661 >            //angular momenta exchange enabled
662              if (max_sd->isDirectional()) {
663                Vector3d min_angMom;
664                Vector3d max_angMom = max_sd->getJ();
665 <
665 >              
666                // point-to-point swap of the angular momentum vector
667                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
668                                         MPI::REALTYPE, min_vals.rank, 1,
669                                         min_angMom.getArrayPointer(), 3,
670                                         MPI::REALTYPE, min_vals.rank, 1,
671                                         status);
672 <
672 >              
673                max_sd->setJ(min_angMom);
674 <            }
674 >            }
675              break;
676            case rnemdPx :
677              max_vel.x() = min_vel.x();
# Line 482 | Line 701 | namespace OpenMD {
701                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
702                                     max_vals.rank, 0, status);
703            
704 <          switch(rnemdType_) {
705 <          case rnemdKineticSwap :
704 >          switch(rnemdFluxType_) {
705 >          case rnemdKE :
706              min_sd->setVel(max_vel);
707 <            
707 >            //angular momenta exchange enabled
708              if (min_sd->isDirectional()) {
709                Vector3d min_angMom = min_sd->getJ();
710                Vector3d max_angMom;
711 <
711 >              
712                // point-to-point swap of the angular momentum vector
713                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
714                                         MPI::REALTYPE, max_vals.rank, 1,
715                                         max_angMom.getArrayPointer(), 3,
716                                         MPI::REALTYPE, max_vals.rank, 1,
717                                         status);
718 <
718 >              
719                min_sd->setJ(max_angMom);
720              }
721              break;
# Line 517 | Line 736 | namespace OpenMD {
736            }
737          }
738   #endif
739 <        exchangeSum_ += max_val - min_val;
740 <      } else {
741 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
739 >        
740 >        switch(rnemdFluxType_) {
741 >        case rnemdKE:
742 >          kineticExchange_ += max_val - min_val;
743 >          break;
744 >        case rnemdPx:
745 >          momentumExchange_.x() += max_val - min_val;
746 >          break;
747 >        case rnemdPy:
748 >          momentumExchange_.y() += max_val - min_val;
749 >          break;
750 >        case rnemdPz:
751 >          momentumExchange_.z() += max_val - min_val;
752 >          break;
753 >        default:
754 >          break;
755 >        }
756 >      } else {        
757 >        sprintf(painCave.errMsg,
758 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
759 >        painCave.isFatal = 0;
760 >        painCave.severity = OPENMD_INFO;
761 >        simError();        
762          failTrialCount_++;
763        }
764      } else {
765 <      std::cerr << "exchange NOT performed!\n";
766 <      std::cerr << "at least one of the two slabs empty.\n";
765 >      sprintf(painCave.errMsg,
766 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
767 >              "\twas not present in at least one of the two slabs.\n");
768 >      painCave.isFatal = 0;
769 >      painCave.severity = OPENMD_INFO;
770 >      simError();        
771        failTrialCount_++;
772 <    }
530 <    
772 >    }    
773    }
774    
775 <  void RNEMD::doScale() {
776 <
775 >  void RNEMD::doNIVS() {
776 >    if (!doRNEMD_) return;
777      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
778      Mat3x3d hmat = currentSnap_->getHmat();
779  
# Line 541 | Line 783 | namespace OpenMD {
783      StuntDouble* sd;
784      int idx;
785  
786 <    std::vector<StuntDouble*> hotBin, coldBin;
786 >    vector<StuntDouble*> hotBin, coldBin;
787  
788      RealType Phx = 0.0;
789      RealType Phy = 0.0;
# Line 549 | Line 791 | namespace OpenMD {
791      RealType Khx = 0.0;
792      RealType Khy = 0.0;
793      RealType Khz = 0.0;
794 +    RealType Khw = 0.0;
795      RealType Pcx = 0.0;
796      RealType Pcy = 0.0;
797      RealType Pcz = 0.0;
798      RealType Kcx = 0.0;
799      RealType Kcy = 0.0;
800      RealType Kcz = 0.0;
801 +    RealType Kcw = 0.0;
802  
803      for (sd = seleMan_.beginSelected(selei); sd != NULL;
804           sd = seleMan_.nextSelected(selei)) {
# Line 569 | Line 813 | namespace OpenMD {
813          currentSnap_->wrapVector(pos);
814  
815        // which bin is this stuntdouble in?
816 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
816 >      bool inA = inSlabA(pos);
817 >      bool inB = inSlabB(pos);
818  
819 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
820 <
576 <      // if we're in bin 0 or the middleBin
577 <      if (binNo == 0 || binNo == midBin_) {
578 <        
819 >      if (inA || inB) {
820 >              
821          RealType mass = sd->getMass();
822          Vector3d vel = sd->getVel();
823        
824 <        if (binNo == 0) {
824 >        if (inA) {
825            hotBin.push_back(sd);
826            Phx += mass * vel.x();
827            Phy += mass * vel.y();
# Line 587 | Line 829 | namespace OpenMD {
829            Khx += mass * vel.x() * vel.x();
830            Khy += mass * vel.y() * vel.y();
831            Khz += mass * vel.z() * vel.z();
832 <        } else { //midBin_
832 >          if (sd->isDirectional()) {
833 >            Vector3d angMom = sd->getJ();
834 >            Mat3x3d I = sd->getI();
835 >            if (sd->isLinear()) {
836 >              int i = sd->linearAxis();
837 >              int j = (i + 1) % 3;
838 >              int k = (i + 2) % 3;
839 >              Khw += angMom[j] * angMom[j] / I(j, j) +
840 >                angMom[k] * angMom[k] / I(k, k);
841 >            } else {
842 >              Khw += angMom[0]*angMom[0]/I(0, 0)
843 >                + angMom[1]*angMom[1]/I(1, 1)
844 >                + angMom[2]*angMom[2]/I(2, 2);
845 >            }
846 >          }
847 >        } else {
848            coldBin.push_back(sd);
849            Pcx += mass * vel.x();
850            Pcy += mass * vel.y();
# Line 595 | Line 852 | namespace OpenMD {
852            Kcx += mass * vel.x() * vel.x();
853            Kcy += mass * vel.y() * vel.y();
854            Kcz += mass * vel.z() * vel.z();
855 +          if (sd->isDirectional()) {
856 +            Vector3d angMom = sd->getJ();
857 +            Mat3x3d I = sd->getI();
858 +            if (sd->isLinear()) {
859 +              int i = sd->linearAxis();
860 +              int j = (i + 1) % 3;
861 +              int k = (i + 2) % 3;
862 +              Kcw += angMom[j] * angMom[j] / I(j, j) +
863 +                angMom[k] * angMom[k] / I(k, k);
864 +            } else {
865 +              Kcw += angMom[0]*angMom[0]/I(0, 0)
866 +                + angMom[1]*angMom[1]/I(1, 1)
867 +                + angMom[2]*angMom[2]/I(2, 2);
868 +            }
869 +          }
870          }
871        }
872      }
873 <
873 >    
874      Khx *= 0.5;
875      Khy *= 0.5;
876      Khz *= 0.5;
877 +    Khw *= 0.5;
878      Kcx *= 0.5;
879      Kcy *= 0.5;
880      Kcz *= 0.5;
881 +    Kcw *= 0.5;
882  
883   #ifdef IS_MPI
884      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
# Line 617 | Line 891 | namespace OpenMD {
891      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
892      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
893      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
894 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
895 +
896      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
897      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
898      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
899 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
900   #endif
901  
902 <    //use coldBin coeff's
902 >    //solve coldBin coeff's first
903      RealType px = Pcx / Phx;
904      RealType py = Pcy / Phy;
905      RealType pz = Pcz / Phz;
906 +    RealType c, x, y, z;
907 +    bool successfulScale = false;
908 +    if ((rnemdFluxType_ == rnemdFullKE) ||
909 +        (rnemdFluxType_ == rnemdRotKE)) {
910 +      //may need sanity check Khw & Kcw > 0
911  
912 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
913 <    switch(rnemdType_) {
914 <    case rnemdKineticScale :
915 <    /*used hotBin coeff's & only scale x & y dimensions
916 <      RealType px = Phx / Pcx;
635 <      RealType py = Phy / Pcy;
636 <      a110 = Khy;
637 <      c0 = - Khx - Khy - targetFlux_;
638 <      a000 = Khx;
639 <      a111 = Kcy * py * py
640 <      b11 = -2.0 * Kcy * py * (1.0 + py);
641 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642 <      b01 = -2.0 * Kcx * px * (1.0 + px);
643 <      a001 = Kcx * px * px;
644 <    */
912 >      if (rnemdFluxType_ == rnemdFullKE) {
913 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
914 >      } else {
915 >        c = 1.0 - kineticTarget_ / Kcw;
916 >      }
917  
918 <      //scale all three dimensions, let c_x = c_y
919 <      a000 = Kcx + Kcy;
920 <      a110 = Kcz;
921 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
922 <      a001 = Khx * px * px + Khy * py * py;
923 <      a111 = Khz * pz * pz;
924 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
925 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
926 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
927 <         + Khz * pz * (2.0 + pz) - targetFlux_;
928 <      break;
929 <    case rnemdPxScale :
930 <      c = 1 - targetFlux_ / Pcx;
931 <      a000 = Kcy;
932 <      a110 = Kcz;
933 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
934 <      a001 = py * py * Khy;
935 <      a111 = pz * pz * Khz;
936 <      b01 = -2.0 * Khy * py * (1.0 + py);
937 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
938 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
939 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
940 <      break;
941 <    case rnemdPyScale :
942 <      c = 1 - targetFlux_ / Pcy;
943 <      a000 = Kcx;
944 <      a110 = Kcz;
945 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
946 <      a001 = px * px * Khx;
947 <      a111 = pz * pz * Khz;
948 <      b01 = -2.0 * Khx * px * (1.0 + px);
949 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
950 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
951 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
952 <      break;
953 <    case rnemdPzScale ://we don't really do this, do we?
954 <      c = 1 - targetFlux_ / Pcz;
955 <      a000 = Kcx;
956 <      a110 = Kcy;
957 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
958 <      a001 = px * px * Khx;
959 <      a111 = py * py * Khy;
960 <      b01 = -2.0 * Khx * px * (1.0 + px);
961 <      b11 = -2.0 * Khy * py * (1.0 + py);
962 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
963 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
964 <      break;      
965 <    default :
966 <      break;
918 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
919 >        c = sqrt(c);
920 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
921 >        //now convert to hotBin coefficient
922 >        RealType w = 0.0;
923 >        if (rnemdFluxType_ ==  rnemdFullKE) {
924 >          x = 1.0 + px * (1.0 - c);
925 >          y = 1.0 + py * (1.0 - c);
926 >          z = 1.0 + pz * (1.0 - c);
927 >          /* more complicated way
928 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
929 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
930 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
931 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
932 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
933 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
934 >          */
935 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
936 >              (fabs(z - 1.0) < 0.1)) {
937 >            w = 1.0 + (kineticTarget_
938 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
939 >                       + Khz * (1.0 - z * z)) / Khw;
940 >          }//no need to calculate w if x, y or z is out of range
941 >        } else {
942 >          w = 1.0 + kineticTarget_ / Khw;
943 >        }
944 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
945 >          //if w is in the right range, so should be x, y, z.
946 >          vector<StuntDouble*>::iterator sdi;
947 >          Vector3d vel;
948 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
949 >            if (rnemdFluxType_ == rnemdFullKE) {
950 >              vel = (*sdi)->getVel() * c;
951 >              (*sdi)->setVel(vel);
952 >            }
953 >            if ((*sdi)->isDirectional()) {
954 >              Vector3d angMom = (*sdi)->getJ() * c;
955 >              (*sdi)->setJ(angMom);
956 >            }
957 >          }
958 >          w = sqrt(w);
959 >          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
960 >          //           << "\twh= " << w << endl;
961 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
962 >            if (rnemdFluxType_ == rnemdFullKE) {
963 >              vel = (*sdi)->getVel();
964 >              vel.x() *= x;
965 >              vel.y() *= y;
966 >              vel.z() *= z;
967 >              (*sdi)->setVel(vel);
968 >            }
969 >            if ((*sdi)->isDirectional()) {
970 >              Vector3d angMom = (*sdi)->getJ() * w;
971 >              (*sdi)->setJ(angMom);
972 >            }
973 >          }
974 >          successfulScale = true;
975 >          kineticExchange_ += kineticTarget_;
976 >        }
977 >      }
978 >    } else {
979 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
980 >      switch(rnemdFluxType_) {
981 >      case rnemdKE :
982 >        /* used hotBin coeff's & only scale x & y dimensions
983 >           RealType px = Phx / Pcx;
984 >           RealType py = Phy / Pcy;
985 >           a110 = Khy;
986 >           c0 = - Khx - Khy - kineticTarget_;
987 >           a000 = Khx;
988 >           a111 = Kcy * py * py;
989 >           b11 = -2.0 * Kcy * py * (1.0 + py);
990 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
991 >           b01 = -2.0 * Kcx * px * (1.0 + px);
992 >           a001 = Kcx * px * px;
993 >        */
994 >        //scale all three dimensions, let c_x = c_y
995 >        a000 = Kcx + Kcy;
996 >        a110 = Kcz;
997 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
998 >        a001 = Khx * px * px + Khy * py * py;
999 >        a111 = Khz * pz * pz;
1000 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1001 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1002 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1003 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1004 >        break;
1005 >      case rnemdPx :
1006 >        c = 1 - momentumTarget_.x() / Pcx;
1007 >        a000 = Kcy;
1008 >        a110 = Kcz;
1009 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1010 >        a001 = py * py * Khy;
1011 >        a111 = pz * pz * Khz;
1012 >        b01 = -2.0 * Khy * py * (1.0 + py);
1013 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1014 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1015 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1016 >        break;
1017 >      case rnemdPy :
1018 >        c = 1 - momentumTarget_.y() / Pcy;
1019 >        a000 = Kcx;
1020 >        a110 = Kcz;
1021 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1022 >        a001 = px * px * Khx;
1023 >        a111 = pz * pz * Khz;
1024 >        b01 = -2.0 * Khx * px * (1.0 + px);
1025 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1026 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1027 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1028 >        break;
1029 >      case rnemdPz ://we don't really do this, do we?
1030 >        c = 1 - momentumTarget_.z() / Pcz;
1031 >        a000 = Kcx;
1032 >        a110 = Kcy;
1033 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1034 >        a001 = px * px * Khx;
1035 >        a111 = py * py * Khy;
1036 >        b01 = -2.0 * Khx * px * (1.0 + px);
1037 >        b11 = -2.0 * Khy * py * (1.0 + py);
1038 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1039 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1040 >        break;
1041 >      default :
1042 >        break;
1043 >      }
1044 >      
1045 >      RealType v1 = a000 * a111 - a001 * a110;
1046 >      RealType v2 = a000 * b01;
1047 >      RealType v3 = a000 * b11;
1048 >      RealType v4 = a000 * c1 - a001 * c0;
1049 >      RealType v8 = a110 * b01;
1050 >      RealType v10 = - b01 * c0;
1051 >      
1052 >      RealType u0 = v2 * v10 - v4 * v4;
1053 >      RealType u1 = -2.0 * v3 * v4;
1054 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1055 >      RealType u3 = -2.0 * v1 * v3;
1056 >      RealType u4 = - v1 * v1;
1057 >      //rescale coefficients
1058 >      RealType maxAbs = fabs(u0);
1059 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1060 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1061 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1062 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1063 >      u0 /= maxAbs;
1064 >      u1 /= maxAbs;
1065 >      u2 /= maxAbs;
1066 >      u3 /= maxAbs;
1067 >      u4 /= maxAbs;
1068 >      //max_element(start, end) is also available.
1069 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1070 >      poly.setCoefficient(4, u4);
1071 >      poly.setCoefficient(3, u3);
1072 >      poly.setCoefficient(2, u2);
1073 >      poly.setCoefficient(1, u1);
1074 >      poly.setCoefficient(0, u0);
1075 >      vector<RealType> realRoots = poly.FindRealRoots();
1076 >      
1077 >      vector<RealType>::iterator ri;
1078 >      RealType r1, r2, alpha0;
1079 >      vector<pair<RealType,RealType> > rps;
1080 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1081 >        r2 = *ri;
1082 >        //check if FindRealRoots() give the right answer
1083 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1084 >          sprintf(painCave.errMsg,
1085 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1086 >          painCave.isFatal = 0;
1087 >          simError();
1088 >          failRootCount_++;
1089 >        }
1090 >        //might not be useful w/o rescaling coefficients
1091 >        alpha0 = -c0 - a110 * r2 * r2;
1092 >        if (alpha0 >= 0.0) {
1093 >          r1 = sqrt(alpha0 / a000);
1094 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1095 >              < 1e-6)
1096 >            { rps.push_back(make_pair(r1, r2)); }
1097 >          if (r1 > 1e-6) { //r1 non-negative
1098 >            r1 = -r1;
1099 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1100 >                < 1e-6)
1101 >              { rps.push_back(make_pair(r1, r2)); }
1102 >          }
1103 >        }
1104 >      }
1105 >      // Consider combining together the solving pair part w/ the searching
1106 >      // best solution part so that we don't need the pairs vector
1107 >      if (!rps.empty()) {
1108 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1109 >        RealType diff;
1110 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1111 >        vector<pair<RealType,RealType> >::iterator rpi;
1112 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1113 >          r1 = (*rpi).first;
1114 >          r2 = (*rpi).second;
1115 >          switch(rnemdFluxType_) {
1116 >          case rnemdKE :
1117 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1119 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1120 >            break;
1121 >          case rnemdPx :
1122 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1123 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1124 >            break;
1125 >          case rnemdPy :
1126 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1127 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1128 >            break;
1129 >          case rnemdPz :
1130 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1131 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1132 >          default :
1133 >            break;
1134 >          }
1135 >          if (diff < smallestDiff) {
1136 >            smallestDiff = diff;
1137 >            bestPair = *rpi;
1138 >          }
1139 >        }
1140 > #ifdef IS_MPI
1141 >        if (worldRank == 0) {
1142 > #endif
1143 >          // sprintf(painCave.errMsg,
1144 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1145 >          //         bestPair.first, bestPair.second);
1146 >          // painCave.isFatal = 0;
1147 >          // painCave.severity = OPENMD_INFO;
1148 >          // simError();
1149 > #ifdef IS_MPI
1150 >        }
1151 > #endif
1152 >        
1153 >        switch(rnemdFluxType_) {
1154 >        case rnemdKE :
1155 >          x = bestPair.first;
1156 >          y = bestPair.first;
1157 >          z = bestPair.second;
1158 >          break;
1159 >        case rnemdPx :
1160 >          x = c;
1161 >          y = bestPair.first;
1162 >          z = bestPair.second;
1163 >          break;
1164 >        case rnemdPy :
1165 >          x = bestPair.first;
1166 >          y = c;
1167 >          z = bestPair.second;
1168 >          break;
1169 >        case rnemdPz :
1170 >          x = bestPair.first;
1171 >          y = bestPair.second;
1172 >          z = c;
1173 >          break;          
1174 >        default :
1175 >          break;
1176 >        }
1177 >        vector<StuntDouble*>::iterator sdi;
1178 >        Vector3d vel;
1179 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1180 >          vel = (*sdi)->getVel();
1181 >          vel.x() *= x;
1182 >          vel.y() *= y;
1183 >          vel.z() *= z;
1184 >          (*sdi)->setVel(vel);
1185 >        }
1186 >        //convert to hotBin coefficient
1187 >        x = 1.0 + px * (1.0 - x);
1188 >        y = 1.0 + py * (1.0 - y);
1189 >        z = 1.0 + pz * (1.0 - z);
1190 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1191 >          vel = (*sdi)->getVel();
1192 >          vel.x() *= x;
1193 >          vel.y() *= y;
1194 >          vel.z() *= z;
1195 >          (*sdi)->setVel(vel);
1196 >        }
1197 >        successfulScale = true;
1198 >        switch(rnemdFluxType_) {
1199 >        case rnemdKE :
1200 >          kineticExchange_ += kineticTarget_;
1201 >          break;
1202 >        case rnemdPx :
1203 >        case rnemdPy :
1204 >        case rnemdPz :
1205 >          momentumExchange_ += momentumTarget_;
1206 >          break;          
1207 >        default :
1208 >          break;
1209 >        }      
1210 >      }
1211      }
1212 +    if (successfulScale != true) {
1213 +      sprintf(painCave.errMsg,
1214 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1215 +              "\tthe constraint equations may not exist or there may be\n"
1216 +              "\tno selected objects in one or both slabs.\n");
1217 +      painCave.isFatal = 0;
1218 +      painCave.severity = OPENMD_INFO;
1219 +      simError();        
1220 +      failTrialCount_++;
1221 +    }
1222 +  }
1223  
1224 <    RealType v1 = a000 * a111 - a001 * a110;
1225 <    RealType v2 = a000 * b01;
1226 <    RealType v3 = a000 * b11;
1227 <    RealType v4 = a000 * c1 - a001 * c0;
1228 <    RealType v8 = a110 * b01;
702 <    RealType v10 = - b01 * c0;
1224 >  void RNEMD::doVSS() {
1225 >    if (!doRNEMD_) return;
1226 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1227 >    RealType time = currentSnap_->getTime();    
1228 >    Mat3x3d hmat = currentSnap_->getHmat();
1229  
1230 <    RealType u0 = v2 * v10 - v4 * v4;
705 <    RealType u1 = -2.0 * v3 * v4;
706 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
707 <    RealType u3 = -2.0 * v1 * v3;
708 <    RealType u4 = - v1 * v1;
709 <    //rescale coefficients
710 <    RealType maxAbs = fabs(u0);
711 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
712 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
713 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
714 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
715 <    u0 /= maxAbs;
716 <    u1 /= maxAbs;
717 <    u2 /= maxAbs;
718 <    u3 /= maxAbs;
719 <    u4 /= maxAbs;
720 <    //max_element(start, end) is also available.
721 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
722 <    poly.setCoefficient(4, u4);
723 <    poly.setCoefficient(3, u3);
724 <    poly.setCoefficient(2, u2);
725 <    poly.setCoefficient(1, u1);
726 <    poly.setCoefficient(0, u0);
727 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1230 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1231  
1232 <    std::vector<RealType>::iterator ri;
1233 <    RealType r1, r2, alpha0;
1234 <    std::vector<std::pair<RealType,RealType> > rps;
1235 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1236 <      r2 = *ri;
1237 <      //check if FindRealRoots() give the right answer
1238 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1239 <        sprintf(painCave.errMsg,
1240 <                "RNEMD Warning: polynomial solve seems to have an error!");
1241 <        painCave.isFatal = 0;
1242 <        simError();
1243 <        failRootCount_++;
1244 <      }
1245 <      //might not be useful w/o rescaling coefficients
1246 <      alpha0 = -c0 - a110 * r2 * r2;
1247 <      if (alpha0 >= 0.0) {
1248 <        r1 = sqrt(alpha0 / a000);
1249 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
1250 <          { rps.push_back(std::make_pair(r1, r2)); }
1251 <        if (r1 > 1e-6) { //r1 non-negative
1252 <          r1 = -r1;
1253 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
1254 <            { rps.push_back(std::make_pair(r1, r2)); }
1255 <        }
1232 >    int selei;
1233 >    StuntDouble* sd;
1234 >    int idx;
1235 >
1236 >    vector<StuntDouble*> hotBin, coldBin;
1237 >
1238 >    Vector3d Ph(V3Zero);
1239 >    RealType Mh = 0.0;
1240 >    RealType Kh = 0.0;
1241 >    Vector3d Pc(V3Zero);
1242 >    RealType Mc = 0.0;
1243 >    RealType Kc = 0.0;
1244 >    
1245 >
1246 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1247 >         sd = seleMan_.nextSelected(selei)) {
1248 >
1249 >      idx = sd->getLocalIndex();
1250 >
1251 >      Vector3d pos = sd->getPos();
1252 >
1253 >      // wrap the stuntdouble's position back into the box:
1254 >
1255 >      if (usePeriodicBoundaryConditions_)
1256 >        currentSnap_->wrapVector(pos);
1257 >
1258 >      // which bin is this stuntdouble in?
1259 >      bool inA = inSlabA(pos);
1260 >      bool inB = inSlabB(pos);
1261 >      
1262 >      if (inA || inB) {
1263 >        
1264 >        RealType mass = sd->getMass();
1265 >        Vector3d vel = sd->getVel();
1266 >      
1267 >        if (inA) {
1268 >          hotBin.push_back(sd);
1269 >          //std::cerr << "before, velocity = " << vel << endl;
1270 >          Ph += mass * vel;
1271 >          //std::cerr << "after, velocity = " << vel << endl;
1272 >          Mh += mass;
1273 >          Kh += mass * vel.lengthSquare();
1274 >          if (rnemdFluxType_ == rnemdFullKE) {
1275 >            if (sd->isDirectional()) {
1276 >              Vector3d angMom = sd->getJ();
1277 >              Mat3x3d I = sd->getI();
1278 >              if (sd->isLinear()) {
1279 >                int i = sd->linearAxis();
1280 >                int j = (i + 1) % 3;
1281 >                int k = (i + 2) % 3;
1282 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1283 >                  angMom[k] * angMom[k] / I(k, k);
1284 >              } else {
1285 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1286 >                  angMom[1] * angMom[1] / I(1, 1) +
1287 >                  angMom[2] * angMom[2] / I(2, 2);
1288 >              }
1289 >            }
1290 >          }
1291 >        } else { //midBin_
1292 >          coldBin.push_back(sd);
1293 >          Pc += mass * vel;
1294 >          Mc += mass;
1295 >          Kc += mass * vel.lengthSquare();
1296 >          if (rnemdFluxType_ == rnemdFullKE) {
1297 >            if (sd->isDirectional()) {
1298 >              Vector3d angMom = sd->getJ();
1299 >              Mat3x3d I = sd->getI();
1300 >              if (sd->isLinear()) {
1301 >                int i = sd->linearAxis();
1302 >                int j = (i + 1) % 3;
1303 >                int k = (i + 2) % 3;
1304 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1305 >                  angMom[k] * angMom[k] / I(k, k);
1306 >              } else {
1307 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1308 >                  angMom[1] * angMom[1] / I(1, 1) +
1309 >                  angMom[2] * angMom[2] / I(2, 2);
1310 >              }
1311 >            }
1312 >          }
1313 >        }
1314        }
1315      }
1316 <    // Consider combininig together the solving pair part w/ the searching
1317 <    // best solution part so that we don't need the pairs vector
1318 <    if (!rps.empty()) {
1319 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1320 <      RealType diff;
1321 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1322 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1323 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
763 <        r1 = (*rpi).first;
764 <        r2 = (*rpi).second;
765 <        switch(rnemdType_) {
766 <        case rnemdKineticScale :
767 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
768 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
769 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
770 <          break;
771 <        case rnemdPxScale :
772 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
773 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
774 <          break;
775 <        case rnemdPyScale :
776 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
777 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
778 <          break;
779 <        case rnemdPzScale :
780 <        default :
781 <          break;
782 <        }
783 <        if (diff < smallestDiff) {
784 <          smallestDiff = diff;
785 <          bestPair = *rpi;
786 <        }
787 <      }
1316 >    
1317 >    Kh *= 0.5;
1318 >    Kc *= 0.5;
1319 >
1320 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1321 >    //        << "\tKc= " << Kc << endl;
1322 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1323 >    
1324   #ifdef IS_MPI
1325 <      if (worldRank == 0) {
1325 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1326 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1327 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1328 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1329 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1330 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1331   #endif
791        std::cerr << "we choose r1 = " << bestPair.first
792                  << " and r2 = " << bestPair.second << "\n";
793 #ifdef IS_MPI
794      }
795 #endif
1332  
1333 <      RealType x, y, z;
1334 <        switch(rnemdType_) {
1335 <        case rnemdKineticScale :
1336 <          x = bestPair.first;
1337 <          y = bestPair.first;
1338 <          z = bestPair.second;
1339 <          break;
1340 <        case rnemdPxScale :
1341 <          x = c;
1342 <          y = bestPair.first;
1343 <          z = bestPair.second;
1344 <          break;
1345 <        case rnemdPyScale :
1346 <          x = bestPair.first;
1347 <          y = c;
1348 <          z = bestPair.second;
1349 <          break;
1350 <        case rnemdPzScale :
1351 <          x = bestPair.first;
1352 <          y = bestPair.second;
1353 <          z = c;
1354 <          break;          
1355 <        default :
1356 <          break;
1357 <        }
1358 <      std::vector<StuntDouble*>::iterator sdi;
1359 <      Vector3d vel;
1360 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1361 <        vel = (*sdi)->getVel();
1362 <        vel.x() *= x;
1363 <        vel.y() *= y;
1364 <        vel.z() *= z;
1365 <        (*sdi)->setVel(vel);
1333 >    bool successfulExchange = false;
1334 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1335 >      Vector3d vc = Pc / Mc;
1336 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1337 >      Vector3d acrec = -momentumTarget_ / Mc;
1338 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1339 >      if (cNumerator > 0.0) {
1340 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1341 >        if (cDenominator > 0.0) {
1342 >          RealType c = sqrt(cNumerator / cDenominator);
1343 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1344 >            Vector3d vh = Ph / Mh;
1345 >            Vector3d ah = momentumTarget_ / Mh + vh;
1346 >            Vector3d ahrec = momentumTarget_ / Mh;
1347 >            RealType hNumerator = Kh + kineticTarget_
1348 >              - 0.5 * Mh * ah.lengthSquare();
1349 >            if (hNumerator > 0.0) {
1350 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1351 >              if (hDenominator > 0.0) {
1352 >                RealType h = sqrt(hNumerator / hDenominator);
1353 >                if ((h > 0.9) && (h < 1.1)) {
1354 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1355 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1356 >                  vector<StuntDouble*>::iterator sdi;
1357 >                  Vector3d vel;
1358 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1359 >                    //vel = (*sdi)->getVel();
1360 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1361 >                    (*sdi)->setVel(vel);
1362 >                    if (rnemdFluxType_ == rnemdFullKE) {
1363 >                      if ((*sdi)->isDirectional()) {
1364 >                        Vector3d angMom = (*sdi)->getJ() * c;
1365 >                        (*sdi)->setJ(angMom);
1366 >                      }
1367 >                    }
1368 >                  }
1369 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1370 >                    //vel = (*sdi)->getVel();
1371 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1372 >                    (*sdi)->setVel(vel);
1373 >                    if (rnemdFluxType_ == rnemdFullKE) {
1374 >                      if ((*sdi)->isDirectional()) {
1375 >                        Vector3d angMom = (*sdi)->getJ() * h;
1376 >                        (*sdi)->setJ(angMom);
1377 >                      }
1378 >                    }
1379 >                  }
1380 >                  successfulExchange = true;
1381 >                  kineticExchange_ += kineticTarget_;
1382 >                  momentumExchange_ += momentumTarget_;
1383 >                }
1384 >              }
1385 >            }
1386 >          }
1387 >        }
1388        }
1389 <      //convert to hotBin coefficient
1390 <      x = 1.0 + px * (1.0 - x);
1391 <      y = 1.0 + py * (1.0 - y);
1392 <      z = 1.0 + pz * (1.0 - z);
1393 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1394 <        vel = (*sdi)->getVel();
1395 <        vel.x() *= x;
1396 <        vel.y() *= y;
1397 <        vel.z() *= z;
840 <        (*sdi)->setVel(vel);
841 <      }
842 <      exchangeSum_ += targetFlux_;
843 <      //we may want to check whether the exchange has been successful
844 <    } else {
845 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1389 >    }
1390 >    if (successfulExchange != true) {
1391 >      sprintf(painCave.errMsg,
1392 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1393 >              "\tthe constraint equations may not exist or there may be\n"
1394 >              "\tno selected objects in one or both slabs.\n");
1395 >      painCave.isFatal = 0;
1396 >      painCave.severity = OPENMD_INFO;
1397 >      simError();        
1398        failTrialCount_++;
1399      }
848
1400    }
1401  
1402    void RNEMD::doRNEMD() {
1403 <
1404 <    switch(rnemdType_) {
1405 <    case rnemdKineticScale :
1406 <    case rnemdPxScale :
856 <    case rnemdPyScale :
857 <    case rnemdPzScale :
858 <      doScale();
859 <      break;
860 <    case rnemdKineticSwap :
861 <    case rnemdPx :
862 <    case rnemdPy :
863 <    case rnemdPz :
1403 >    if (!doRNEMD_) return;
1404 >    trialCount_++;
1405 >    switch(rnemdMethod_) {
1406 >    case rnemdSwap:
1407        doSwap();
1408        break;
1409 <    case rnemdUnknown :
1409 >    case rnemdNIVS:
1410 >      doNIVS();
1411 >      break;
1412 >    case rnemdVSS:
1413 >      doVSS();
1414 >      break;
1415 >    case rnemdUnkownMethod:
1416      default :
1417        break;
1418      }
1419    }
1420  
1421    void RNEMD::collectData() {
1422 <
1422 >    if (!doRNEMD_) return;
1423      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1424      Mat3x3d hmat = currentSnap_->getHmat();
1425  
1426 +    areaAccumulator_->add(currentSnap_->getXYarea());
1427 +
1428      seleMan_.setSelectionSet(evaluator_.evaluate());
1429  
1430      int selei;
1431      StuntDouble* sd;
1432      int idx;
1433  
1434 +    vector<RealType> binMass(nBins_, 0.0);
1435 +    vector<RealType> binPx(nBins_, 0.0);
1436 +    vector<RealType> binPy(nBins_, 0.0);
1437 +    vector<RealType> binPz(nBins_, 0.0);
1438 +    vector<RealType> binKE(nBins_, 0.0);
1439 +    vector<int> binDOF(nBins_, 0);
1440 +    vector<int> binCount(nBins_, 0);
1441 +
1442 +    // alternative approach, track all molecules instead of only those
1443 +    // selected for scaling/swapping:
1444 +    /*
1445 +    SimInfo::MoleculeIterator miter;
1446 +    vector<StuntDouble*>::iterator iiter;
1447 +    Molecule* mol;
1448 +    StuntDouble* sd;
1449 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1450 +      mol = info_->nextMolecule(miter))
1451 +      sd is essentially sd
1452 +        for (sd = mol->beginIntegrableObject(iiter);
1453 +             sd != NULL;
1454 +             sd = mol->nextIntegrableObject(iiter))
1455 +    */
1456      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1457           sd = seleMan_.nextSelected(selei)) {
1458        
# Line 891 | Line 1464 | namespace OpenMD {
1464        
1465        if (usePeriodicBoundaryConditions_)
1466          currentSnap_->wrapVector(pos);
1467 <      
1467 >
1468 >
1469        // which bin is this stuntdouble in?
1470        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1471 <      
1471 >      // Shift molecules by half a box to have bins start at 0
1472 >      // The modulo operator is used to wrap the case when we are
1473 >      // beyond the end of the bins back to the beginning.
1474        int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1475 <
900 <      if (rnemdLogWidth_ == midBin_ + 1)
901 <        if (binNo > midBin_)
902 <          binNo = nBins_ - binNo;
903 <
1475 >    
1476        RealType mass = sd->getMass();
1477        Vector3d vel = sd->getVel();
906      RealType value;
907      RealType xVal, yVal, zVal;
1478  
1479 <      switch(rnemdType_) {
1480 <      case rnemdKineticSwap :
1481 <      case rnemdKineticScale :
1482 <        
1483 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1484 <                        vel[2]*vel[2]);
1485 <        
916 <        valueCount_[binNo] += 3;
917 <        if (sd->isDirectional()) {
918 <          Vector3d angMom = sd->getJ();
919 <          Mat3x3d I = sd->getI();
920 <          
921 <          if (sd->isLinear()) {
922 <            int i = sd->linearAxis();
923 <            int j = (i + 1) % 3;
924 <            int k = (i + 2) % 3;
925 <            value += angMom[j] * angMom[j] / I(j, j) +
926 <              angMom[k] * angMom[k] / I(k, k);
1479 >      binCount[binNo]++;
1480 >      binMass[binNo] += mass;
1481 >      binPx[binNo] += mass*vel.x();
1482 >      binPy[binNo] += mass*vel.y();
1483 >      binPz[binNo] += mass*vel.z();
1484 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1485 >      binDOF[binNo] += 3;
1486  
1487 <            valueCount_[binNo] +=2;
1487 >      if (sd->isDirectional()) {
1488 >        Vector3d angMom = sd->getJ();
1489 >        Mat3x3d I = sd->getI();
1490 >        if (sd->isLinear()) {
1491 >          int i = sd->linearAxis();
1492 >          int j = (i + 1) % 3;
1493 >          int k = (i + 2) % 3;
1494 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1495 >                                 angMom[k] * angMom[k] / I(k, k));
1496 >          binDOF[binNo] += 2;
1497 >        } else {
1498 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1499 >                                 angMom[1] * angMom[1] / I(1, 1) +
1500 >                                 angMom[2] * angMom[2] / I(2, 2));
1501 >          binDOF[binNo] += 3;
1502 >        }
1503 >      }
1504 >    }
1505 >    
1506  
1507 <          } else {
1508 <            value += angMom[0]*angMom[0]/I(0, 0)
1509 <              + angMom[1]*angMom[1]/I(1, 1)
1510 <              + angMom[2]*angMom[2]/I(2, 2);
1511 <            valueCount_[binNo] +=3;
1512 <          }
1513 <        }
1514 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1507 > #ifdef IS_MPI
1508 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1509 >                              nBins_, MPI::INT, MPI::SUM);
1510 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1511 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1512 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1513 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1514 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1515 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1516 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1517 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1518 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1519 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1520 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1521 >                              nBins_, MPI::INT, MPI::SUM);
1522 > #endif
1523  
1524 <        break;
1525 <      case rnemdPx :
1526 <      case rnemdPxScale :
1527 <        value = mass * vel[0];
1528 <        valueCount_[binNo]++;
1529 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1530 <          / PhysicalConstants::kb;
1531 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1532 <          / PhysicalConstants::kb;
1533 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1534 <          / PhysicalConstants::kb;
1535 <        xTempHist_[binNo] += xVal;
1536 <        yTempHist_[binNo] += yVal;
1537 <        zTempHist_[binNo] += zVal;
1538 <        break;
1539 <      case rnemdPy :
1540 <      case rnemdPyScale :
1541 <        value = mass * vel[1];
1542 <        valueCount_[binNo]++;
1543 <        break;
1544 <      case rnemdPz :
1545 <      case rnemdPzScale :
1546 <        value = mass * vel[2];
1547 <        valueCount_[binNo]++;
1548 <        break;
1549 <      case rnemdUnknown :
1550 <      default :
1551 <        break;
1524 >    Vector3d vel;
1525 >    RealType den;
1526 >    RealType temp;
1527 >    RealType z;
1528 >    for (int i = 0; i < nBins_; i++) {
1529 >      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1530 >      vel.x() = binPx[i] / binMass[i];
1531 >      vel.y() = binPy[i] / binMass[i];
1532 >      vel.z() = binPz[i] / binMass[i];
1533 >
1534 >      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1535 >        / currentSnap_->getVolume() ;
1536 >
1537 >      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1538 >                               PhysicalConstants::energyConvert);
1539 >
1540 >      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1541 >        if(outputMask_[j]) {
1542 >          switch(j) {
1543 >          case Z:
1544 >            (data_[j].accumulator[i])->add(z);
1545 >            break;
1546 >          case TEMPERATURE:
1547 >            data_[j].accumulator[i]->add(temp);
1548 >            break;
1549 >          case VELOCITY:
1550 >            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1551 >            break;
1552 >          case DENSITY:
1553 >            data_[j].accumulator[i]->add(den);
1554 >            break;
1555 >          }
1556 >        }
1557        }
968      valueHist_[binNo] += value;
1558      }
970
1559    }
1560  
1561    void RNEMD::getStarted() {
1562 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1563 <    Stats& stat = currentSnap_->statData;
1564 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1562 >    if (!doRNEMD_) return;
1563 >    collectData();
1564 >    writeOutputFile();
1565    }
1566  
1567 <  void RNEMD::getStatus() {
1568 <
1569 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1570 <    Stats& stat = currentSnap_->statData;
1571 <    RealType time = currentSnap_->getTime();
1572 <
1573 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1574 <    //or to be more meaningful, define another item as exchangeSum_ / time
1575 <    int j;
1576 <
1567 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1568 >    if (!doRNEMD_) return;
1569 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1570 >    
1571 >    while(tokenizer.hasMoreTokens()) {
1572 >      std::string token(tokenizer.nextToken());
1573 >      toUpper(token);
1574 >      OutputMapType::iterator i = outputMap_.find(token);
1575 >      if (i != outputMap_.end()) {
1576 >        outputMask_.set(i->second);
1577 >      } else {
1578 >        sprintf( painCave.errMsg,
1579 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1580 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1581 >        painCave.isFatal = 0;
1582 >        painCave.severity = OPENMD_ERROR;
1583 >        simError();            
1584 >      }
1585 >    }  
1586 >  }
1587 >  
1588 >  void RNEMD::writeOutputFile() {
1589 >    if (!doRNEMD_) return;
1590 >    
1591   #ifdef IS_MPI
990
991    // all processors have the same number of bins, and STL vectors pack their
992    // arrays, so in theory, this should be safe:
993
994    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
995                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
996    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
997                              rnemdLogWidth_, MPI::INT, MPI::SUM);
998    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
999      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1000                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005    }
1592      // If we're the root node, should we print out the results
1593      int worldRank = MPI::COMM_WORLD.Get_rank();
1594      if (worldRank == 0) {
1595   #endif
1596 <      rnemdLog_ << time;
1597 <      for (j = 0; j < rnemdLogWidth_; j++) {
1598 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1596 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1597 >      
1598 >      if( !rnemdFile_ ){        
1599 >        sprintf( painCave.errMsg,
1600 >                 "Could not open \"%s\" for RNEMD output.\n",
1601 >                 rnemdFileName_.c_str());
1602 >        painCave.isFatal = 1;
1603 >        simError();
1604        }
1605 <      rnemdLog_ << "\n";
1606 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
1607 <        xTempLog_ << time;      
1608 <        for (j = 0; j < rnemdLogWidth_; j++) {
1609 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
1605 >
1606 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1607 >
1608 >      RealType time = currentSnap_->getTime();
1609 >      RealType avgArea;
1610 >      areaAccumulator_->getAverage(avgArea);
1611 >      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1612 >        / PhysicalConstants::energyConvert;
1613 >      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1614 >
1615 >      rnemdFile_ << "#######################################################\n";
1616 >      rnemdFile_ << "# RNEMD {\n";
1617 >
1618 >      map<string, RNEMDMethod>::iterator mi;
1619 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1620 >        if ( (*mi).second == rnemdMethod_)
1621 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1622 >      }
1623 >      map<string, RNEMDFluxType>::iterator fi;
1624 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1625 >        if ( (*fi).second == rnemdFluxType_)
1626 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1627 >      }
1628 >      
1629 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1630 >
1631 >      rnemdFile_ << "#    objectSelection = \""
1632 >                 << rnemdObjectSelection_ << "\";\n";
1633 >      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1634 >      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1635 >      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1636 >      rnemdFile_ << "# }\n";
1637 >      rnemdFile_ << "#######################################################\n";
1638 >      rnemdFile_ << "# RNEMD report:\n";      
1639 >      rnemdFile_ << "#     running time = " << time << " fs\n";
1640 >      rnemdFile_ << "#     target flux:\n";
1641 >      rnemdFile_ << "#         kinetic = "
1642 >                 << kineticFlux_ / PhysicalConstants::energyConvert
1643 >                 << " (kcal/mol/A^2/fs)\n";
1644 >      rnemdFile_ << "#         momentum = " << momentumFluxVector_
1645 >                 << " (amu/A/fs^2)\n";
1646 >      rnemdFile_ << "#     target one-time exchanges:\n";
1647 >      rnemdFile_ << "#         kinetic = "
1648 >                 << kineticTarget_ / PhysicalConstants::energyConvert
1649 >                 << " (kcal/mol)\n";
1650 >      rnemdFile_ << "#         momentum = " << momentumTarget_
1651 >                 << " (amu*A/fs)\n";
1652 >      rnemdFile_ << "#     actual exchange totals:\n";
1653 >      rnemdFile_ << "#         kinetic = "
1654 >                 << kineticExchange_ / PhysicalConstants::energyConvert
1655 >                 << " (kcal/mol)\n";
1656 >      rnemdFile_ << "#         momentum = " << momentumExchange_
1657 >                 << " (amu*A/fs)\n";      
1658 >      rnemdFile_ << "#     actual flux:\n";
1659 >      rnemdFile_ << "#         kinetic = " << Jz
1660 >                 << " (kcal/mol/A^2/fs)\n";
1661 >      rnemdFile_ << "#         momentum = " << JzP
1662 >                 << " (amu/A/fs^2)\n";
1663 >      rnemdFile_ << "#     exchange statistics:\n";
1664 >      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1665 >      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1666 >      if (rnemdMethod_ == rnemdNIVS) {
1667 >        rnemdFile_ << "#         NIVS root-check errors = "
1668 >                   << failRootCount_ << "\n";
1669 >      }
1670 >      rnemdFile_ << "#######################################################\n";
1671 >      
1672 >      
1673 >      
1674 >      //write title
1675 >      rnemdFile_ << "#";
1676 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1677 >        if (outputMask_[i]) {
1678 >          rnemdFile_ << "\t" << data_[i].title <<
1679 >            "(" << data_[i].units << ")";
1680 >          // add some extra tabs for column alignment
1681 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1682          }
1683 <        xTempLog_ << "\n";
1684 <        yTempLog_ << time;
1685 <        for (j = 0; j < rnemdLogWidth_; j++) {
1686 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
1683 >      }
1684 >      rnemdFile_ << std::endl;
1685 >      
1686 >      rnemdFile_.precision(8);
1687 >      
1688 >      for (int j = 0; j < nBins_; j++) {        
1689 >        
1690 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1691 >          if (outputMask_[i]) {
1692 >            if (data_[i].dataType == "RealType")
1693 >              writeReal(i,j);
1694 >            else if (data_[i].dataType == "Vector3d")
1695 >              writeVector(i,j);
1696 >            else {
1697 >              sprintf( painCave.errMsg,
1698 >                       "RNEMD found an unknown data type for: %s ",
1699 >                       data_[i].title.c_str());
1700 >              painCave.isFatal = 1;
1701 >              simError();
1702 >            }
1703 >          }
1704          }
1705 <        yTempLog_ << "\n";
1706 <        zTempLog_ << time;
1707 <        for (j = 0; j < rnemdLogWidth_; j++) {
1708 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
1705 >        rnemdFile_ << std::endl;
1706 >        
1707 >      }        
1708 >
1709 >      rnemdFile_ << "#######################################################\n";
1710 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1711 >      rnemdFile_ << "#######################################################\n";
1712 >
1713 >
1714 >      for (int j = 0; j < nBins_; j++) {        
1715 >        rnemdFile_ << "#";
1716 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1717 >          if (outputMask_[i]) {
1718 >            if (data_[i].dataType == "RealType")
1719 >              writeRealStdDev(i,j);
1720 >            else if (data_[i].dataType == "Vector3d")
1721 >              writeVectorStdDev(i,j);
1722 >            else {
1723 >              sprintf( painCave.errMsg,
1724 >                       "RNEMD found an unknown data type for: %s ",
1725 >                       data_[i].title.c_str());
1726 >              painCave.isFatal = 1;
1727 >              simError();
1728 >            }
1729 >          }
1730          }
1731 <        zTempLog_ << "\n";
1732 <      }
1731 >        rnemdFile_ << std::endl;
1732 >        
1733 >      }        
1734 >      
1735 >      rnemdFile_.flush();
1736 >      rnemdFile_.close();
1737 >      
1738   #ifdef IS_MPI
1739      }
1740   #endif
1741 <    for (j = 0; j < rnemdLogWidth_; j++) {
1742 <      valueCount_[j] = 0;
1743 <      valueHist_[j] = 0.0;
1741 >    
1742 >  }
1743 >  
1744 >  void RNEMD::writeReal(int index, unsigned int bin) {
1745 >    if (!doRNEMD_) return;
1746 >    assert(index >=0 && index < ENDINDEX);
1747 >    assert(bin < nBins_);
1748 >    RealType s;
1749 >    
1750 >    data_[index].accumulator[bin]->getAverage(s);
1751 >    
1752 >    if (! isinf(s) && ! isnan(s)) {
1753 >      rnemdFile_ << "\t" << s;
1754 >    } else{
1755 >      sprintf( painCave.errMsg,
1756 >               "RNEMD detected a numerical error writing: %s for bin %d",
1757 >               data_[index].title.c_str(), bin);
1758 >      painCave.isFatal = 1;
1759 >      simError();
1760 >    }    
1761 >  }
1762 >  
1763 >  void RNEMD::writeVector(int index, unsigned int bin) {
1764 >    if (!doRNEMD_) return;
1765 >    assert(index >=0 && index < ENDINDEX);
1766 >    assert(bin < nBins_);
1767 >    Vector3d s;
1768 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1769 >    if (isinf(s[0]) || isnan(s[0]) ||
1770 >        isinf(s[1]) || isnan(s[1]) ||
1771 >        isinf(s[2]) || isnan(s[2]) ) {      
1772 >      sprintf( painCave.errMsg,
1773 >               "RNEMD detected a numerical error writing: %s for bin %d",
1774 >               data_[index].title.c_str(), bin);
1775 >      painCave.isFatal = 1;
1776 >      simError();
1777 >    } else {
1778 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1779      }
1780 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
1781 <      for (j = 0; j < rnemdLogWidth_; j++) {
1782 <        xTempHist_[j] = 0.0;
1783 <        yTempHist_[j] = 0.0;
1784 <        zTempHist_[j] = 0.0;
1785 <      }
1780 >  }  
1781 >
1782 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1783 >    if (!doRNEMD_) return;
1784 >    assert(index >=0 && index < ENDINDEX);
1785 >    assert(bin < nBins_);
1786 >    RealType s;
1787 >    
1788 >    data_[index].accumulator[bin]->getStdDev(s);
1789 >    
1790 >    if (! isinf(s) && ! isnan(s)) {
1791 >      rnemdFile_ << "\t" << s;
1792 >    } else{
1793 >      sprintf( painCave.errMsg,
1794 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1795 >               data_[index].title.c_str(), bin);
1796 >      painCave.isFatal = 1;
1797 >      simError();
1798 >    }    
1799    }
1800 +  
1801 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1802 +    if (!doRNEMD_) return;
1803 +    assert(index >=0 && index < ENDINDEX);
1804 +    assert(bin < nBins_);
1805 +    Vector3d s;
1806 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1807 +    if (isinf(s[0]) || isnan(s[0]) ||
1808 +        isinf(s[1]) || isnan(s[1]) ||
1809 +        isinf(s[2]) || isnan(s[2]) ) {      
1810 +      sprintf( painCave.errMsg,
1811 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1812 +               data_[index].title.c_str(), bin);
1813 +      painCave.isFatal = 1;
1814 +      simError();
1815 +    } else {
1816 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1817 +    }
1818 +  }  
1819   }
1820 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines