ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
Revision: 1789
Committed: Wed Aug 29 20:52:19 2012 UTC (12 years, 8 months ago) by gezelter
File size: 57122 byte(s)
Log Message:
Fixing a compilation issue on Windows

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <cmath>
43 #include "rnemd/RNEMD.hpp"
44 #include "math/Vector3.hpp"
45 #include "math/Vector.hpp"
46 #include "math/SquareMatrix3.hpp"
47 #include "math/Polynomial.hpp"
48 #include "primitives/Molecule.hpp"
49 #include "primitives/StuntDouble.hpp"
50 #include "utils/PhysicalConstants.hpp"
51 #include "utils/Tuple.hpp"
52 #ifdef IS_MPI
53 #include <mpi.h>
54 #endif
55
56 #ifdef _MSC_VER
57 #define isnan(x) _isnan((x))
58 #define isinf(x) (!_finite(x) && !_isnan(x))
59 #endif
60
61 #define HONKING_LARGE_VALUE 1.0e10
62
63 using namespace std;
64 namespace OpenMD {
65
66 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
67 usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
68
69 trialCount_ = 0;
70 failTrialCount_ = 0;
71 failRootCount_ = 0;
72
73 Globals * simParams = info->getSimParams();
74 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
75
76 doRNEMD_ = rnemdParams->getUseRNEMD();
77 if (!doRNEMD_) return;
78
79 stringToMethod_["Swap"] = rnemdSwap;
80 stringToMethod_["NIVS"] = rnemdNIVS;
81 stringToMethod_["VSS"] = rnemdVSS;
82
83 stringToFluxType_["KE"] = rnemdKE;
84 stringToFluxType_["Px"] = rnemdPx;
85 stringToFluxType_["Py"] = rnemdPy;
86 stringToFluxType_["Pz"] = rnemdPz;
87 stringToFluxType_["Pvector"] = rnemdPvector;
88 stringToFluxType_["KE+Px"] = rnemdKePx;
89 stringToFluxType_["KE+Py"] = rnemdKePy;
90 stringToFluxType_["KE+Pvector"] = rnemdKePvector;
91
92 runTime_ = simParams->getRunTime();
93 statusTime_ = simParams->getStatusTime();
94
95 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
96 evaluator_.loadScriptString(rnemdObjectSelection_);
97 seleMan_.setSelectionSet(evaluator_.evaluate());
98
99 const string methStr = rnemdParams->getMethod();
100 bool hasFluxType = rnemdParams->haveFluxType();
101
102 string fluxStr;
103 if (hasFluxType) {
104 fluxStr = rnemdParams->getFluxType();
105 } else {
106 sprintf(painCave.errMsg,
107 "RNEMD: No fluxType was set in the md file. This parameter,\n"
108 "\twhich must be one of the following values:\n"
109 "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
110 "\tmust be set to use RNEMD\n");
111 painCave.isFatal = 1;
112 painCave.severity = OPENMD_ERROR;
113 simError();
114 }
115
116 bool hasKineticFlux = rnemdParams->haveKineticFlux();
117 bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
118 bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
119 bool hasSlabWidth = rnemdParams->haveSlabWidth();
120 bool hasSlabACenter = rnemdParams->haveSlabACenter();
121 bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
122 bool hasOutputFileName = rnemdParams->haveOutputFileName();
123 bool hasOutputFields = rnemdParams->haveOutputFields();
124
125 map<string, RNEMDMethod>::iterator i;
126 i = stringToMethod_.find(methStr);
127 if (i != stringToMethod_.end())
128 rnemdMethod_ = i->second;
129 else {
130 sprintf(painCave.errMsg,
131 "RNEMD: The current method,\n"
132 "\t\t%s is not one of the recognized\n"
133 "\texchange methods: Swap, NIVS, or VSS\n",
134 methStr.c_str());
135 painCave.isFatal = 1;
136 painCave.severity = OPENMD_ERROR;
137 simError();
138 }
139
140 map<string, RNEMDFluxType>::iterator j;
141 j = stringToFluxType_.find(fluxStr);
142 if (j != stringToFluxType_.end())
143 rnemdFluxType_ = j->second;
144 else {
145 sprintf(painCave.errMsg,
146 "RNEMD: The current fluxType,\n"
147 "\t\t%s\n"
148 "\tis not one of the recognized flux types.\n",
149 fluxStr.c_str());
150 painCave.isFatal = 1;
151 painCave.severity = OPENMD_ERROR;
152 simError();
153 }
154
155 bool methodFluxMismatch = false;
156 bool hasCorrectFlux = false;
157 switch(rnemdMethod_) {
158 case rnemdSwap:
159 switch (rnemdFluxType_) {
160 case rnemdKE:
161 hasCorrectFlux = hasKineticFlux;
162 break;
163 case rnemdPx:
164 case rnemdPy:
165 case rnemdPz:
166 hasCorrectFlux = hasMomentumFlux;
167 break;
168 default :
169 methodFluxMismatch = true;
170 break;
171 }
172 break;
173 case rnemdNIVS:
174 switch (rnemdFluxType_) {
175 case rnemdKE:
176 case rnemdRotKE:
177 case rnemdFullKE:
178 hasCorrectFlux = hasKineticFlux;
179 break;
180 case rnemdPx:
181 case rnemdPy:
182 case rnemdPz:
183 hasCorrectFlux = hasMomentumFlux;
184 break;
185 case rnemdKePx:
186 case rnemdKePy:
187 hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
188 break;
189 default:
190 methodFluxMismatch = true;
191 break;
192 }
193 break;
194 case rnemdVSS:
195 switch (rnemdFluxType_) {
196 case rnemdKE:
197 case rnemdRotKE:
198 case rnemdFullKE:
199 hasCorrectFlux = hasKineticFlux;
200 break;
201 case rnemdPx:
202 case rnemdPy:
203 case rnemdPz:
204 hasCorrectFlux = hasMomentumFlux;
205 break;
206 case rnemdPvector:
207 hasCorrectFlux = hasMomentumFluxVector;
208 break;
209 case rnemdKePx:
210 case rnemdKePy:
211 hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
212 break;
213 case rnemdKePvector:
214 hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
215 break;
216 default:
217 methodFluxMismatch = true;
218 break;
219 }
220 default:
221 break;
222 }
223
224 if (methodFluxMismatch) {
225 sprintf(painCave.errMsg,
226 "RNEMD: The current method,\n"
227 "\t\t%s\n"
228 "\tcannot be used with the current flux type, %s\n",
229 methStr.c_str(), fluxStr.c_str());
230 painCave.isFatal = 1;
231 painCave.severity = OPENMD_ERROR;
232 simError();
233 }
234 if (!hasCorrectFlux) {
235 sprintf(painCave.errMsg,
236 "RNEMD: The current method, %s, and flux type, %s,\n"
237 "\tdid not have the correct flux value specified. Options\n"
238 "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
239 methStr.c_str(), fluxStr.c_str());
240 painCave.isFatal = 1;
241 painCave.severity = OPENMD_ERROR;
242 simError();
243 }
244
245 if (hasKineticFlux) {
246 // convert the kcal / mol / Angstroms^2 / fs values in the md file
247 // into amu / fs^3:
248 kineticFlux_ = rnemdParams->getKineticFlux()
249 * PhysicalConstants::energyConvert;
250 } else {
251 kineticFlux_ = 0.0;
252 }
253 if (hasMomentumFluxVector) {
254 momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
255 } else {
256 momentumFluxVector_ = V3Zero;
257 if (hasMomentumFlux) {
258 RealType momentumFlux = rnemdParams->getMomentumFlux();
259 switch (rnemdFluxType_) {
260 case rnemdPx:
261 momentumFluxVector_.x() = momentumFlux;
262 break;
263 case rnemdPy:
264 momentumFluxVector_.y() = momentumFlux;
265 break;
266 case rnemdPz:
267 momentumFluxVector_.z() = momentumFlux;
268 break;
269 case rnemdKePx:
270 momentumFluxVector_.x() = momentumFlux;
271 break;
272 case rnemdKePy:
273 momentumFluxVector_.y() = momentumFlux;
274 break;
275 default:
276 break;
277 }
278 }
279 }
280
281 // do some sanity checking
282
283 int selectionCount = seleMan_.getSelectionCount();
284 int nIntegrable = info->getNGlobalIntegrableObjects();
285
286 if (selectionCount > nIntegrable) {
287 sprintf(painCave.errMsg,
288 "RNEMD: The current objectSelection,\n"
289 "\t\t%s\n"
290 "\thas resulted in %d selected objects. However,\n"
291 "\tthe total number of integrable objects in the system\n"
292 "\tis only %d. This is almost certainly not what you want\n"
293 "\tto do. A likely cause of this is forgetting the _RB_0\n"
294 "\tselector in the selection script!\n",
295 rnemdObjectSelection_.c_str(),
296 selectionCount, nIntegrable);
297 painCave.isFatal = 0;
298 painCave.severity = OPENMD_WARNING;
299 simError();
300 }
301
302 areaAccumulator_ = new Accumulator();
303
304 nBins_ = rnemdParams->getOutputBins();
305
306 data_.resize(RNEMD::ENDINDEX);
307 OutputData z;
308 z.units = "Angstroms";
309 z.title = "Z";
310 z.dataType = "RealType";
311 z.accumulator.reserve(nBins_);
312 for (int i = 0; i < nBins_; i++)
313 z.accumulator.push_back( new Accumulator() );
314 data_[Z] = z;
315 outputMap_["Z"] = Z;
316
317 OutputData temperature;
318 temperature.units = "K";
319 temperature.title = "Temperature";
320 temperature.dataType = "RealType";
321 temperature.accumulator.reserve(nBins_);
322 for (int i = 0; i < nBins_; i++)
323 temperature.accumulator.push_back( new Accumulator() );
324 data_[TEMPERATURE] = temperature;
325 outputMap_["TEMPERATURE"] = TEMPERATURE;
326
327 OutputData velocity;
328 velocity.units = "angstroms/fs";
329 velocity.title = "Velocity";
330 velocity.dataType = "Vector3d";
331 velocity.accumulator.reserve(nBins_);
332 for (int i = 0; i < nBins_; i++)
333 velocity.accumulator.push_back( new VectorAccumulator() );
334 data_[VELOCITY] = velocity;
335 outputMap_["VELOCITY"] = VELOCITY;
336
337 OutputData density;
338 density.units = "g cm^-3";
339 density.title = "Density";
340 density.dataType = "RealType";
341 density.accumulator.reserve(nBins_);
342 for (int i = 0; i < nBins_; i++)
343 density.accumulator.push_back( new Accumulator() );
344 data_[DENSITY] = density;
345 outputMap_["DENSITY"] = DENSITY;
346
347 if (hasOutputFields) {
348 parseOutputFileFormat(rnemdParams->getOutputFields());
349 } else {
350 outputMask_.set(Z);
351 switch (rnemdFluxType_) {
352 case rnemdKE:
353 case rnemdRotKE:
354 case rnemdFullKE:
355 outputMask_.set(TEMPERATURE);
356 break;
357 case rnemdPx:
358 case rnemdPy:
359 outputMask_.set(VELOCITY);
360 break;
361 case rnemdPz:
362 case rnemdPvector:
363 outputMask_.set(VELOCITY);
364 outputMask_.set(DENSITY);
365 break;
366 case rnemdKePx:
367 case rnemdKePy:
368 outputMask_.set(TEMPERATURE);
369 outputMask_.set(VELOCITY);
370 break;
371 case rnemdKePvector:
372 outputMask_.set(TEMPERATURE);
373 outputMask_.set(VELOCITY);
374 outputMask_.set(DENSITY);
375 break;
376 default:
377 break;
378 }
379 }
380
381 if (hasOutputFileName) {
382 rnemdFileName_ = rnemdParams->getOutputFileName();
383 } else {
384 rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
385 }
386
387 exchangeTime_ = rnemdParams->getExchangeTime();
388
389 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
390 Mat3x3d hmat = currentSnap_->getHmat();
391
392 // Target exchange quantities (in each exchange) = 2 Lx Ly dt flux
393 // Lx, Ly = box dimensions in x & y
394 // dt = exchange time interval
395 // flux = target flux
396
397 RealType area = currentSnap_->getXYarea();
398 kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
399 momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
400
401 // total exchange sums are zeroed out at the beginning:
402
403 kineticExchange_ = 0.0;
404 momentumExchange_ = V3Zero;
405
406 if (hasSlabWidth)
407 slabWidth_ = rnemdParams->getSlabWidth();
408 else
409 slabWidth_ = hmat(2,2) / 10.0;
410
411 if (hasSlabACenter)
412 slabACenter_ = rnemdParams->getSlabACenter();
413 else
414 slabACenter_ = 0.0;
415
416 if (hasSlabBCenter)
417 slabBCenter_ = rnemdParams->getSlabBCenter();
418 else
419 slabBCenter_ = hmat(2,2) / 2.0;
420
421 }
422
423 RNEMD::~RNEMD() {
424 if (!doRNEMD_) return;
425 #ifdef IS_MPI
426 if (worldRank == 0) {
427 #endif
428
429 writeOutputFile();
430
431 rnemdFile_.close();
432
433 #ifdef IS_MPI
434 }
435 #endif
436 }
437
438 bool RNEMD::inSlabA(Vector3d pos) {
439 return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
440 }
441 bool RNEMD::inSlabB(Vector3d pos) {
442 return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
443 }
444
445 void RNEMD::doSwap() {
446 if (!doRNEMD_) return;
447 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
448 Mat3x3d hmat = currentSnap_->getHmat();
449
450 seleMan_.setSelectionSet(evaluator_.evaluate());
451
452 int selei;
453 StuntDouble* sd;
454 int idx;
455
456 RealType min_val;
457 bool min_found = false;
458 StuntDouble* min_sd;
459
460 RealType max_val;
461 bool max_found = false;
462 StuntDouble* max_sd;
463
464 for (sd = seleMan_.beginSelected(selei); sd != NULL;
465 sd = seleMan_.nextSelected(selei)) {
466
467 idx = sd->getLocalIndex();
468
469 Vector3d pos = sd->getPos();
470
471 // wrap the stuntdouble's position back into the box:
472
473 if (usePeriodicBoundaryConditions_)
474 currentSnap_->wrapVector(pos);
475 bool inA = inSlabA(pos);
476 bool inB = inSlabB(pos);
477
478 if (inA || inB) {
479
480 RealType mass = sd->getMass();
481 Vector3d vel = sd->getVel();
482 RealType value;
483
484 switch(rnemdFluxType_) {
485 case rnemdKE :
486
487 value = mass * vel.lengthSquare();
488
489 if (sd->isDirectional()) {
490 Vector3d angMom = sd->getJ();
491 Mat3x3d I = sd->getI();
492
493 if (sd->isLinear()) {
494 int i = sd->linearAxis();
495 int j = (i + 1) % 3;
496 int k = (i + 2) % 3;
497 value += angMom[j] * angMom[j] / I(j, j) +
498 angMom[k] * angMom[k] / I(k, k);
499 } else {
500 value += angMom[0]*angMom[0]/I(0, 0)
501 + angMom[1]*angMom[1]/I(1, 1)
502 + angMom[2]*angMom[2]/I(2, 2);
503 }
504 } //angular momenta exchange enabled
505 value *= 0.5;
506 break;
507 case rnemdPx :
508 value = mass * vel[0];
509 break;
510 case rnemdPy :
511 value = mass * vel[1];
512 break;
513 case rnemdPz :
514 value = mass * vel[2];
515 break;
516 default :
517 break;
518 }
519
520 if (inA == 0) {
521 if (!min_found) {
522 min_val = value;
523 min_sd = sd;
524 min_found = true;
525 } else {
526 if (min_val > value) {
527 min_val = value;
528 min_sd = sd;
529 }
530 }
531 } else {
532 if (!max_found) {
533 max_val = value;
534 max_sd = sd;
535 max_found = true;
536 } else {
537 if (max_val < value) {
538 max_val = value;
539 max_sd = sd;
540 }
541 }
542 }
543 }
544 }
545
546 #ifdef IS_MPI
547 int nProc, worldRank;
548
549 nProc = MPI::COMM_WORLD.Get_size();
550 worldRank = MPI::COMM_WORLD.Get_rank();
551
552 bool my_min_found = min_found;
553 bool my_max_found = max_found;
554
555 // Even if we didn't find a minimum, did someone else?
556 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
557 // Even if we didn't find a maximum, did someone else?
558 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
559 #endif
560
561 if (max_found && min_found) {
562
563 #ifdef IS_MPI
564 struct {
565 RealType val;
566 int rank;
567 } max_vals, min_vals;
568
569 if (my_min_found) {
570 min_vals.val = min_val;
571 } else {
572 min_vals.val = HONKING_LARGE_VALUE;
573 }
574 min_vals.rank = worldRank;
575
576 // Who had the minimum?
577 MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
578 1, MPI::REALTYPE_INT, MPI::MINLOC);
579 min_val = min_vals.val;
580
581 if (my_max_found) {
582 max_vals.val = max_val;
583 } else {
584 max_vals.val = -HONKING_LARGE_VALUE;
585 }
586 max_vals.rank = worldRank;
587
588 // Who had the maximum?
589 MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
590 1, MPI::REALTYPE_INT, MPI::MAXLOC);
591 max_val = max_vals.val;
592 #endif
593
594 if (min_val < max_val) {
595
596 #ifdef IS_MPI
597 if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
598 // I have both maximum and minimum, so proceed like a single
599 // processor version:
600 #endif
601
602 Vector3d min_vel = min_sd->getVel();
603 Vector3d max_vel = max_sd->getVel();
604 RealType temp_vel;
605
606 switch(rnemdFluxType_) {
607 case rnemdKE :
608 min_sd->setVel(max_vel);
609 max_sd->setVel(min_vel);
610 if (min_sd->isDirectional() && max_sd->isDirectional()) {
611 Vector3d min_angMom = min_sd->getJ();
612 Vector3d max_angMom = max_sd->getJ();
613 min_sd->setJ(max_angMom);
614 max_sd->setJ(min_angMom);
615 }//angular momenta exchange enabled
616 //assumes same rigid body identity
617 break;
618 case rnemdPx :
619 temp_vel = min_vel.x();
620 min_vel.x() = max_vel.x();
621 max_vel.x() = temp_vel;
622 min_sd->setVel(min_vel);
623 max_sd->setVel(max_vel);
624 break;
625 case rnemdPy :
626 temp_vel = min_vel.y();
627 min_vel.y() = max_vel.y();
628 max_vel.y() = temp_vel;
629 min_sd->setVel(min_vel);
630 max_sd->setVel(max_vel);
631 break;
632 case rnemdPz :
633 temp_vel = min_vel.z();
634 min_vel.z() = max_vel.z();
635 max_vel.z() = temp_vel;
636 min_sd->setVel(min_vel);
637 max_sd->setVel(max_vel);
638 break;
639 default :
640 break;
641 }
642
643 #ifdef IS_MPI
644 // the rest of the cases only apply in parallel simulations:
645 } else if (max_vals.rank == worldRank) {
646 // I had the max, but not the minimum
647
648 Vector3d min_vel;
649 Vector3d max_vel = max_sd->getVel();
650 MPI::Status status;
651
652 // point-to-point swap of the velocity vector
653 MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
654 min_vals.rank, 0,
655 min_vel.getArrayPointer(), 3, MPI::REALTYPE,
656 min_vals.rank, 0, status);
657
658 switch(rnemdFluxType_) {
659 case rnemdKE :
660 max_sd->setVel(min_vel);
661 //angular momenta exchange enabled
662 if (max_sd->isDirectional()) {
663 Vector3d min_angMom;
664 Vector3d max_angMom = max_sd->getJ();
665
666 // point-to-point swap of the angular momentum vector
667 MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
668 MPI::REALTYPE, min_vals.rank, 1,
669 min_angMom.getArrayPointer(), 3,
670 MPI::REALTYPE, min_vals.rank, 1,
671 status);
672
673 max_sd->setJ(min_angMom);
674 }
675 break;
676 case rnemdPx :
677 max_vel.x() = min_vel.x();
678 max_sd->setVel(max_vel);
679 break;
680 case rnemdPy :
681 max_vel.y() = min_vel.y();
682 max_sd->setVel(max_vel);
683 break;
684 case rnemdPz :
685 max_vel.z() = min_vel.z();
686 max_sd->setVel(max_vel);
687 break;
688 default :
689 break;
690 }
691 } else if (min_vals.rank == worldRank) {
692 // I had the minimum but not the maximum:
693
694 Vector3d max_vel;
695 Vector3d min_vel = min_sd->getVel();
696 MPI::Status status;
697
698 // point-to-point swap of the velocity vector
699 MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
700 max_vals.rank, 0,
701 max_vel.getArrayPointer(), 3, MPI::REALTYPE,
702 max_vals.rank, 0, status);
703
704 switch(rnemdFluxType_) {
705 case rnemdKE :
706 min_sd->setVel(max_vel);
707 //angular momenta exchange enabled
708 if (min_sd->isDirectional()) {
709 Vector3d min_angMom = min_sd->getJ();
710 Vector3d max_angMom;
711
712 // point-to-point swap of the angular momentum vector
713 MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
714 MPI::REALTYPE, max_vals.rank, 1,
715 max_angMom.getArrayPointer(), 3,
716 MPI::REALTYPE, max_vals.rank, 1,
717 status);
718
719 min_sd->setJ(max_angMom);
720 }
721 break;
722 case rnemdPx :
723 min_vel.x() = max_vel.x();
724 min_sd->setVel(min_vel);
725 break;
726 case rnemdPy :
727 min_vel.y() = max_vel.y();
728 min_sd->setVel(min_vel);
729 break;
730 case rnemdPz :
731 min_vel.z() = max_vel.z();
732 min_sd->setVel(min_vel);
733 break;
734 default :
735 break;
736 }
737 }
738 #endif
739
740 switch(rnemdFluxType_) {
741 case rnemdKE:
742 kineticExchange_ += max_val - min_val;
743 break;
744 case rnemdPx:
745 momentumExchange_.x() += max_val - min_val;
746 break;
747 case rnemdPy:
748 momentumExchange_.y() += max_val - min_val;
749 break;
750 case rnemdPz:
751 momentumExchange_.z() += max_val - min_val;
752 break;
753 default:
754 break;
755 }
756 } else {
757 sprintf(painCave.errMsg,
758 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
759 painCave.isFatal = 0;
760 painCave.severity = OPENMD_INFO;
761 simError();
762 failTrialCount_++;
763 }
764 } else {
765 sprintf(painCave.errMsg,
766 "RNEMD::doSwap exchange NOT performed because selected object\n"
767 "\twas not present in at least one of the two slabs.\n");
768 painCave.isFatal = 0;
769 painCave.severity = OPENMD_INFO;
770 simError();
771 failTrialCount_++;
772 }
773 }
774
775 void RNEMD::doNIVS() {
776 if (!doRNEMD_) return;
777 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
778 Mat3x3d hmat = currentSnap_->getHmat();
779
780 seleMan_.setSelectionSet(evaluator_.evaluate());
781
782 int selei;
783 StuntDouble* sd;
784 int idx;
785
786 vector<StuntDouble*> hotBin, coldBin;
787
788 RealType Phx = 0.0;
789 RealType Phy = 0.0;
790 RealType Phz = 0.0;
791 RealType Khx = 0.0;
792 RealType Khy = 0.0;
793 RealType Khz = 0.0;
794 RealType Khw = 0.0;
795 RealType Pcx = 0.0;
796 RealType Pcy = 0.0;
797 RealType Pcz = 0.0;
798 RealType Kcx = 0.0;
799 RealType Kcy = 0.0;
800 RealType Kcz = 0.0;
801 RealType Kcw = 0.0;
802
803 for (sd = seleMan_.beginSelected(selei); sd != NULL;
804 sd = seleMan_.nextSelected(selei)) {
805
806 idx = sd->getLocalIndex();
807
808 Vector3d pos = sd->getPos();
809
810 // wrap the stuntdouble's position back into the box:
811
812 if (usePeriodicBoundaryConditions_)
813 currentSnap_->wrapVector(pos);
814
815 // which bin is this stuntdouble in?
816 bool inA = inSlabA(pos);
817 bool inB = inSlabB(pos);
818
819 if (inA || inB) {
820
821 RealType mass = sd->getMass();
822 Vector3d vel = sd->getVel();
823
824 if (inA) {
825 hotBin.push_back(sd);
826 Phx += mass * vel.x();
827 Phy += mass * vel.y();
828 Phz += mass * vel.z();
829 Khx += mass * vel.x() * vel.x();
830 Khy += mass * vel.y() * vel.y();
831 Khz += mass * vel.z() * vel.z();
832 if (sd->isDirectional()) {
833 Vector3d angMom = sd->getJ();
834 Mat3x3d I = sd->getI();
835 if (sd->isLinear()) {
836 int i = sd->linearAxis();
837 int j = (i + 1) % 3;
838 int k = (i + 2) % 3;
839 Khw += angMom[j] * angMom[j] / I(j, j) +
840 angMom[k] * angMom[k] / I(k, k);
841 } else {
842 Khw += angMom[0]*angMom[0]/I(0, 0)
843 + angMom[1]*angMom[1]/I(1, 1)
844 + angMom[2]*angMom[2]/I(2, 2);
845 }
846 }
847 } else {
848 coldBin.push_back(sd);
849 Pcx += mass * vel.x();
850 Pcy += mass * vel.y();
851 Pcz += mass * vel.z();
852 Kcx += mass * vel.x() * vel.x();
853 Kcy += mass * vel.y() * vel.y();
854 Kcz += mass * vel.z() * vel.z();
855 if (sd->isDirectional()) {
856 Vector3d angMom = sd->getJ();
857 Mat3x3d I = sd->getI();
858 if (sd->isLinear()) {
859 int i = sd->linearAxis();
860 int j = (i + 1) % 3;
861 int k = (i + 2) % 3;
862 Kcw += angMom[j] * angMom[j] / I(j, j) +
863 angMom[k] * angMom[k] / I(k, k);
864 } else {
865 Kcw += angMom[0]*angMom[0]/I(0, 0)
866 + angMom[1]*angMom[1]/I(1, 1)
867 + angMom[2]*angMom[2]/I(2, 2);
868 }
869 }
870 }
871 }
872 }
873
874 Khx *= 0.5;
875 Khy *= 0.5;
876 Khz *= 0.5;
877 Khw *= 0.5;
878 Kcx *= 0.5;
879 Kcy *= 0.5;
880 Kcz *= 0.5;
881 Kcw *= 0.5;
882
883 #ifdef IS_MPI
884 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
885 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
886 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
887 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
888 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
889 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
890
891 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
892 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
893 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
894 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
895
896 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
897 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
898 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
899 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
900 #endif
901
902 //solve coldBin coeff's first
903 RealType px = Pcx / Phx;
904 RealType py = Pcy / Phy;
905 RealType pz = Pcz / Phz;
906 RealType c, x, y, z;
907 bool successfulScale = false;
908 if ((rnemdFluxType_ == rnemdFullKE) ||
909 (rnemdFluxType_ == rnemdRotKE)) {
910 //may need sanity check Khw & Kcw > 0
911
912 if (rnemdFluxType_ == rnemdFullKE) {
913 c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
914 } else {
915 c = 1.0 - kineticTarget_ / Kcw;
916 }
917
918 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
919 c = sqrt(c);
920 //std::cerr << "cold slab scaling coefficient: " << c << endl;
921 //now convert to hotBin coefficient
922 RealType w = 0.0;
923 if (rnemdFluxType_ == rnemdFullKE) {
924 x = 1.0 + px * (1.0 - c);
925 y = 1.0 + py * (1.0 - c);
926 z = 1.0 + pz * (1.0 - c);
927 /* more complicated way
928 w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
929 + Khx * px * px + Khy * py * py + Khz * pz * pz)
930 - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
931 + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
932 + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
933 - Kcx - Kcy - Kcz)) / Khw; the following is simpler
934 */
935 if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
936 (fabs(z - 1.0) < 0.1)) {
937 w = 1.0 + (kineticTarget_
938 + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
939 + Khz * (1.0 - z * z)) / Khw;
940 }//no need to calculate w if x, y or z is out of range
941 } else {
942 w = 1.0 + kineticTarget_ / Khw;
943 }
944 if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
945 //if w is in the right range, so should be x, y, z.
946 vector<StuntDouble*>::iterator sdi;
947 Vector3d vel;
948 for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
949 if (rnemdFluxType_ == rnemdFullKE) {
950 vel = (*sdi)->getVel() * c;
951 (*sdi)->setVel(vel);
952 }
953 if ((*sdi)->isDirectional()) {
954 Vector3d angMom = (*sdi)->getJ() * c;
955 (*sdi)->setJ(angMom);
956 }
957 }
958 w = sqrt(w);
959 // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
960 // << "\twh= " << w << endl;
961 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
962 if (rnemdFluxType_ == rnemdFullKE) {
963 vel = (*sdi)->getVel();
964 vel.x() *= x;
965 vel.y() *= y;
966 vel.z() *= z;
967 (*sdi)->setVel(vel);
968 }
969 if ((*sdi)->isDirectional()) {
970 Vector3d angMom = (*sdi)->getJ() * w;
971 (*sdi)->setJ(angMom);
972 }
973 }
974 successfulScale = true;
975 kineticExchange_ += kineticTarget_;
976 }
977 }
978 } else {
979 RealType a000, a110, c0, a001, a111, b01, b11, c1;
980 switch(rnemdFluxType_) {
981 case rnemdKE :
982 /* used hotBin coeff's & only scale x & y dimensions
983 RealType px = Phx / Pcx;
984 RealType py = Phy / Pcy;
985 a110 = Khy;
986 c0 = - Khx - Khy - kineticTarget_;
987 a000 = Khx;
988 a111 = Kcy * py * py;
989 b11 = -2.0 * Kcy * py * (1.0 + py);
990 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
991 b01 = -2.0 * Kcx * px * (1.0 + px);
992 a001 = Kcx * px * px;
993 */
994 //scale all three dimensions, let c_x = c_y
995 a000 = Kcx + Kcy;
996 a110 = Kcz;
997 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
998 a001 = Khx * px * px + Khy * py * py;
999 a111 = Khz * pz * pz;
1000 b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1001 b11 = -2.0 * Khz * pz * (1.0 + pz);
1002 c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1003 + Khz * pz * (2.0 + pz) - kineticTarget_;
1004 break;
1005 case rnemdPx :
1006 c = 1 - momentumTarget_.x() / Pcx;
1007 a000 = Kcy;
1008 a110 = Kcz;
1009 c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1010 a001 = py * py * Khy;
1011 a111 = pz * pz * Khz;
1012 b01 = -2.0 * Khy * py * (1.0 + py);
1013 b11 = -2.0 * Khz * pz * (1.0 + pz);
1014 c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1015 + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1016 break;
1017 case rnemdPy :
1018 c = 1 - momentumTarget_.y() / Pcy;
1019 a000 = Kcx;
1020 a110 = Kcz;
1021 c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1022 a001 = px * px * Khx;
1023 a111 = pz * pz * Khz;
1024 b01 = -2.0 * Khx * px * (1.0 + px);
1025 b11 = -2.0 * Khz * pz * (1.0 + pz);
1026 c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1027 + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1028 break;
1029 case rnemdPz ://we don't really do this, do we?
1030 c = 1 - momentumTarget_.z() / Pcz;
1031 a000 = Kcx;
1032 a110 = Kcy;
1033 c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1034 a001 = px * px * Khx;
1035 a111 = py * py * Khy;
1036 b01 = -2.0 * Khx * px * (1.0 + px);
1037 b11 = -2.0 * Khy * py * (1.0 + py);
1038 c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1039 + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1040 break;
1041 default :
1042 break;
1043 }
1044
1045 RealType v1 = a000 * a111 - a001 * a110;
1046 RealType v2 = a000 * b01;
1047 RealType v3 = a000 * b11;
1048 RealType v4 = a000 * c1 - a001 * c0;
1049 RealType v8 = a110 * b01;
1050 RealType v10 = - b01 * c0;
1051
1052 RealType u0 = v2 * v10 - v4 * v4;
1053 RealType u1 = -2.0 * v3 * v4;
1054 RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1055 RealType u3 = -2.0 * v1 * v3;
1056 RealType u4 = - v1 * v1;
1057 //rescale coefficients
1058 RealType maxAbs = fabs(u0);
1059 if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1060 if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1061 if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1062 if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1063 u0 /= maxAbs;
1064 u1 /= maxAbs;
1065 u2 /= maxAbs;
1066 u3 /= maxAbs;
1067 u4 /= maxAbs;
1068 //max_element(start, end) is also available.
1069 Polynomial<RealType> poly; //same as DoublePolynomial poly;
1070 poly.setCoefficient(4, u4);
1071 poly.setCoefficient(3, u3);
1072 poly.setCoefficient(2, u2);
1073 poly.setCoefficient(1, u1);
1074 poly.setCoefficient(0, u0);
1075 vector<RealType> realRoots = poly.FindRealRoots();
1076
1077 vector<RealType>::iterator ri;
1078 RealType r1, r2, alpha0;
1079 vector<pair<RealType,RealType> > rps;
1080 for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1081 r2 = *ri;
1082 //check if FindRealRoots() give the right answer
1083 if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1084 sprintf(painCave.errMsg,
1085 "RNEMD Warning: polynomial solve seems to have an error!");
1086 painCave.isFatal = 0;
1087 simError();
1088 failRootCount_++;
1089 }
1090 //might not be useful w/o rescaling coefficients
1091 alpha0 = -c0 - a110 * r2 * r2;
1092 if (alpha0 >= 0.0) {
1093 r1 = sqrt(alpha0 / a000);
1094 if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1095 < 1e-6)
1096 { rps.push_back(make_pair(r1, r2)); }
1097 if (r1 > 1e-6) { //r1 non-negative
1098 r1 = -r1;
1099 if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1100 < 1e-6)
1101 { rps.push_back(make_pair(r1, r2)); }
1102 }
1103 }
1104 }
1105 // Consider combining together the solving pair part w/ the searching
1106 // best solution part so that we don't need the pairs vector
1107 if (!rps.empty()) {
1108 RealType smallestDiff = HONKING_LARGE_VALUE;
1109 RealType diff;
1110 pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1111 vector<pair<RealType,RealType> >::iterator rpi;
1112 for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1113 r1 = (*rpi).first;
1114 r2 = (*rpi).second;
1115 switch(rnemdFluxType_) {
1116 case rnemdKE :
1117 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1119 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1120 break;
1121 case rnemdPx :
1122 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1123 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1124 break;
1125 case rnemdPy :
1126 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1127 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1128 break;
1129 case rnemdPz :
1130 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1131 + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1132 default :
1133 break;
1134 }
1135 if (diff < smallestDiff) {
1136 smallestDiff = diff;
1137 bestPair = *rpi;
1138 }
1139 }
1140 #ifdef IS_MPI
1141 if (worldRank == 0) {
1142 #endif
1143 // sprintf(painCave.errMsg,
1144 // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1145 // bestPair.first, bestPair.second);
1146 // painCave.isFatal = 0;
1147 // painCave.severity = OPENMD_INFO;
1148 // simError();
1149 #ifdef IS_MPI
1150 }
1151 #endif
1152
1153 switch(rnemdFluxType_) {
1154 case rnemdKE :
1155 x = bestPair.first;
1156 y = bestPair.first;
1157 z = bestPair.second;
1158 break;
1159 case rnemdPx :
1160 x = c;
1161 y = bestPair.first;
1162 z = bestPair.second;
1163 break;
1164 case rnemdPy :
1165 x = bestPair.first;
1166 y = c;
1167 z = bestPair.second;
1168 break;
1169 case rnemdPz :
1170 x = bestPair.first;
1171 y = bestPair.second;
1172 z = c;
1173 break;
1174 default :
1175 break;
1176 }
1177 vector<StuntDouble*>::iterator sdi;
1178 Vector3d vel;
1179 for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1180 vel = (*sdi)->getVel();
1181 vel.x() *= x;
1182 vel.y() *= y;
1183 vel.z() *= z;
1184 (*sdi)->setVel(vel);
1185 }
1186 //convert to hotBin coefficient
1187 x = 1.0 + px * (1.0 - x);
1188 y = 1.0 + py * (1.0 - y);
1189 z = 1.0 + pz * (1.0 - z);
1190 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1191 vel = (*sdi)->getVel();
1192 vel.x() *= x;
1193 vel.y() *= y;
1194 vel.z() *= z;
1195 (*sdi)->setVel(vel);
1196 }
1197 successfulScale = true;
1198 switch(rnemdFluxType_) {
1199 case rnemdKE :
1200 kineticExchange_ += kineticTarget_;
1201 break;
1202 case rnemdPx :
1203 case rnemdPy :
1204 case rnemdPz :
1205 momentumExchange_ += momentumTarget_;
1206 break;
1207 default :
1208 break;
1209 }
1210 }
1211 }
1212 if (successfulScale != true) {
1213 sprintf(painCave.errMsg,
1214 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1215 "\tthe constraint equations may not exist or there may be\n"
1216 "\tno selected objects in one or both slabs.\n");
1217 painCave.isFatal = 0;
1218 painCave.severity = OPENMD_INFO;
1219 simError();
1220 failTrialCount_++;
1221 }
1222 }
1223
1224 void RNEMD::doVSS() {
1225 if (!doRNEMD_) return;
1226 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1227 RealType time = currentSnap_->getTime();
1228 Mat3x3d hmat = currentSnap_->getHmat();
1229
1230 seleMan_.setSelectionSet(evaluator_.evaluate());
1231
1232 int selei;
1233 StuntDouble* sd;
1234 int idx;
1235
1236 vector<StuntDouble*> hotBin, coldBin;
1237
1238 Vector3d Ph(V3Zero);
1239 RealType Mh = 0.0;
1240 RealType Kh = 0.0;
1241 Vector3d Pc(V3Zero);
1242 RealType Mc = 0.0;
1243 RealType Kc = 0.0;
1244
1245
1246 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1247 sd = seleMan_.nextSelected(selei)) {
1248
1249 idx = sd->getLocalIndex();
1250
1251 Vector3d pos = sd->getPos();
1252
1253 // wrap the stuntdouble's position back into the box:
1254
1255 if (usePeriodicBoundaryConditions_)
1256 currentSnap_->wrapVector(pos);
1257
1258 // which bin is this stuntdouble in?
1259 bool inA = inSlabA(pos);
1260 bool inB = inSlabB(pos);
1261
1262 if (inA || inB) {
1263
1264 RealType mass = sd->getMass();
1265 Vector3d vel = sd->getVel();
1266
1267 if (inA) {
1268 hotBin.push_back(sd);
1269 //std::cerr << "before, velocity = " << vel << endl;
1270 Ph += mass * vel;
1271 //std::cerr << "after, velocity = " << vel << endl;
1272 Mh += mass;
1273 Kh += mass * vel.lengthSquare();
1274 if (rnemdFluxType_ == rnemdFullKE) {
1275 if (sd->isDirectional()) {
1276 Vector3d angMom = sd->getJ();
1277 Mat3x3d I = sd->getI();
1278 if (sd->isLinear()) {
1279 int i = sd->linearAxis();
1280 int j = (i + 1) % 3;
1281 int k = (i + 2) % 3;
1282 Kh += angMom[j] * angMom[j] / I(j, j) +
1283 angMom[k] * angMom[k] / I(k, k);
1284 } else {
1285 Kh += angMom[0] * angMom[0] / I(0, 0) +
1286 angMom[1] * angMom[1] / I(1, 1) +
1287 angMom[2] * angMom[2] / I(2, 2);
1288 }
1289 }
1290 }
1291 } else { //midBin_
1292 coldBin.push_back(sd);
1293 Pc += mass * vel;
1294 Mc += mass;
1295 Kc += mass * vel.lengthSquare();
1296 if (rnemdFluxType_ == rnemdFullKE) {
1297 if (sd->isDirectional()) {
1298 Vector3d angMom = sd->getJ();
1299 Mat3x3d I = sd->getI();
1300 if (sd->isLinear()) {
1301 int i = sd->linearAxis();
1302 int j = (i + 1) % 3;
1303 int k = (i + 2) % 3;
1304 Kc += angMom[j] * angMom[j] / I(j, j) +
1305 angMom[k] * angMom[k] / I(k, k);
1306 } else {
1307 Kc += angMom[0] * angMom[0] / I(0, 0) +
1308 angMom[1] * angMom[1] / I(1, 1) +
1309 angMom[2] * angMom[2] / I(2, 2);
1310 }
1311 }
1312 }
1313 }
1314 }
1315 }
1316
1317 Kh *= 0.5;
1318 Kc *= 0.5;
1319
1320 // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1321 // << "\tKc= " << Kc << endl;
1322 // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1323
1324 #ifdef IS_MPI
1325 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1326 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1327 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1328 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1329 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1330 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1331 #endif
1332
1333 bool successfulExchange = false;
1334 if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1335 Vector3d vc = Pc / Mc;
1336 Vector3d ac = -momentumTarget_ / Mc + vc;
1337 Vector3d acrec = -momentumTarget_ / Mc;
1338 RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1339 if (cNumerator > 0.0) {
1340 RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1341 if (cDenominator > 0.0) {
1342 RealType c = sqrt(cNumerator / cDenominator);
1343 if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1344 Vector3d vh = Ph / Mh;
1345 Vector3d ah = momentumTarget_ / Mh + vh;
1346 Vector3d ahrec = momentumTarget_ / Mh;
1347 RealType hNumerator = Kh + kineticTarget_
1348 - 0.5 * Mh * ah.lengthSquare();
1349 if (hNumerator > 0.0) {
1350 RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1351 if (hDenominator > 0.0) {
1352 RealType h = sqrt(hNumerator / hDenominator);
1353 if ((h > 0.9) && (h < 1.1)) {
1354 // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1355 // std::cerr << "hot slab scaling coefficient: " << h << "\n";
1356 vector<StuntDouble*>::iterator sdi;
1357 Vector3d vel;
1358 for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1359 //vel = (*sdi)->getVel();
1360 vel = ((*sdi)->getVel() - vc) * c + ac;
1361 (*sdi)->setVel(vel);
1362 if (rnemdFluxType_ == rnemdFullKE) {
1363 if ((*sdi)->isDirectional()) {
1364 Vector3d angMom = (*sdi)->getJ() * c;
1365 (*sdi)->setJ(angMom);
1366 }
1367 }
1368 }
1369 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1370 //vel = (*sdi)->getVel();
1371 vel = ((*sdi)->getVel() - vh) * h + ah;
1372 (*sdi)->setVel(vel);
1373 if (rnemdFluxType_ == rnemdFullKE) {
1374 if ((*sdi)->isDirectional()) {
1375 Vector3d angMom = (*sdi)->getJ() * h;
1376 (*sdi)->setJ(angMom);
1377 }
1378 }
1379 }
1380 successfulExchange = true;
1381 kineticExchange_ += kineticTarget_;
1382 momentumExchange_ += momentumTarget_;
1383 }
1384 }
1385 }
1386 }
1387 }
1388 }
1389 }
1390 if (successfulExchange != true) {
1391 sprintf(painCave.errMsg,
1392 "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1393 "\tthe constraint equations may not exist or there may be\n"
1394 "\tno selected objects in one or both slabs.\n");
1395 painCave.isFatal = 0;
1396 painCave.severity = OPENMD_INFO;
1397 simError();
1398 failTrialCount_++;
1399 }
1400 }
1401
1402 void RNEMD::doRNEMD() {
1403 if (!doRNEMD_) return;
1404 trialCount_++;
1405 switch(rnemdMethod_) {
1406 case rnemdSwap:
1407 doSwap();
1408 break;
1409 case rnemdNIVS:
1410 doNIVS();
1411 break;
1412 case rnemdVSS:
1413 doVSS();
1414 break;
1415 case rnemdUnkownMethod:
1416 default :
1417 break;
1418 }
1419 }
1420
1421 void RNEMD::collectData() {
1422 if (!doRNEMD_) return;
1423 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1424 Mat3x3d hmat = currentSnap_->getHmat();
1425
1426 areaAccumulator_->add(currentSnap_->getXYarea());
1427
1428 seleMan_.setSelectionSet(evaluator_.evaluate());
1429
1430 int selei;
1431 StuntDouble* sd;
1432 int idx;
1433
1434 vector<RealType> binMass(nBins_, 0.0);
1435 vector<RealType> binPx(nBins_, 0.0);
1436 vector<RealType> binPy(nBins_, 0.0);
1437 vector<RealType> binPz(nBins_, 0.0);
1438 vector<RealType> binKE(nBins_, 0.0);
1439 vector<int> binDOF(nBins_, 0);
1440 vector<int> binCount(nBins_, 0);
1441
1442 // alternative approach, track all molecules instead of only those
1443 // selected for scaling/swapping:
1444 /*
1445 SimInfo::MoleculeIterator miter;
1446 vector<StuntDouble*>::iterator iiter;
1447 Molecule* mol;
1448 StuntDouble* sd;
1449 for (mol = info_->beginMolecule(miter); mol != NULL;
1450 mol = info_->nextMolecule(miter))
1451 sd is essentially sd
1452 for (sd = mol->beginIntegrableObject(iiter);
1453 sd != NULL;
1454 sd = mol->nextIntegrableObject(iiter))
1455 */
1456 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1457 sd = seleMan_.nextSelected(selei)) {
1458
1459 idx = sd->getLocalIndex();
1460
1461 Vector3d pos = sd->getPos();
1462
1463 // wrap the stuntdouble's position back into the box:
1464
1465 if (usePeriodicBoundaryConditions_)
1466 currentSnap_->wrapVector(pos);
1467
1468
1469 // which bin is this stuntdouble in?
1470 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1471 // Shift molecules by half a box to have bins start at 0
1472 // The modulo operator is used to wrap the case when we are
1473 // beyond the end of the bins back to the beginning.
1474 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1475
1476 RealType mass = sd->getMass();
1477 Vector3d vel = sd->getVel();
1478
1479 binCount[binNo]++;
1480 binMass[binNo] += mass;
1481 binPx[binNo] += mass*vel.x();
1482 binPy[binNo] += mass*vel.y();
1483 binPz[binNo] += mass*vel.z();
1484 binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1485 binDOF[binNo] += 3;
1486
1487 if (sd->isDirectional()) {
1488 Vector3d angMom = sd->getJ();
1489 Mat3x3d I = sd->getI();
1490 if (sd->isLinear()) {
1491 int i = sd->linearAxis();
1492 int j = (i + 1) % 3;
1493 int k = (i + 2) % 3;
1494 binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1495 angMom[k] * angMom[k] / I(k, k));
1496 binDOF[binNo] += 2;
1497 } else {
1498 binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1499 angMom[1] * angMom[1] / I(1, 1) +
1500 angMom[2] * angMom[2] / I(2, 2));
1501 binDOF[binNo] += 3;
1502 }
1503 }
1504 }
1505
1506
1507 #ifdef IS_MPI
1508 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1509 nBins_, MPI::INT, MPI::SUM);
1510 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1511 nBins_, MPI::REALTYPE, MPI::SUM);
1512 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1513 nBins_, MPI::REALTYPE, MPI::SUM);
1514 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1515 nBins_, MPI::REALTYPE, MPI::SUM);
1516 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1517 nBins_, MPI::REALTYPE, MPI::SUM);
1518 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1519 nBins_, MPI::REALTYPE, MPI::SUM);
1520 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1521 nBins_, MPI::INT, MPI::SUM);
1522 #endif
1523
1524 Vector3d vel;
1525 RealType den;
1526 RealType temp;
1527 RealType z;
1528 for (int i = 0; i < nBins_; i++) {
1529 z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1530 vel.x() = binPx[i] / binMass[i];
1531 vel.y() = binPy[i] / binMass[i];
1532 vel.z() = binPz[i] / binMass[i];
1533
1534 den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1535 / currentSnap_->getVolume() ;
1536
1537 temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1538 PhysicalConstants::energyConvert);
1539
1540 for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1541 if(outputMask_[j]) {
1542 switch(j) {
1543 case Z:
1544 (data_[j].accumulator[i])->add(z);
1545 break;
1546 case TEMPERATURE:
1547 data_[j].accumulator[i]->add(temp);
1548 break;
1549 case VELOCITY:
1550 dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1551 break;
1552 case DENSITY:
1553 data_[j].accumulator[i]->add(den);
1554 break;
1555 }
1556 }
1557 }
1558 }
1559 }
1560
1561 void RNEMD::getStarted() {
1562 if (!doRNEMD_) return;
1563 collectData();
1564 writeOutputFile();
1565 }
1566
1567 void RNEMD::parseOutputFileFormat(const std::string& format) {
1568 if (!doRNEMD_) return;
1569 StringTokenizer tokenizer(format, " ,;|\t\n\r");
1570
1571 while(tokenizer.hasMoreTokens()) {
1572 std::string token(tokenizer.nextToken());
1573 toUpper(token);
1574 OutputMapType::iterator i = outputMap_.find(token);
1575 if (i != outputMap_.end()) {
1576 outputMask_.set(i->second);
1577 } else {
1578 sprintf( painCave.errMsg,
1579 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1580 "\toutputFileFormat keyword.\n", token.c_str() );
1581 painCave.isFatal = 0;
1582 painCave.severity = OPENMD_ERROR;
1583 simError();
1584 }
1585 }
1586 }
1587
1588 void RNEMD::writeOutputFile() {
1589 if (!doRNEMD_) return;
1590
1591 #ifdef IS_MPI
1592 // If we're the root node, should we print out the results
1593 int worldRank = MPI::COMM_WORLD.Get_rank();
1594 if (worldRank == 0) {
1595 #endif
1596 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1597
1598 if( !rnemdFile_ ){
1599 sprintf( painCave.errMsg,
1600 "Could not open \"%s\" for RNEMD output.\n",
1601 rnemdFileName_.c_str());
1602 painCave.isFatal = 1;
1603 simError();
1604 }
1605
1606 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1607
1608 RealType time = currentSnap_->getTime();
1609 RealType avgArea;
1610 areaAccumulator_->getAverage(avgArea);
1611 RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1612 / PhysicalConstants::energyConvert;
1613 Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);
1614
1615 rnemdFile_ << "#######################################################\n";
1616 rnemdFile_ << "# RNEMD {\n";
1617
1618 map<string, RNEMDMethod>::iterator mi;
1619 for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1620 if ( (*mi).second == rnemdMethod_)
1621 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
1622 }
1623 map<string, RNEMDFluxType>::iterator fi;
1624 for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1625 if ( (*fi).second == rnemdFluxType_)
1626 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
1627 }
1628
1629 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
1630
1631 rnemdFile_ << "# objectSelection = \""
1632 << rnemdObjectSelection_ << "\";\n";
1633 rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n";
1634 rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n";
1635 rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n";
1636 rnemdFile_ << "# }\n";
1637 rnemdFile_ << "#######################################################\n";
1638 rnemdFile_ << "# RNEMD report:\n";
1639 rnemdFile_ << "# running time = " << time << " fs\n";
1640 rnemdFile_ << "# target flux:\n";
1641 rnemdFile_ << "# kinetic = "
1642 << kineticFlux_ / PhysicalConstants::energyConvert
1643 << " (kcal/mol/A^2/fs)\n";
1644 rnemdFile_ << "# momentum = " << momentumFluxVector_
1645 << " (amu/A/fs^2)\n";
1646 rnemdFile_ << "# target one-time exchanges:\n";
1647 rnemdFile_ << "# kinetic = "
1648 << kineticTarget_ / PhysicalConstants::energyConvert
1649 << " (kcal/mol)\n";
1650 rnemdFile_ << "# momentum = " << momentumTarget_
1651 << " (amu*A/fs)\n";
1652 rnemdFile_ << "# actual exchange totals:\n";
1653 rnemdFile_ << "# kinetic = "
1654 << kineticExchange_ / PhysicalConstants::energyConvert
1655 << " (kcal/mol)\n";
1656 rnemdFile_ << "# momentum = " << momentumExchange_
1657 << " (amu*A/fs)\n";
1658 rnemdFile_ << "# actual flux:\n";
1659 rnemdFile_ << "# kinetic = " << Jz
1660 << " (kcal/mol/A^2/fs)\n";
1661 rnemdFile_ << "# momentum = " << JzP
1662 << " (amu/A/fs^2)\n";
1663 rnemdFile_ << "# exchange statistics:\n";
1664 rnemdFile_ << "# attempted = " << trialCount_ << "\n";
1665 rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
1666 if (rnemdMethod_ == rnemdNIVS) {
1667 rnemdFile_ << "# NIVS root-check errors = "
1668 << failRootCount_ << "\n";
1669 }
1670 rnemdFile_ << "#######################################################\n";
1671
1672
1673
1674 //write title
1675 rnemdFile_ << "#";
1676 for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1677 if (outputMask_[i]) {
1678 rnemdFile_ << "\t" << data_[i].title <<
1679 "(" << data_[i].units << ")";
1680 // add some extra tabs for column alignment
1681 if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1682 }
1683 }
1684 rnemdFile_ << std::endl;
1685
1686 rnemdFile_.precision(8);
1687
1688 for (int j = 0; j < nBins_; j++) {
1689
1690 for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1691 if (outputMask_[i]) {
1692 if (data_[i].dataType == "RealType")
1693 writeReal(i,j);
1694 else if (data_[i].dataType == "Vector3d")
1695 writeVector(i,j);
1696 else {
1697 sprintf( painCave.errMsg,
1698 "RNEMD found an unknown data type for: %s ",
1699 data_[i].title.c_str());
1700 painCave.isFatal = 1;
1701 simError();
1702 }
1703 }
1704 }
1705 rnemdFile_ << std::endl;
1706
1707 }
1708
1709 rnemdFile_ << "#######################################################\n";
1710 rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1711 rnemdFile_ << "#######################################################\n";
1712
1713
1714 for (int j = 0; j < nBins_; j++) {
1715 rnemdFile_ << "#";
1716 for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1717 if (outputMask_[i]) {
1718 if (data_[i].dataType == "RealType")
1719 writeRealStdDev(i,j);
1720 else if (data_[i].dataType == "Vector3d")
1721 writeVectorStdDev(i,j);
1722 else {
1723 sprintf( painCave.errMsg,
1724 "RNEMD found an unknown data type for: %s ",
1725 data_[i].title.c_str());
1726 painCave.isFatal = 1;
1727 simError();
1728 }
1729 }
1730 }
1731 rnemdFile_ << std::endl;
1732
1733 }
1734
1735 rnemdFile_.flush();
1736 rnemdFile_.close();
1737
1738 #ifdef IS_MPI
1739 }
1740 #endif
1741
1742 }
1743
1744 void RNEMD::writeReal(int index, unsigned int bin) {
1745 if (!doRNEMD_) return;
1746 assert(index >=0 && index < ENDINDEX);
1747 assert(bin < nBins_);
1748 RealType s;
1749
1750 data_[index].accumulator[bin]->getAverage(s);
1751
1752 if (! isinf(s) && ! isnan(s)) {
1753 rnemdFile_ << "\t" << s;
1754 } else{
1755 sprintf( painCave.errMsg,
1756 "RNEMD detected a numerical error writing: %s for bin %d",
1757 data_[index].title.c_str(), bin);
1758 painCave.isFatal = 1;
1759 simError();
1760 }
1761 }
1762
1763 void RNEMD::writeVector(int index, unsigned int bin) {
1764 if (!doRNEMD_) return;
1765 assert(index >=0 && index < ENDINDEX);
1766 assert(bin < nBins_);
1767 Vector3d s;
1768 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1769 if (isinf(s[0]) || isnan(s[0]) ||
1770 isinf(s[1]) || isnan(s[1]) ||
1771 isinf(s[2]) || isnan(s[2]) ) {
1772 sprintf( painCave.errMsg,
1773 "RNEMD detected a numerical error writing: %s for bin %d",
1774 data_[index].title.c_str(), bin);
1775 painCave.isFatal = 1;
1776 simError();
1777 } else {
1778 rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1779 }
1780 }
1781
1782 void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1783 if (!doRNEMD_) return;
1784 assert(index >=0 && index < ENDINDEX);
1785 assert(bin < nBins_);
1786 RealType s;
1787
1788 data_[index].accumulator[bin]->getStdDev(s);
1789
1790 if (! isinf(s) && ! isnan(s)) {
1791 rnemdFile_ << "\t" << s;
1792 } else{
1793 sprintf( painCave.errMsg,
1794 "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1795 data_[index].title.c_str(), bin);
1796 painCave.isFatal = 1;
1797 simError();
1798 }
1799 }
1800
1801 void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1802 if (!doRNEMD_) return;
1803 assert(index >=0 && index < ENDINDEX);
1804 assert(bin < nBins_);
1805 Vector3d s;
1806 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1807 if (isinf(s[0]) || isnan(s[0]) ||
1808 isinf(s[1]) || isnan(s[1]) ||
1809 isinf(s[2]) || isnan(s[2]) ) {
1810 sprintf( painCave.errMsg,
1811 "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1812 data_[index].title.c_str(), bin);
1813 painCave.isFatal = 1;
1814 simError();
1815 } else {
1816 rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1817 }
1818 }
1819 }
1820

Properties

Name Value
svn:keywords Author Id Revision Date