ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
trunk/src/rnemd/RNEMD.cpp (file contents), Revision 1793 by gezelter, Fri Aug 31 21:16:10 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 < #include "utils/OOPSEConstant.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 + #ifdef IS_MPI
53 + #include <mpi.h>
54 + #endif
55  
56 < #ifndef IS_MPI
57 < #include "math/SeqRandNumGen.hpp"
58 < #else
53 < #include "math/ParallelRandNumGen.hpp"
56 > #ifdef _MSC_VER
57 > #define isnan(x) _isnan((x))
58 > #define isinf(x) (!_finite(x) && !_isnan(x))
59   #endif
60  
61   #define HONKING_LARGE_VALUE 1.0e10
62  
63 < namespace oopse {
63 > using namespace std;
64 > namespace OpenMD {
65    
66 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 <    
68 <    int seedValue;
66 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
67 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
68 >
69 >    trialCount_ = 0;
70 >    failTrialCount_ = 0;
71 >    failRootCount_ = 0;
72 >
73      Globals * simParams = info->getSimParams();
74 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
75  
76 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
77 <    stringToEnumMap_["Px"] = rnemdPx;
67 <    stringToEnumMap_["Py"] = rnemdPy;
68 <    stringToEnumMap_["Pz"] = rnemdPz;
69 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
76 >    doRNEMD_ = rnemdParams->getUseRNEMD();
77 >    if (!doRNEMD_) return;
78  
79 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
79 >    stringToMethod_["Swap"]  = rnemdSwap;
80 >    stringToMethod_["NIVS"]  = rnemdNIVS;
81 >    stringToMethod_["VSS"]   = rnemdVSS;
82 >
83 >    stringToFluxType_["KE"]  = rnemdKE;
84 >    stringToFluxType_["Px"]  = rnemdPx;
85 >    stringToFluxType_["Py"]  = rnemdPy;
86 >    stringToFluxType_["Pz"]  = rnemdPz;
87 >    stringToFluxType_["Pvector"]  = rnemdPvector;
88 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
89 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
90 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
91 >
92 >    runTime_ = simParams->getRunTime();
93 >    statusTime_ = simParams->getStatusTime();
94 >
95 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
96      evaluator_.loadScriptString(rnemdObjectSelection_);
97      seleMan_.setSelectionSet(evaluator_.evaluate());
98 +
99 +    const string methStr = rnemdParams->getMethod();
100 +    bool hasFluxType = rnemdParams->haveFluxType();
101 +
102 +    string fluxStr;
103 +    if (hasFluxType) {
104 +      fluxStr = rnemdParams->getFluxType();
105 +    } else {
106 +      sprintf(painCave.errMsg,
107 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
108 +              "\twhich must be one of the following values:\n"
109 +              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
110 +              "\tmust be set to use RNEMD\n");
111 +      painCave.isFatal = 1;
112 +      painCave.severity = OPENMD_ERROR;
113 +      simError();
114 +    }
115 +
116 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
117 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
118 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
119 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
120 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
121 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
122 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
123 +    bool hasOutputFields = rnemdParams->haveOutputFields();
124 +    
125 +    map<string, RNEMDMethod>::iterator i;
126 +    i = stringToMethod_.find(methStr);
127 +    if (i != stringToMethod_.end())
128 +      rnemdMethod_ = i->second;
129 +    else {
130 +      sprintf(painCave.errMsg,
131 +              "RNEMD: The current method,\n"
132 +              "\t\t%s is not one of the recognized\n"
133 +              "\texchange methods: Swap, NIVS, or VSS\n",
134 +              methStr.c_str());
135 +      painCave.isFatal = 1;
136 +      painCave.severity = OPENMD_ERROR;
137 +      simError();
138 +    }
139 +
140 +    map<string, RNEMDFluxType>::iterator j;
141 +    j = stringToFluxType_.find(fluxStr);
142 +    if (j != stringToFluxType_.end())
143 +      rnemdFluxType_ = j->second;
144 +    else {
145 +      sprintf(painCave.errMsg,
146 +              "RNEMD: The current fluxType,\n"
147 +              "\t\t%s\n"
148 +              "\tis not one of the recognized flux types.\n",
149 +              fluxStr.c_str());
150 +      painCave.isFatal = 1;
151 +      painCave.severity = OPENMD_ERROR;
152 +      simError();
153 +    }
154 +
155 +    bool methodFluxMismatch = false;
156 +    bool hasCorrectFlux = false;
157 +    switch(rnemdMethod_) {
158 +    case rnemdSwap:
159 +      switch (rnemdFluxType_) {
160 +      case rnemdKE:
161 +        hasCorrectFlux = hasKineticFlux;
162 +        break;
163 +      case rnemdPx:
164 +      case rnemdPy:
165 +      case rnemdPz:
166 +        hasCorrectFlux = hasMomentumFlux;
167 +        break;
168 +      default :
169 +        methodFluxMismatch = true;
170 +        break;
171 +      }
172 +      break;
173 +    case rnemdNIVS:
174 +      switch (rnemdFluxType_) {
175 +      case rnemdKE:
176 +      case rnemdRotKE:
177 +      case rnemdFullKE:
178 +        hasCorrectFlux = hasKineticFlux;
179 +        break;
180 +      case rnemdPx:
181 +      case rnemdPy:
182 +      case rnemdPz:
183 +        hasCorrectFlux = hasMomentumFlux;
184 +        break;
185 +      case rnemdKePx:
186 +      case rnemdKePy:
187 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
188 +        break;
189 +      default:
190 +        methodFluxMismatch = true;
191 +        break;
192 +      }
193 +      break;
194 +    case rnemdVSS:
195 +      switch (rnemdFluxType_) {
196 +      case rnemdKE:
197 +      case rnemdRotKE:
198 +      case rnemdFullKE:
199 +        hasCorrectFlux = hasKineticFlux;
200 +        break;
201 +      case rnemdPx:
202 +      case rnemdPy:
203 +      case rnemdPz:
204 +        hasCorrectFlux = hasMomentumFlux;
205 +        break;
206 +      case rnemdPvector:
207 +        hasCorrectFlux = hasMomentumFluxVector;
208 +        break;
209 +      case rnemdKePx:
210 +      case rnemdKePy:
211 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
212 +        break;
213 +      case rnemdKePvector:
214 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
215 +        break;
216 +      default:
217 +        methodFluxMismatch = true;
218 +        break;
219 +      }
220 +    default:
221 +      break;
222 +    }
223 +
224 +    if (methodFluxMismatch) {
225 +      sprintf(painCave.errMsg,
226 +              "RNEMD: The current method,\n"
227 +              "\t\t%s\n"
228 +              "\tcannot be used with the current flux type, %s\n",
229 +              methStr.c_str(), fluxStr.c_str());
230 +      painCave.isFatal = 1;
231 +      painCave.severity = OPENMD_ERROR;
232 +      simError();        
233 +    }
234 +    if (!hasCorrectFlux) {
235 +      sprintf(painCave.errMsg,
236 +              "RNEMD: The current method, %s, and flux type, %s,\n"
237 +              "\tdid not have the correct flux value specified. Options\n"
238 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
239 +              methStr.c_str(), fluxStr.c_str());
240 +      painCave.isFatal = 1;
241 +      painCave.severity = OPENMD_ERROR;
242 +      simError();        
243 +    }
244  
245 +    if (hasKineticFlux) {
246 +      // convert the kcal / mol / Angstroms^2 / fs values in the md file
247 +      // into  amu / fs^3:
248 +      kineticFlux_ = rnemdParams->getKineticFlux()
249 +        * PhysicalConstants::energyConvert;
250 +    } else {
251 +      kineticFlux_ = 0.0;
252 +    }
253 +    if (hasMomentumFluxVector) {
254 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
255 +    } else {
256 +      momentumFluxVector_ = V3Zero;
257 +      if (hasMomentumFlux) {
258 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
259 +        switch (rnemdFluxType_) {
260 +        case rnemdPx:
261 +          momentumFluxVector_.x() = momentumFlux;
262 +          break;
263 +        case rnemdPy:
264 +          momentumFluxVector_.y() = momentumFlux;
265 +          break;
266 +        case rnemdPz:
267 +          momentumFluxVector_.z() = momentumFlux;
268 +          break;
269 +        case rnemdKePx:
270 +          momentumFluxVector_.x() = momentumFlux;
271 +          break;
272 +        case rnemdKePy:
273 +          momentumFluxVector_.y() = momentumFlux;
274 +          break;
275 +        default:
276 +          break;
277 +        }
278 +      }    
279 +    }
280  
281      // do some sanity checking
282  
# Line 80 | Line 285 | namespace oopse {
285  
286      if (selectionCount > nIntegrable) {
287        sprintf(painCave.errMsg,
288 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
288 >              "RNEMD: The current objectSelection,\n"
289                "\t\t%s\n"
290                "\thas resulted in %d selected objects.  However,\n"
291                "\tthe total number of integrable objects in the system\n"
# Line 90 | Line 295 | namespace oopse {
295                rnemdObjectSelection_.c_str(),
296                selectionCount, nIntegrable);
297        painCave.isFatal = 0;
298 +      painCave.severity = OPENMD_WARNING;
299        simError();
300 +    }
301  
302 +    areaAccumulator_ = new Accumulator();
303 +
304 +    nBins_ = rnemdParams->getOutputBins();
305 +
306 +    data_.resize(RNEMD::ENDINDEX);
307 +    OutputData z;
308 +    z.units =  "Angstroms";
309 +    z.title =  "Z";
310 +    z.dataType = "RealType";
311 +    z.accumulator.reserve(nBins_);
312 +    for (int i = 0; i < nBins_; i++)
313 +      z.accumulator.push_back( new Accumulator() );
314 +    data_[Z] = z;
315 +    outputMap_["Z"] =  Z;
316 +
317 +    OutputData temperature;
318 +    temperature.units =  "K";
319 +    temperature.title =  "Temperature";
320 +    temperature.dataType = "RealType";
321 +    temperature.accumulator.reserve(nBins_);
322 +    for (int i = 0; i < nBins_; i++)
323 +      temperature.accumulator.push_back( new Accumulator() );
324 +    data_[TEMPERATURE] = temperature;
325 +    outputMap_["TEMPERATURE"] =  TEMPERATURE;
326 +
327 +    OutputData velocity;
328 +    velocity.units = "angstroms/fs";
329 +    velocity.title =  "Velocity";  
330 +    velocity.dataType = "Vector3d";
331 +    velocity.accumulator.reserve(nBins_);
332 +    for (int i = 0; i < nBins_; i++)
333 +      velocity.accumulator.push_back( new VectorAccumulator() );
334 +    data_[VELOCITY] = velocity;
335 +    outputMap_["VELOCITY"] = VELOCITY;
336 +
337 +    OutputData density;
338 +    density.units =  "g cm^-3";
339 +    density.title =  "Density";
340 +    density.dataType = "RealType";
341 +    density.accumulator.reserve(nBins_);
342 +    for (int i = 0; i < nBins_; i++)
343 +      density.accumulator.push_back( new Accumulator() );
344 +    data_[DENSITY] = density;
345 +    outputMap_["DENSITY"] =  DENSITY;
346 +
347 +    if (hasOutputFields) {
348 +      parseOutputFileFormat(rnemdParams->getOutputFields());
349 +    } else {
350 +      outputMask_.set(Z);
351 +      switch (rnemdFluxType_) {
352 +      case rnemdKE:
353 +      case rnemdRotKE:
354 +      case rnemdFullKE:
355 +        outputMask_.set(TEMPERATURE);
356 +        break;
357 +      case rnemdPx:
358 +      case rnemdPy:
359 +        outputMask_.set(VELOCITY);
360 +        break;
361 +      case rnemdPz:        
362 +      case rnemdPvector:
363 +        outputMask_.set(VELOCITY);
364 +        outputMask_.set(DENSITY);
365 +        break;
366 +      case rnemdKePx:
367 +      case rnemdKePy:
368 +        outputMask_.set(TEMPERATURE);
369 +        outputMask_.set(VELOCITY);
370 +        break;
371 +      case rnemdKePvector:
372 +        outputMask_.set(TEMPERATURE);
373 +        outputMask_.set(VELOCITY);
374 +        outputMask_.set(DENSITY);        
375 +        break;
376 +      default:
377 +        break;
378 +      }
379      }
380 <    
381 <    const std::string st = simParams->getRNEMD_swapType();
380 >      
381 >    if (hasOutputFileName) {
382 >      rnemdFileName_ = rnemdParams->getOutputFileName();
383 >    } else {
384 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
385 >    }          
386  
387 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
100 <    i = stringToEnumMap_.find(st);
101 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
387 >    exchangeTime_ = rnemdParams->getExchangeTime();
388  
389 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
390 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
391 <    exchangeSum_ = 0.0;
389 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
390 >    Mat3x3d hmat = currentSnap_->getHmat();
391 >  
392 >    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
393 >    // Lx, Ly = box dimensions in x & y
394 >    // dt = exchange time interval
395 >    // flux = target flux
396  
397 < #ifndef IS_MPI
398 <    if (simParams->haveSeed()) {
399 <      seedValue = simParams->getSeed();
400 <      randNumGen_ = new SeqRandNumGen(seedValue);
401 <    }else {
402 <      randNumGen_ = new SeqRandNumGen();
403 <    }    
404 < #else
405 <    if (simParams->haveSeed()) {
406 <      seedValue = simParams->getSeed();
407 <      randNumGen_ = new ParallelRandNumGen(seedValue);
408 <    }else {
409 <      randNumGen_ = new ParallelRandNumGen();
120 <    }    
121 < #endif
122 <  }
397 >    RealType area = currentSnap_->getXYarea();
398 >    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
399 >    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
400 >
401 >    // total exchange sums are zeroed out at the beginning:
402 >
403 >    kineticExchange_ = 0.0;
404 >    momentumExchange_ = V3Zero;
405 >
406 >    if (hasSlabWidth)
407 >      slabWidth_ = rnemdParams->getSlabWidth();
408 >    else
409 >      slabWidth_ = hmat(2,2) / 10.0;
410    
411 +    if (hasSlabACenter)
412 +      slabACenter_ = rnemdParams->getSlabACenter();
413 +    else
414 +      slabACenter_ = 0.0;
415 +    
416 +    if (hasSlabBCenter)
417 +      slabBCenter_ = rnemdParams->getSlabBCenter();
418 +    else
419 +      slabBCenter_ = hmat(2,2) / 2.0;
420 +    
421 +  }
422 +  
423    RNEMD::~RNEMD() {
424 <    delete randNumGen_;
424 >    if (!doRNEMD_) return;
425 > #ifdef IS_MPI
426 >    if (worldRank == 0) {
427 > #endif
428 >
429 >      writeOutputFile();
430 >
431 >      rnemdFile_.close();
432 >      
433 > #ifdef IS_MPI
434 >    }
435 > #endif
436    }
437 +  
438 +  bool RNEMD::inSlabA(Vector3d pos) {
439 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
440 +  }
441 +  bool RNEMD::inSlabB(Vector3d pos) {
442 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
443 +  }
444  
445    void RNEMD::doSwap() {
446 <    int midBin = nBins_ / 2;
130 <
446 >    if (!doRNEMD_) return;
447      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
448      Mat3x3d hmat = currentSnap_->getHmat();
449  
# Line 135 | Line 451 | namespace oopse {
451  
452      int selei;
453      StuntDouble* sd;
138    int idx;
454  
455      RealType min_val;
456      bool min_found = false;  
# Line 148 | Line 463 | namespace oopse {
463      for (sd = seleMan_.beginSelected(selei); sd != NULL;
464           sd = seleMan_.nextSelected(selei)) {
465  
151      idx = sd->getLocalIndex();
152
466        Vector3d pos = sd->getPos();
467  
468        // wrap the stuntdouble's position back into the box:
469  
470        if (usePeriodicBoundaryConditions_)
471          currentSnap_->wrapVector(pos);
472 +      bool inA = inSlabA(pos);
473 +      bool inB = inSlabB(pos);
474  
475 <      // which bin is this stuntdouble in?
161 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
162 <
163 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
164 <
165 <
166 <      // if we're in bin 0 or the middleBin
167 <      if (binNo == 0 || binNo == midBin) {
475 >      if (inA || inB) {
476          
477          RealType mass = sd->getMass();
478          Vector3d vel = sd->getVel();
479          RealType value;
480 <
481 <        switch(rnemdType_) {
482 <        case rnemdKinetic :
480 >        
481 >        switch(rnemdFluxType_) {
482 >        case rnemdKE :
483            
484 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
485 <                          vel[2]*vel[2]);
486 <          if (sd->isDirectional()) {
484 >          value = mass * vel.lengthSquare();
485 >          
486 >          if (sd->isDirectional()) {
487              Vector3d angMom = sd->getJ();
488              Mat3x3d I = sd->getI();
489              
490              if (sd->isLinear()) {
491 <              int i = sd->linearAxis();
492 <              int j = (i + 1) % 3;
493 <              int k = (i + 2) % 3;
494 <              value += angMom[j] * angMom[j] / I(j, j) +
495 <                angMom[k] * angMom[k] / I(k, k);
491 >              int i = sd->linearAxis();
492 >              int j = (i + 1) % 3;
493 >              int k = (i + 2) % 3;
494 >              value += angMom[j] * angMom[j] / I(j, j) +
495 >                angMom[k] * angMom[k] / I(k, k);
496              } else {                        
497 <              value += angMom[0]*angMom[0]/I(0, 0)
498 <                + angMom[1]*angMom[1]/I(1, 1)
499 <                + angMom[2]*angMom[2]/I(2, 2);
497 >              value += angMom[0]*angMom[0]/I(0, 0)
498 >                + angMom[1]*angMom[1]/I(1, 1)
499 >                + angMom[2]*angMom[2]/I(2, 2);
500              }
501 <          }
502 <          value = value * 0.5 / OOPSEConstant::energyConvert;
501 >          } //angular momenta exchange enabled
502 >          value *= 0.5;
503            break;
504          case rnemdPx :
505            value = mass * vel[0];
# Line 202 | Line 510 | namespace oopse {
510          case rnemdPz :
511            value = mass * vel[2];
512            break;
205        case rnemdUnknown :
513          default :
514            break;
515          }
516          
517 <        if (binNo == 0) {
517 >        if (inA == 0) {
518            if (!min_found) {
519              min_val = value;
520              min_sd = sd;
# Line 218 | Line 525 | namespace oopse {
525                min_sd = sd;
526              }
527            }
528 <        } else {
528 >        } else {
529            if (!max_found) {
530              max_val = value;
531              max_sd = sd;
# Line 232 | Line 539 | namespace oopse {
539          }
540        }
541      }
542 <
543 < #ifdef IS_MPI
544 <    int nProc, worldRank;
545 <
239 <    nProc = MPI::COMM_WORLD.Get_size();
240 <    worldRank = MPI::COMM_WORLD.Get_rank();
241 <
542 >    
543 > #ifdef IS_MPI    
544 >    int worldRank = MPI::COMM_WORLD.Get_rank();
545 >    
546      bool my_min_found = min_found;
547      bool my_max_found = max_found;
548  
549      // Even if we didn't find a minimum, did someone else?
550 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
247 <                              1, MPI::BOOL, MPI::LAND);
248 <    
550 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
551      // Even if we didn't find a maximum, did someone else?
552 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
553 <                              1, MPI::BOOL, MPI::LAND);
554 <    
555 <    struct {
556 <      RealType val;
557 <      int rank;
558 <    } max_vals, min_vals;
559 <    
560 <    if (min_found) {
561 <      if (my_min_found)
552 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
553 > #endif
554 >
555 >    if (max_found && min_found) {
556 >
557 > #ifdef IS_MPI
558 >      struct {
559 >        RealType val;
560 >        int rank;
561 >      } max_vals, min_vals;
562 >      
563 >      if (my_min_found) {
564          min_vals.val = min_val;
565 <      else
565 >      } else {
566          min_vals.val = HONKING_LARGE_VALUE;
567 <      
567 >      }
568        min_vals.rank = worldRank;    
569        
570        // Who had the minimum?
571        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
572                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
573        min_val = min_vals.val;
270    }
574        
575 <    if (max_found) {
273 <      if (my_max_found)
575 >      if (my_max_found) {
576          max_vals.val = max_val;
577 <      else
577 >      } else {
578          max_vals.val = -HONKING_LARGE_VALUE;
579 <      
579 >      }
580        max_vals.rank = worldRank;    
581        
582        // Who had the maximum?
583        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
584                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
585        max_val = max_vals.val;
284    }
586   #endif
587 <
588 <    if (max_found && min_found) {
589 <      if (min_val< max_val) {
289 <
587 >      
588 >      if (min_val < max_val) {
589 >        
590   #ifdef IS_MPI      
591          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
592            // I have both maximum and minimum, so proceed like a single
593            // processor version:
594   #endif
595 <          // objects to be swapped: velocity & angular velocity
595 >
596            Vector3d min_vel = min_sd->getVel();
597            Vector3d max_vel = max_sd->getVel();
598            RealType temp_vel;
599            
600 <          switch(rnemdType_) {
601 <          case rnemdKinetic :
600 >          switch(rnemdFluxType_) {
601 >          case rnemdKE :
602              min_sd->setVel(max_vel);
603              max_sd->setVel(min_vel);
604 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
604 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
605                Vector3d min_angMom = min_sd->getJ();
606                Vector3d max_angMom = max_sd->getJ();
607                min_sd->setJ(max_angMom);
608                max_sd->setJ(min_angMom);
609 <            }
609 >            }//angular momenta exchange enabled
610 >            //assumes same rigid body identity
611              break;
612            case rnemdPx :
613              temp_vel = min_vel.x();
# Line 329 | Line 630 | namespace oopse {
630              min_sd->setVel(min_vel);
631              max_sd->setVel(max_vel);
632              break;
332          case rnemdUnknown :
633            default :
634              break;
635            }
636 +
637   #ifdef IS_MPI
638            // the rest of the cases only apply in parallel simulations:
639          } else if (max_vals.rank == worldRank) {
# Line 348 | Line 649 | namespace oopse {
649                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
650                                     min_vals.rank, 0, status);
651            
652 <          switch(rnemdType_) {
653 <          case rnemdKinetic :
652 >          switch(rnemdFluxType_) {
653 >          case rnemdKE :
654              max_sd->setVel(min_vel);
655 <            
655 >            //angular momenta exchange enabled
656              if (max_sd->isDirectional()) {
657                Vector3d min_angMom;
658                Vector3d max_angMom = max_sd->getJ();
659 <
659 >              
660                // point-to-point swap of the angular momentum vector
661                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
662                                         MPI::REALTYPE, min_vals.rank, 1,
663                                         min_angMom.getArrayPointer(), 3,
664                                         MPI::REALTYPE, min_vals.rank, 1,
665                                         status);
666 <
666 >              
667                max_sd->setJ(min_angMom);
668 <            }
668 >            }
669              break;
670            case rnemdPx :
671              max_vel.x() = min_vel.x();
# Line 378 | Line 679 | namespace oopse {
679              max_vel.z() = min_vel.z();
680              max_sd->setVel(max_vel);
681              break;
381          case rnemdUnknown :
682            default :
683              break;
684            }
# Line 395 | Line 695 | namespace oopse {
695                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
696                                     max_vals.rank, 0, status);
697            
698 <          switch(rnemdType_) {
699 <          case rnemdKinetic :
698 >          switch(rnemdFluxType_) {
699 >          case rnemdKE :
700              min_sd->setVel(max_vel);
701 <            
701 >            //angular momenta exchange enabled
702              if (min_sd->isDirectional()) {
703                Vector3d min_angMom = min_sd->getJ();
704                Vector3d max_angMom;
705 <
705 >              
706                // point-to-point swap of the angular momentum vector
707                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
708                                         MPI::REALTYPE, max_vals.rank, 1,
709                                         max_angMom.getArrayPointer(), 3,
710                                         MPI::REALTYPE, max_vals.rank, 1,
711                                         status);
712 <
712 >              
713                min_sd->setJ(max_angMom);
714              }
715              break;
# Line 425 | Line 725 | namespace oopse {
725              min_vel.z() = max_vel.z();
726              min_sd->setVel(min_vel);
727              break;
428          case rnemdUnknown :
728            default :
729              break;
730            }
731          }
732   #endif
733 <        exchangeSum_ += max_val - min_val;
734 <      } else {
735 <        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
733 >        
734 >        switch(rnemdFluxType_) {
735 >        case rnemdKE:
736 >          kineticExchange_ += max_val - min_val;
737 >          break;
738 >        case rnemdPx:
739 >          momentumExchange_.x() += max_val - min_val;
740 >          break;
741 >        case rnemdPy:
742 >          momentumExchange_.y() += max_val - min_val;
743 >          break;
744 >        case rnemdPz:
745 >          momentumExchange_.z() += max_val - min_val;
746 >          break;
747 >        default:
748 >          break;
749 >        }
750 >      } else {        
751 >        sprintf(painCave.errMsg,
752 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
753 >        painCave.isFatal = 0;
754 >        painCave.severity = OPENMD_INFO;
755 >        simError();        
756 >        failTrialCount_++;
757        }
758      } else {
759 <      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
760 <    }
761 <    
759 >      sprintf(painCave.errMsg,
760 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
761 >              "\twas not present in at least one of the two slabs.\n");
762 >      painCave.isFatal = 0;
763 >      painCave.severity = OPENMD_INFO;
764 >      simError();        
765 >      failTrialCount_++;
766 >    }    
767    }
768    
769 <  void RNEMD::getStatus() {
770 <
769 >  void RNEMD::doNIVS() {
770 >    if (!doRNEMD_) return;
771      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
772      Mat3x3d hmat = currentSnap_->getHmat();
448    Stats& stat = currentSnap_->statData;
449    RealType time = currentSnap_->getTime();
773  
451    stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_;
452
774      seleMan_.setSelectionSet(evaluator_.evaluate());
775  
776      int selei;
777      StuntDouble* sd;
457    int idx;
778  
779 <    std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's
460 <                                                  // being averaged
461 <    std::vector<int> valueCount(nBins_, 0);       // keeps track of the
462 <                                                  // number of degrees of
463 <                                                  // freedom being averaged
779 >    vector<StuntDouble*> hotBin, coldBin;
780  
781 +    RealType Phx = 0.0;
782 +    RealType Phy = 0.0;
783 +    RealType Phz = 0.0;
784 +    RealType Khx = 0.0;
785 +    RealType Khy = 0.0;
786 +    RealType Khz = 0.0;
787 +    RealType Khw = 0.0;
788 +    RealType Pcx = 0.0;
789 +    RealType Pcy = 0.0;
790 +    RealType Pcz = 0.0;
791 +    RealType Kcx = 0.0;
792 +    RealType Kcy = 0.0;
793 +    RealType Kcz = 0.0;
794 +    RealType Kcw = 0.0;
795 +
796      for (sd = seleMan_.beginSelected(selei); sd != NULL;
797           sd = seleMan_.nextSelected(selei)) {
798 <      
468 <      idx = sd->getLocalIndex();
469 <      
798 >
799        Vector3d pos = sd->getPos();
800  
801        // wrap the stuntdouble's position back into the box:
802 <      
802 >
803        if (usePeriodicBoundaryConditions_)
804          currentSnap_->wrapVector(pos);
805 <      
805 >
806        // which bin is this stuntdouble in?
807 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
808 <      
480 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;    
481 <      
482 <      RealType mass = sd->getMass();
483 <      Vector3d vel = sd->getVel();
484 <      RealType value;
807 >      bool inA = inSlabA(pos);
808 >      bool inB = inSlabB(pos);
809  
810 <      switch(rnemdType_) {
811 <      case rnemdKinetic :
812 <        
813 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
814 <                        vel[2]*vel[2]);
815 <        
816 <        valueCount[binNo] += 3;
817 <        if (sd->isDirectional()) {
818 <          Vector3d angMom = sd->getJ();
819 <          Mat3x3d I = sd->getI();
820 <          
821 <          if (sd->isLinear()) {
822 <            int i = sd->linearAxis();
823 <            int j = (i + 1) % 3;
824 <            int k = (i + 2) % 3;
825 <            value += angMom[j] * angMom[j] / I(j, j) +
826 <              angMom[k] * angMom[k] / I(k, k);
810 >      if (inA || inB) {
811 >              
812 >        RealType mass = sd->getMass();
813 >        Vector3d vel = sd->getVel();
814 >      
815 >        if (inA) {
816 >          hotBin.push_back(sd);
817 >          Phx += mass * vel.x();
818 >          Phy += mass * vel.y();
819 >          Phz += mass * vel.z();
820 >          Khx += mass * vel.x() * vel.x();
821 >          Khy += mass * vel.y() * vel.y();
822 >          Khz += mass * vel.z() * vel.z();
823 >          if (sd->isDirectional()) {
824 >            Vector3d angMom = sd->getJ();
825 >            Mat3x3d I = sd->getI();
826 >            if (sd->isLinear()) {
827 >              int i = sd->linearAxis();
828 >              int j = (i + 1) % 3;
829 >              int k = (i + 2) % 3;
830 >              Khw += angMom[j] * angMom[j] / I(j, j) +
831 >                angMom[k] * angMom[k] / I(k, k);
832 >            } else {
833 >              Khw += angMom[0]*angMom[0]/I(0, 0)
834 >                + angMom[1]*angMom[1]/I(1, 1)
835 >                + angMom[2]*angMom[2]/I(2, 2);
836 >            }
837 >          }
838 >        } else {
839 >          coldBin.push_back(sd);
840 >          Pcx += mass * vel.x();
841 >          Pcy += mass * vel.y();
842 >          Pcz += mass * vel.z();
843 >          Kcx += mass * vel.x() * vel.x();
844 >          Kcy += mass * vel.y() * vel.y();
845 >          Kcz += mass * vel.z() * vel.z();
846 >          if (sd->isDirectional()) {
847 >            Vector3d angMom = sd->getJ();
848 >            Mat3x3d I = sd->getI();
849 >            if (sd->isLinear()) {
850 >              int i = sd->linearAxis();
851 >              int j = (i + 1) % 3;
852 >              int k = (i + 2) % 3;
853 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
854 >                angMom[k] * angMom[k] / I(k, k);
855 >            } else {
856 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
857 >                + angMom[1]*angMom[1]/I(1, 1)
858 >                + angMom[2]*angMom[2]/I(2, 2);
859 >            }
860 >          }
861 >        }
862 >      }
863 >    }
864 >    
865 >    Khx *= 0.5;
866 >    Khy *= 0.5;
867 >    Khz *= 0.5;
868 >    Khw *= 0.5;
869 >    Kcx *= 0.5;
870 >    Kcy *= 0.5;
871 >    Kcz *= 0.5;
872 >    Kcw *= 0.5;
873  
874 <            valueCount[binNo] +=2;
874 > #ifdef IS_MPI
875 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
876 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
877 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
878 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
879 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
880 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
881  
882 <          } else {
883 <            value += angMom[0]*angMom[0]/I(0, 0)
884 <              + angMom[1]*angMom[1]/I(1, 1)
885 <              + angMom[2]*angMom[2]/I(2, 2);
886 <            valueCount[binNo] +=3;
882 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
883 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
884 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
885 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
886 >
887 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
888 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
889 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
890 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
891 > #endif
892 >
893 >    //solve coldBin coeff's first
894 >    RealType px = Pcx / Phx;
895 >    RealType py = Pcy / Phy;
896 >    RealType pz = Pcz / Phz;
897 >    RealType c, x, y, z;
898 >    bool successfulScale = false;
899 >    if ((rnemdFluxType_ == rnemdFullKE) ||
900 >        (rnemdFluxType_ == rnemdRotKE)) {
901 >      //may need sanity check Khw & Kcw > 0
902 >
903 >      if (rnemdFluxType_ == rnemdFullKE) {
904 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
905 >      } else {
906 >        c = 1.0 - kineticTarget_ / Kcw;
907 >      }
908 >
909 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
910 >        c = sqrt(c);
911 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
912 >        //now convert to hotBin coefficient
913 >        RealType w = 0.0;
914 >        if (rnemdFluxType_ ==  rnemdFullKE) {
915 >          x = 1.0 + px * (1.0 - c);
916 >          y = 1.0 + py * (1.0 - c);
917 >          z = 1.0 + pz * (1.0 - c);
918 >          /* more complicated way
919 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
920 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
921 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
922 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
923 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
924 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
925 >          */
926 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
927 >              (fabs(z - 1.0) < 0.1)) {
928 >            w = 1.0 + (kineticTarget_
929 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
930 >                       + Khz * (1.0 - z * z)) / Khw;
931 >          }//no need to calculate w if x, y or z is out of range
932 >        } else {
933 >          w = 1.0 + kineticTarget_ / Khw;
934 >        }
935 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
936 >          //if w is in the right range, so should be x, y, z.
937 >          vector<StuntDouble*>::iterator sdi;
938 >          Vector3d vel;
939 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
940 >            if (rnemdFluxType_ == rnemdFullKE) {
941 >              vel = (*sdi)->getVel() * c;
942 >              (*sdi)->setVel(vel);
943 >            }
944 >            if ((*sdi)->isDirectional()) {
945 >              Vector3d angMom = (*sdi)->getJ() * c;
946 >              (*sdi)->setJ(angMom);
947 >            }
948            }
949 +          w = sqrt(w);
950 +          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951 +          //           << "\twh= " << w << endl;
952 +          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
953 +            if (rnemdFluxType_ == rnemdFullKE) {
954 +              vel = (*sdi)->getVel();
955 +              vel.x() *= x;
956 +              vel.y() *= y;
957 +              vel.z() *= z;
958 +              (*sdi)->setVel(vel);
959 +            }
960 +            if ((*sdi)->isDirectional()) {
961 +              Vector3d angMom = (*sdi)->getJ() * w;
962 +              (*sdi)->setJ(angMom);
963 +            }
964 +          }
965 +          successfulScale = true;
966 +          kineticExchange_ += kineticTarget_;
967          }
968 <        value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb;
969 <
970 <        break;
971 <      case rnemdPx :
972 <        value = mass * vel[0];
973 <        valueCount[binNo]++;
968 >      }
969 >    } else {
970 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
971 >      switch(rnemdFluxType_) {
972 >      case rnemdKE :
973 >        /* used hotBin coeff's & only scale x & y dimensions
974 >           RealType px = Phx / Pcx;
975 >           RealType py = Phy / Pcy;
976 >           a110 = Khy;
977 >           c0 = - Khx - Khy - kineticTarget_;
978 >           a000 = Khx;
979 >           a111 = Kcy * py * py;
980 >           b11 = -2.0 * Kcy * py * (1.0 + py);
981 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
982 >           b01 = -2.0 * Kcx * px * (1.0 + px);
983 >           a001 = Kcx * px * px;
984 >        */
985 >        //scale all three dimensions, let c_x = c_y
986 >        a000 = Kcx + Kcy;
987 >        a110 = Kcz;
988 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
989 >        a001 = Khx * px * px + Khy * py * py;
990 >        a111 = Khz * pz * pz;
991 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
992 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
993 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
994 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
995          break;
996 +      case rnemdPx :
997 +        c = 1 - momentumTarget_.x() / Pcx;
998 +        a000 = Kcy;
999 +        a110 = Kcz;
1000 +        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1001 +        a001 = py * py * Khy;
1002 +        a111 = pz * pz * Khz;
1003 +        b01 = -2.0 * Khy * py * (1.0 + py);
1004 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
1005 +        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1006 +          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1007 +        break;
1008        case rnemdPy :
1009 <        value = mass * vel[1];
1010 <        valueCount[binNo]++;
1009 >        c = 1 - momentumTarget_.y() / Pcy;
1010 >        a000 = Kcx;
1011 >        a110 = Kcz;
1012 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1013 >        a001 = px * px * Khx;
1014 >        a111 = pz * pz * Khz;
1015 >        b01 = -2.0 * Khx * px * (1.0 + px);
1016 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1017 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1018 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1019          break;
1020 <      case rnemdPz :
1021 <        value = mass * vel[2];
1022 <        valueCount[binNo]++;
1020 >      case rnemdPz ://we don't really do this, do we?
1021 >        c = 1 - momentumTarget_.z() / Pcz;
1022 >        a000 = Kcx;
1023 >        a110 = Kcy;
1024 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1025 >        a001 = px * px * Khx;
1026 >        a111 = py * py * Khy;
1027 >        b01 = -2.0 * Khx * px * (1.0 + px);
1028 >        b11 = -2.0 * Khy * py * (1.0 + py);
1029 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1030 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1031          break;
528      case rnemdUnknown :
1032        default :
1033          break;
1034        }
1035 <      valueHist[binNo] += value;
1035 >      
1036 >      RealType v1 = a000 * a111 - a001 * a110;
1037 >      RealType v2 = a000 * b01;
1038 >      RealType v3 = a000 * b11;
1039 >      RealType v4 = a000 * c1 - a001 * c0;
1040 >      RealType v8 = a110 * b01;
1041 >      RealType v10 = - b01 * c0;
1042 >      
1043 >      RealType u0 = v2 * v10 - v4 * v4;
1044 >      RealType u1 = -2.0 * v3 * v4;
1045 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1046 >      RealType u3 = -2.0 * v1 * v3;
1047 >      RealType u4 = - v1 * v1;
1048 >      //rescale coefficients
1049 >      RealType maxAbs = fabs(u0);
1050 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1051 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1052 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1053 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1054 >      u0 /= maxAbs;
1055 >      u1 /= maxAbs;
1056 >      u2 /= maxAbs;
1057 >      u3 /= maxAbs;
1058 >      u4 /= maxAbs;
1059 >      //max_element(start, end) is also available.
1060 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1061 >      poly.setCoefficient(4, u4);
1062 >      poly.setCoefficient(3, u3);
1063 >      poly.setCoefficient(2, u2);
1064 >      poly.setCoefficient(1, u1);
1065 >      poly.setCoefficient(0, u0);
1066 >      vector<RealType> realRoots = poly.FindRealRoots();
1067 >      
1068 >      vector<RealType>::iterator ri;
1069 >      RealType r1, r2, alpha0;
1070 >      vector<pair<RealType,RealType> > rps;
1071 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1072 >        r2 = *ri;
1073 >        //check if FindRealRoots() give the right answer
1074 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1075 >          sprintf(painCave.errMsg,
1076 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1077 >          painCave.isFatal = 0;
1078 >          simError();
1079 >          failRootCount_++;
1080 >        }
1081 >        //might not be useful w/o rescaling coefficients
1082 >        alpha0 = -c0 - a110 * r2 * r2;
1083 >        if (alpha0 >= 0.0) {
1084 >          r1 = sqrt(alpha0 / a000);
1085 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1086 >              < 1e-6)
1087 >            { rps.push_back(make_pair(r1, r2)); }
1088 >          if (r1 > 1e-6) { //r1 non-negative
1089 >            r1 = -r1;
1090 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1091 >                < 1e-6)
1092 >              { rps.push_back(make_pair(r1, r2)); }
1093 >          }
1094 >        }
1095 >      }
1096 >      // Consider combining together the solving pair part w/ the searching
1097 >      // best solution part so that we don't need the pairs vector
1098 >      if (!rps.empty()) {
1099 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1100 >        RealType diff;
1101 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1102 >        vector<pair<RealType,RealType> >::iterator rpi;
1103 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1104 >          r1 = (*rpi).first;
1105 >          r2 = (*rpi).second;
1106 >          switch(rnemdFluxType_) {
1107 >          case rnemdKE :
1108 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1109 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1110 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1111 >            break;
1112 >          case rnemdPx :
1113 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1114 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1115 >            break;
1116 >          case rnemdPy :
1117 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1119 >            break;
1120 >          case rnemdPz :
1121 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1122 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1123 >          default :
1124 >            break;
1125 >          }
1126 >          if (diff < smallestDiff) {
1127 >            smallestDiff = diff;
1128 >            bestPair = *rpi;
1129 >          }
1130 >        }
1131 > #ifdef IS_MPI
1132 >        if (worldRank == 0) {
1133 > #endif
1134 >          // sprintf(painCave.errMsg,
1135 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1136 >          //         bestPair.first, bestPair.second);
1137 >          // painCave.isFatal = 0;
1138 >          // painCave.severity = OPENMD_INFO;
1139 >          // simError();
1140 > #ifdef IS_MPI
1141 >        }
1142 > #endif
1143 >        
1144 >        switch(rnemdFluxType_) {
1145 >        case rnemdKE :
1146 >          x = bestPair.first;
1147 >          y = bestPair.first;
1148 >          z = bestPair.second;
1149 >          break;
1150 >        case rnemdPx :
1151 >          x = c;
1152 >          y = bestPair.first;
1153 >          z = bestPair.second;
1154 >          break;
1155 >        case rnemdPy :
1156 >          x = bestPair.first;
1157 >          y = c;
1158 >          z = bestPair.second;
1159 >          break;
1160 >        case rnemdPz :
1161 >          x = bestPair.first;
1162 >          y = bestPair.second;
1163 >          z = c;
1164 >          break;          
1165 >        default :
1166 >          break;
1167 >        }
1168 >        vector<StuntDouble*>::iterator sdi;
1169 >        Vector3d vel;
1170 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1171 >          vel = (*sdi)->getVel();
1172 >          vel.x() *= x;
1173 >          vel.y() *= y;
1174 >          vel.z() *= z;
1175 >          (*sdi)->setVel(vel);
1176 >        }
1177 >        //convert to hotBin coefficient
1178 >        x = 1.0 + px * (1.0 - x);
1179 >        y = 1.0 + py * (1.0 - y);
1180 >        z = 1.0 + pz * (1.0 - z);
1181 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1182 >          vel = (*sdi)->getVel();
1183 >          vel.x() *= x;
1184 >          vel.y() *= y;
1185 >          vel.z() *= z;
1186 >          (*sdi)->setVel(vel);
1187 >        }
1188 >        successfulScale = true;
1189 >        switch(rnemdFluxType_) {
1190 >        case rnemdKE :
1191 >          kineticExchange_ += kineticTarget_;
1192 >          break;
1193 >        case rnemdPx :
1194 >        case rnemdPy :
1195 >        case rnemdPz :
1196 >          momentumExchange_ += momentumTarget_;
1197 >          break;          
1198 >        default :
1199 >          break;
1200 >        }      
1201 >      }
1202      }
1203 +    if (successfulScale != true) {
1204 +      sprintf(painCave.errMsg,
1205 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1206 +              "\tthe constraint equations may not exist or there may be\n"
1207 +              "\tno selected objects in one or both slabs.\n");
1208 +      painCave.isFatal = 0;
1209 +      painCave.severity = OPENMD_INFO;
1210 +      simError();        
1211 +      failTrialCount_++;
1212 +    }
1213 +  }
1214  
1215 < #ifdef IS_MPI
1215 >  void RNEMD::doVSS() {
1216 >    if (!doRNEMD_) return;
1217 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1218 >    RealType time = currentSnap_->getTime();    
1219 >    Mat3x3d hmat = currentSnap_->getHmat();
1220  
1221 <    // all processors have the same number of bins, and STL vectors pack their
538 <    // arrays, so in theory, this should be safe:
1221 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1222  
1223 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0],
1224 <                              nBins_, MPI::REALTYPE, MPI::SUM);
542 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0],
543 <                              nBins_, MPI::INT, MPI::SUM);
1223 >    int selei;
1224 >    StuntDouble* sd;
1225  
1226 +    vector<StuntDouble*> hotBin, coldBin;
1227 +
1228 +    Vector3d Ph(V3Zero);
1229 +    RealType Mh = 0.0;
1230 +    RealType Kh = 0.0;
1231 +    Vector3d Pc(V3Zero);
1232 +    RealType Mc = 0.0;
1233 +    RealType Kc = 0.0;
1234 +    
1235 +
1236 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1237 +         sd = seleMan_.nextSelected(selei)) {
1238 +
1239 +      Vector3d pos = sd->getPos();
1240 +
1241 +      // wrap the stuntdouble's position back into the box:
1242 +
1243 +      if (usePeriodicBoundaryConditions_)
1244 +        currentSnap_->wrapVector(pos);
1245 +
1246 +      // which bin is this stuntdouble in?
1247 +      bool inA = inSlabA(pos);
1248 +      bool inB = inSlabB(pos);
1249 +      
1250 +      if (inA || inB) {
1251 +        
1252 +        RealType mass = sd->getMass();
1253 +        Vector3d vel = sd->getVel();
1254 +      
1255 +        if (inA) {
1256 +          hotBin.push_back(sd);
1257 +          //std::cerr << "before, velocity = " << vel << endl;
1258 +          Ph += mass * vel;
1259 +          //std::cerr << "after, velocity = " << vel << endl;
1260 +          Mh += mass;
1261 +          Kh += mass * vel.lengthSquare();
1262 +          if (rnemdFluxType_ == rnemdFullKE) {
1263 +            if (sd->isDirectional()) {
1264 +              Vector3d angMom = sd->getJ();
1265 +              Mat3x3d I = sd->getI();
1266 +              if (sd->isLinear()) {
1267 +                int i = sd->linearAxis();
1268 +                int j = (i + 1) % 3;
1269 +                int k = (i + 2) % 3;
1270 +                Kh += angMom[j] * angMom[j] / I(j, j) +
1271 +                  angMom[k] * angMom[k] / I(k, k);
1272 +              } else {
1273 +                Kh += angMom[0] * angMom[0] / I(0, 0) +
1274 +                  angMom[1] * angMom[1] / I(1, 1) +
1275 +                  angMom[2] * angMom[2] / I(2, 2);
1276 +              }
1277 +            }
1278 +          }
1279 +        } else { //midBin_
1280 +          coldBin.push_back(sd);
1281 +          Pc += mass * vel;
1282 +          Mc += mass;
1283 +          Kc += mass * vel.lengthSquare();
1284 +          if (rnemdFluxType_ == rnemdFullKE) {
1285 +            if (sd->isDirectional()) {
1286 +              Vector3d angMom = sd->getJ();
1287 +              Mat3x3d I = sd->getI();
1288 +              if (sd->isLinear()) {
1289 +                int i = sd->linearAxis();
1290 +                int j = (i + 1) % 3;
1291 +                int k = (i + 2) % 3;
1292 +                Kc += angMom[j] * angMom[j] / I(j, j) +
1293 +                  angMom[k] * angMom[k] / I(k, k);
1294 +              } else {
1295 +                Kc += angMom[0] * angMom[0] / I(0, 0) +
1296 +                  angMom[1] * angMom[1] / I(1, 1) +
1297 +                  angMom[2] * angMom[2] / I(2, 2);
1298 +              }
1299 +            }
1300 +          }
1301 +        }
1302 +      }
1303 +    }
1304 +    
1305 +    Kh *= 0.5;
1306 +    Kc *= 0.5;
1307 +
1308 +    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1309 +    //        << "\tKc= " << Kc << endl;
1310 +    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1311 +    
1312 + #ifdef IS_MPI
1313 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1314 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1315 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1316 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1317 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1318 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1319 + #endif
1320 +
1321 +    bool successfulExchange = false;
1322 +    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1323 +      Vector3d vc = Pc / Mc;
1324 +      Vector3d ac = -momentumTarget_ / Mc + vc;
1325 +      Vector3d acrec = -momentumTarget_ / Mc;
1326 +      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1327 +      if (cNumerator > 0.0) {
1328 +        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1329 +        if (cDenominator > 0.0) {
1330 +          RealType c = sqrt(cNumerator / cDenominator);
1331 +          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1332 +            Vector3d vh = Ph / Mh;
1333 +            Vector3d ah = momentumTarget_ / Mh + vh;
1334 +            Vector3d ahrec = momentumTarget_ / Mh;
1335 +            RealType hNumerator = Kh + kineticTarget_
1336 +              - 0.5 * Mh * ah.lengthSquare();
1337 +            if (hNumerator > 0.0) {
1338 +              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1339 +              if (hDenominator > 0.0) {
1340 +                RealType h = sqrt(hNumerator / hDenominator);
1341 +                if ((h > 0.9) && (h < 1.1)) {
1342 +                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1343 +                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1344 +                  vector<StuntDouble*>::iterator sdi;
1345 +                  Vector3d vel;
1346 +                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1347 +                    //vel = (*sdi)->getVel();
1348 +                    vel = ((*sdi)->getVel() - vc) * c + ac;
1349 +                    (*sdi)->setVel(vel);
1350 +                    if (rnemdFluxType_ == rnemdFullKE) {
1351 +                      if ((*sdi)->isDirectional()) {
1352 +                        Vector3d angMom = (*sdi)->getJ() * c;
1353 +                        (*sdi)->setJ(angMom);
1354 +                      }
1355 +                    }
1356 +                  }
1357 +                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1358 +                    //vel = (*sdi)->getVel();
1359 +                    vel = ((*sdi)->getVel() - vh) * h + ah;
1360 +                    (*sdi)->setVel(vel);
1361 +                    if (rnemdFluxType_ == rnemdFullKE) {
1362 +                      if ((*sdi)->isDirectional()) {
1363 +                        Vector3d angMom = (*sdi)->getJ() * h;
1364 +                        (*sdi)->setJ(angMom);
1365 +                      }
1366 +                    }
1367 +                  }
1368 +                  successfulExchange = true;
1369 +                  kineticExchange_ += kineticTarget_;
1370 +                  momentumExchange_ += momentumTarget_;
1371 +                }
1372 +              }
1373 +            }
1374 +          }
1375 +        }
1376 +      }
1377 +    }
1378 +    if (successfulExchange != true) {
1379 +      sprintf(painCave.errMsg,
1380 +              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1381 +              "\tthe constraint equations may not exist or there may be\n"
1382 +              "\tno selected objects in one or both slabs.\n");
1383 +      painCave.isFatal = 0;
1384 +      painCave.severity = OPENMD_INFO;
1385 +      simError();        
1386 +      failTrialCount_++;
1387 +    }
1388 +  }
1389 +
1390 +  void RNEMD::doRNEMD() {
1391 +    if (!doRNEMD_) return;
1392 +    trialCount_++;
1393 +    switch(rnemdMethod_) {
1394 +    case rnemdSwap:
1395 +      doSwap();
1396 +      break;
1397 +    case rnemdNIVS:
1398 +      doNIVS();
1399 +      break;
1400 +    case rnemdVSS:
1401 +      doVSS();
1402 +      break;
1403 +    case rnemdUnkownMethod:
1404 +    default :
1405 +      break;
1406 +    }
1407 +  }
1408 +
1409 +  void RNEMD::collectData() {
1410 +    if (!doRNEMD_) return;
1411 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1412 +    Mat3x3d hmat = currentSnap_->getHmat();
1413 +
1414 +    areaAccumulator_->add(currentSnap_->getXYarea());
1415 +
1416 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1417 +
1418 +    int selei;
1419 +    StuntDouble* sd;
1420 +
1421 +    vector<RealType> binMass(nBins_, 0.0);
1422 +    vector<RealType> binPx(nBins_, 0.0);
1423 +    vector<RealType> binPy(nBins_, 0.0);
1424 +    vector<RealType> binPz(nBins_, 0.0);
1425 +    vector<RealType> binKE(nBins_, 0.0);
1426 +    vector<int> binDOF(nBins_, 0);
1427 +    vector<int> binCount(nBins_, 0);
1428 +
1429 +    // alternative approach, track all molecules instead of only those
1430 +    // selected for scaling/swapping:
1431 +    /*
1432 +    SimInfo::MoleculeIterator miter;
1433 +    vector<StuntDouble*>::iterator iiter;
1434 +    Molecule* mol;
1435 +    StuntDouble* sd;
1436 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1437 +      mol = info_->nextMolecule(miter))
1438 +      sd is essentially sd
1439 +        for (sd = mol->beginIntegrableObject(iiter);
1440 +             sd != NULL;
1441 +             sd = mol->nextIntegrableObject(iiter))
1442 +    */
1443 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1444 +         sd = seleMan_.nextSelected(selei)) {    
1445 +      
1446 +      Vector3d pos = sd->getPos();
1447 +
1448 +      // wrap the stuntdouble's position back into the box:
1449 +      
1450 +      if (usePeriodicBoundaryConditions_)
1451 +        currentSnap_->wrapVector(pos);
1452 +
1453 +
1454 +      // which bin is this stuntdouble in?
1455 +      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1456 +      // Shift molecules by half a box to have bins start at 0
1457 +      // The modulo operator is used to wrap the case when we are
1458 +      // beyond the end of the bins back to the beginning.
1459 +      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1460 +    
1461 +      RealType mass = sd->getMass();
1462 +      Vector3d vel = sd->getVel();
1463 +
1464 +      binCount[binNo]++;
1465 +      binMass[binNo] += mass;
1466 +      binPx[binNo] += mass*vel.x();
1467 +      binPy[binNo] += mass*vel.y();
1468 +      binPz[binNo] += mass*vel.z();
1469 +      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1470 +      binDOF[binNo] += 3;
1471 +
1472 +      if (sd->isDirectional()) {
1473 +        Vector3d angMom = sd->getJ();
1474 +        Mat3x3d I = sd->getI();
1475 +        if (sd->isLinear()) {
1476 +          int i = sd->linearAxis();
1477 +          int j = (i + 1) % 3;
1478 +          int k = (i + 2) % 3;
1479 +          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1480 +                                 angMom[k] * angMom[k] / I(k, k));
1481 +          binDOF[binNo] += 2;
1482 +        } else {
1483 +          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1484 +                                 angMom[1] * angMom[1] / I(1, 1) +
1485 +                                 angMom[2] * angMom[2] / I(2, 2));
1486 +          binDOF[binNo] += 3;
1487 +        }
1488 +      }
1489 +    }
1490 +    
1491 +
1492 + #ifdef IS_MPI
1493 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1494 +                              nBins_, MPI::INT, MPI::SUM);
1495 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1496 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1497 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1498 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1499 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1500 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1501 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1502 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1503 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1504 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1505 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1506 +                              nBins_, MPI::INT, MPI::SUM);
1507 + #endif
1508 +
1509 +    Vector3d vel;
1510 +    RealType den;
1511 +    RealType temp;
1512 +    RealType z;
1513 +    for (int i = 0; i < nBins_; i++) {
1514 +      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1515 +      vel.x() = binPx[i] / binMass[i];
1516 +      vel.y() = binPy[i] / binMass[i];
1517 +      vel.z() = binPz[i] / binMass[i];
1518 +
1519 +      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1520 +        / currentSnap_->getVolume() ;
1521 +
1522 +      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1523 +                               PhysicalConstants::energyConvert);
1524 +
1525 +      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1526 +        if(outputMask_[j]) {
1527 +          switch(j) {
1528 +          case Z:
1529 +            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1530 +            break;
1531 +          case TEMPERATURE:
1532 +            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1533 +            break;
1534 +          case VELOCITY:
1535 +            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1536 +            break;
1537 +          case DENSITY:
1538 +            dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1539 +            break;
1540 +          }
1541 +        }
1542 +      }
1543 +    }
1544 +  }
1545 +
1546 +  void RNEMD::getStarted() {
1547 +    if (!doRNEMD_) return;
1548 +    collectData();
1549 +    writeOutputFile();
1550 +  }
1551 +
1552 +  void RNEMD::parseOutputFileFormat(const std::string& format) {
1553 +    if (!doRNEMD_) return;
1554 +    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1555 +    
1556 +    while(tokenizer.hasMoreTokens()) {
1557 +      std::string token(tokenizer.nextToken());
1558 +      toUpper(token);
1559 +      OutputMapType::iterator i = outputMap_.find(token);
1560 +      if (i != outputMap_.end()) {
1561 +        outputMask_.set(i->second);
1562 +      } else {
1563 +        sprintf( painCave.errMsg,
1564 +                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1565 +                 "\toutputFileFormat keyword.\n", token.c_str() );
1566 +        painCave.isFatal = 0;
1567 +        painCave.severity = OPENMD_ERROR;
1568 +        simError();            
1569 +      }
1570 +    }  
1571 +  }
1572 +  
1573 +  void RNEMD::writeOutputFile() {
1574 +    if (!doRNEMD_) return;
1575 +    
1576 + #ifdef IS_MPI
1577      // If we're the root node, should we print out the results
1578      int worldRank = MPI::COMM_WORLD.Get_rank();
1579      if (worldRank == 0) {
1580   #endif
1581 <      
550 <      std::cout << time;
551 <      for (int j = 0; j < nBins_; j++)
552 <        std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
553 <      std::cout << "\n";
1581 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1582        
1583 +      if( !rnemdFile_ ){        
1584 +        sprintf( painCave.errMsg,
1585 +                 "Could not open \"%s\" for RNEMD output.\n",
1586 +                 rnemdFileName_.c_str());
1587 +        painCave.isFatal = 1;
1588 +        simError();
1589 +      }
1590 +
1591 +      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1592 +
1593 +      RealType time = currentSnap_->getTime();
1594 +      RealType avgArea;
1595 +      areaAccumulator_->getAverage(avgArea);
1596 +      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1597 +        / PhysicalConstants::energyConvert;
1598 +      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1599 +
1600 +      rnemdFile_ << "#######################################################\n";
1601 +      rnemdFile_ << "# RNEMD {\n";
1602 +
1603 +      map<string, RNEMDMethod>::iterator mi;
1604 +      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1605 +        if ( (*mi).second == rnemdMethod_)
1606 +          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1607 +      }
1608 +      map<string, RNEMDFluxType>::iterator fi;
1609 +      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1610 +        if ( (*fi).second == rnemdFluxType_)
1611 +          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1612 +      }
1613 +      
1614 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1615 +
1616 +      rnemdFile_ << "#    objectSelection = \""
1617 +                 << rnemdObjectSelection_ << "\";\n";
1618 +      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1619 +      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1620 +      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1621 +      rnemdFile_ << "# }\n";
1622 +      rnemdFile_ << "#######################################################\n";
1623 +      rnemdFile_ << "# RNEMD report:\n";      
1624 +      rnemdFile_ << "#     running time = " << time << " fs\n";
1625 +      rnemdFile_ << "#     target flux:\n";
1626 +      rnemdFile_ << "#         kinetic = "
1627 +                 << kineticFlux_ / PhysicalConstants::energyConvert
1628 +                 << " (kcal/mol/A^2/fs)\n";
1629 +      rnemdFile_ << "#         momentum = " << momentumFluxVector_
1630 +                 << " (amu/A/fs^2)\n";
1631 +      rnemdFile_ << "#     target one-time exchanges:\n";
1632 +      rnemdFile_ << "#         kinetic = "
1633 +                 << kineticTarget_ / PhysicalConstants::energyConvert
1634 +                 << " (kcal/mol)\n";
1635 +      rnemdFile_ << "#         momentum = " << momentumTarget_
1636 +                 << " (amu*A/fs)\n";
1637 +      rnemdFile_ << "#     actual exchange totals:\n";
1638 +      rnemdFile_ << "#         kinetic = "
1639 +                 << kineticExchange_ / PhysicalConstants::energyConvert
1640 +                 << " (kcal/mol)\n";
1641 +      rnemdFile_ << "#         momentum = " << momentumExchange_
1642 +                 << " (amu*A/fs)\n";      
1643 +      rnemdFile_ << "#     actual flux:\n";
1644 +      rnemdFile_ << "#         kinetic = " << Jz
1645 +                 << " (kcal/mol/A^2/fs)\n";
1646 +      rnemdFile_ << "#         momentum = " << JzP
1647 +                 << " (amu/A/fs^2)\n";
1648 +      rnemdFile_ << "#     exchange statistics:\n";
1649 +      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1650 +      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1651 +      if (rnemdMethod_ == rnemdNIVS) {
1652 +        rnemdFile_ << "#         NIVS root-check errors = "
1653 +                   << failRootCount_ << "\n";
1654 +      }
1655 +      rnemdFile_ << "#######################################################\n";
1656 +      
1657 +      
1658 +      
1659 +      //write title
1660 +      rnemdFile_ << "#";
1661 +      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1662 +        if (outputMask_[i]) {
1663 +          rnemdFile_ << "\t" << data_[i].title <<
1664 +            "(" << data_[i].units << ")";
1665 +          // add some extra tabs for column alignment
1666 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1667 +        }
1668 +      }
1669 +      rnemdFile_ << std::endl;
1670 +      
1671 +      rnemdFile_.precision(8);
1672 +      
1673 +      for (int j = 0; j < nBins_; j++) {        
1674 +        
1675 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1676 +          if (outputMask_[i]) {
1677 +            if (data_[i].dataType == "RealType")
1678 +              writeReal(i,j);
1679 +            else if (data_[i].dataType == "Vector3d")
1680 +              writeVector(i,j);
1681 +            else {
1682 +              sprintf( painCave.errMsg,
1683 +                       "RNEMD found an unknown data type for: %s ",
1684 +                       data_[i].title.c_str());
1685 +              painCave.isFatal = 1;
1686 +              simError();
1687 +            }
1688 +          }
1689 +        }
1690 +        rnemdFile_ << std::endl;
1691 +        
1692 +      }        
1693 +
1694 +      rnemdFile_ << "#######################################################\n";
1695 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1696 +      rnemdFile_ << "#######################################################\n";
1697 +
1698 +
1699 +      for (int j = 0; j < nBins_; j++) {        
1700 +        rnemdFile_ << "#";
1701 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1702 +          if (outputMask_[i]) {
1703 +            if (data_[i].dataType == "RealType")
1704 +              writeRealStdDev(i,j);
1705 +            else if (data_[i].dataType == "Vector3d")
1706 +              writeVectorStdDev(i,j);
1707 +            else {
1708 +              sprintf( painCave.errMsg,
1709 +                       "RNEMD found an unknown data type for: %s ",
1710 +                       data_[i].title.c_str());
1711 +              painCave.isFatal = 1;
1712 +              simError();
1713 +            }
1714 +          }
1715 +        }
1716 +        rnemdFile_ << std::endl;
1717 +        
1718 +      }        
1719 +      
1720 +      rnemdFile_.flush();
1721 +      rnemdFile_.close();
1722 +      
1723   #ifdef IS_MPI
1724      }
1725   #endif
1726 +    
1727    }
1728 +  
1729 +  void RNEMD::writeReal(int index, unsigned int bin) {
1730 +    if (!doRNEMD_) return;
1731 +    assert(index >=0 && index < ENDINDEX);
1732 +    assert(bin < nBins_);
1733 +    RealType s;
1734 +    
1735 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
1736 +    
1737 +    if (! isinf(s) && ! isnan(s)) {
1738 +      rnemdFile_ << "\t" << s;
1739 +    } else{
1740 +      sprintf( painCave.errMsg,
1741 +               "RNEMD detected a numerical error writing: %s for bin %d",
1742 +               data_[index].title.c_str(), bin);
1743 +      painCave.isFatal = 1;
1744 +      simError();
1745 +    }    
1746 +  }
1747 +  
1748 +  void RNEMD::writeVector(int index, unsigned int bin) {
1749 +    if (!doRNEMD_) return;
1750 +    assert(index >=0 && index < ENDINDEX);
1751 +    assert(bin < nBins_);
1752 +    Vector3d s;
1753 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1754 +    if (isinf(s[0]) || isnan(s[0]) ||
1755 +        isinf(s[1]) || isnan(s[1]) ||
1756 +        isinf(s[2]) || isnan(s[2]) ) {      
1757 +      sprintf( painCave.errMsg,
1758 +               "RNEMD detected a numerical error writing: %s for bin %d",
1759 +               data_[index].title.c_str(), bin);
1760 +      painCave.isFatal = 1;
1761 +      simError();
1762 +    } else {
1763 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1764 +    }
1765 +  }  
1766 +
1767 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1768 +    if (!doRNEMD_) return;
1769 +    assert(index >=0 && index < ENDINDEX);
1770 +    assert(bin < nBins_);
1771 +    RealType s;
1772 +    
1773 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
1774 +    
1775 +    if (! isinf(s) && ! isnan(s)) {
1776 +      rnemdFile_ << "\t" << s;
1777 +    } else{
1778 +      sprintf( painCave.errMsg,
1779 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1780 +               data_[index].title.c_str(), bin);
1781 +      painCave.isFatal = 1;
1782 +      simError();
1783 +    }    
1784 +  }
1785 +  
1786 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1787 +    if (!doRNEMD_) return;
1788 +    assert(index >=0 && index < ENDINDEX);
1789 +    assert(bin < nBins_);
1790 +    Vector3d s;
1791 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1792 +    if (isinf(s[0]) || isnan(s[0]) ||
1793 +        isinf(s[1]) || isnan(s[1]) ||
1794 +        isinf(s[2]) || isnan(s[2]) ) {      
1795 +      sprintf( painCave.errMsg,
1796 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1797 +               data_[index].title.c_str(), bin);
1798 +      painCave.isFatal = 1;
1799 +      simError();
1800 +    } else {
1801 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1802 +    }
1803 +  }  
1804   }
1805 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
trunk/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1793 by gezelter, Fri Aug 31 21:16:10 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines