ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 5 months ago) by gezelter
File size: 77435 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41 gezelter 1938 #ifdef IS_MPI
42     #include <mpi.h>
43     #endif
44 gezelter 1329
45 skuang 1368 #include <cmath>
46 gezelter 1879 #include <sstream>
47     #include <string>
48    
49 gezelter 1731 #include "rnemd/RNEMD.hpp"
50 gezelter 1332 #include "math/Vector3.hpp"
51 gezelter 1722 #include "math/Vector.hpp"
52 gezelter 1329 #include "math/SquareMatrix3.hpp"
53 skuang 1368 #include "math/Polynomial.hpp"
54 gezelter 1329 #include "primitives/Molecule.hpp"
55     #include "primitives/StuntDouble.hpp"
56 gezelter 1390 #include "utils/PhysicalConstants.hpp"
57 gezelter 1332 #include "utils/Tuple.hpp"
58 gezelter 1879 #include "brains/Thermo.hpp"
59     #include "math/ConvexHull.hpp"
60 gezelter 1329
61 gezelter 1789 #ifdef _MSC_VER
62     #define isnan(x) _isnan((x))
63     #define isinf(x) (!_finite(x) && !_isnan(x))
64     #endif
65    
66 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
67 gezelter 1329
68 gezelter 1629 using namespace std;
69 gezelter 1390 namespace OpenMD {
70 gezelter 1329
71 gezelter 2071 RNEMD::RNEMD(SimInfo* info) : info_(info),
72     evaluator_(info_), seleMan_(info_),
73     evaluatorA_(info_), seleManA_(info_),
74     evaluatorB_(info_), seleManB_(info_),
75     commonA_(info_), commonB_(info_),
76     usePeriodicBoundaryConditions_(info_->getSimParams()->getUsePeriodicBoundaryConditions()),
77     hasDividingArea_(false),
78     hasData_(false) {
79 skuang 1368
80 gezelter 1773 trialCount_ = 0;
81 skuang 1368 failTrialCount_ = 0;
82     failRootCount_ = 0;
83    
84 gezelter 1879 Globals* simParams = info->getSimParams();
85 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
86 skuang 1330
87 gezelter 1776 doRNEMD_ = rnemdParams->getUseRNEMD();
88     if (!doRNEMD_) return;
89    
90 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
91     stringToMethod_["NIVS"] = rnemdNIVS;
92     stringToMethod_["VSS"] = rnemdVSS;
93 skuang 1330
94 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
95     stringToFluxType_["Px"] = rnemdPx;
96     stringToFluxType_["Py"] = rnemdPy;
97     stringToFluxType_["Pz"] = rnemdPz;
98 gezelter 1777 stringToFluxType_["Pvector"] = rnemdPvector;
99 gezelter 1879 stringToFluxType_["Lx"] = rnemdLx;
100     stringToFluxType_["Ly"] = rnemdLy;
101     stringToFluxType_["Lz"] = rnemdLz;
102     stringToFluxType_["Lvector"] = rnemdLvector;
103 gezelter 1773 stringToFluxType_["KE+Px"] = rnemdKePx;
104     stringToFluxType_["KE+Py"] = rnemdKePy;
105     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
106 gezelter 1879 stringToFluxType_["KE+Lx"] = rnemdKeLx;
107     stringToFluxType_["KE+Ly"] = rnemdKeLy;
108     stringToFluxType_["KE+Lz"] = rnemdKeLz;
109     stringToFluxType_["KE+Lvector"] = rnemdKeLvector;
110 gezelter 1773
111 jmarr 1728 runTime_ = simParams->getRunTime();
112     statusTime_ = simParams->getStatusTime();
113    
114 gezelter 1773 const string methStr = rnemdParams->getMethod();
115     bool hasFluxType = rnemdParams->haveFluxType();
116    
117 gezelter 1879 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
118    
119 gezelter 1773 string fluxStr;
120     if (hasFluxType) {
121     fluxStr = rnemdParams->getFluxType();
122     } else {
123     sprintf(painCave.errMsg,
124     "RNEMD: No fluxType was set in the md file. This parameter,\n"
125     "\twhich must be one of the following values:\n"
126 gezelter 1879 "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
127     "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
128 gezelter 1777 "\tmust be set to use RNEMD\n");
129 gezelter 1773 painCave.isFatal = 1;
130     painCave.severity = OPENMD_ERROR;
131     simError();
132     }
133    
134     bool hasKineticFlux = rnemdParams->haveKineticFlux();
135     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
136     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
137 gezelter 1879 bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
138     bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
139     hasSelectionA_ = rnemdParams->haveSelectionA();
140     hasSelectionB_ = rnemdParams->haveSelectionB();
141 gezelter 1773 bool hasSlabWidth = rnemdParams->haveSlabWidth();
142     bool hasSlabACenter = rnemdParams->haveSlabACenter();
143     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
144 gezelter 1879 bool hasSphereARadius = rnemdParams->haveSphereARadius();
145     hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
146     bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
147 gezelter 1773 bool hasOutputFileName = rnemdParams->haveOutputFileName();
148     bool hasOutputFields = rnemdParams->haveOutputFields();
149    
150     map<string, RNEMDMethod>::iterator i;
151     i = stringToMethod_.find(methStr);
152     if (i != stringToMethod_.end())
153     rnemdMethod_ = i->second;
154     else {
155     sprintf(painCave.errMsg,
156     "RNEMD: The current method,\n"
157     "\t\t%s is not one of the recognized\n"
158     "\texchange methods: Swap, NIVS, or VSS\n",
159     methStr.c_str());
160     painCave.isFatal = 1;
161     painCave.severity = OPENMD_ERROR;
162     simError();
163     }
164    
165     map<string, RNEMDFluxType>::iterator j;
166     j = stringToFluxType_.find(fluxStr);
167     if (j != stringToFluxType_.end())
168     rnemdFluxType_ = j->second;
169     else {
170     sprintf(painCave.errMsg,
171     "RNEMD: The current fluxType,\n"
172     "\t\t%s\n"
173     "\tis not one of the recognized flux types.\n",
174     fluxStr.c_str());
175     painCave.isFatal = 1;
176     painCave.severity = OPENMD_ERROR;
177     simError();
178     }
179    
180     bool methodFluxMismatch = false;
181     bool hasCorrectFlux = false;
182     switch(rnemdMethod_) {
183     case rnemdSwap:
184     switch (rnemdFluxType_) {
185     case rnemdKE:
186     hasCorrectFlux = hasKineticFlux;
187     break;
188     case rnemdPx:
189     case rnemdPy:
190     case rnemdPz:
191     hasCorrectFlux = hasMomentumFlux;
192     break;
193     default :
194     methodFluxMismatch = true;
195     break;
196     }
197     break;
198     case rnemdNIVS:
199     switch (rnemdFluxType_) {
200     case rnemdKE:
201     case rnemdRotKE:
202     case rnemdFullKE:
203     hasCorrectFlux = hasKineticFlux;
204     break;
205     case rnemdPx:
206     case rnemdPy:
207     case rnemdPz:
208     hasCorrectFlux = hasMomentumFlux;
209     break;
210     case rnemdKePx:
211     case rnemdKePy:
212     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
213     break;
214     default:
215     methodFluxMismatch = true;
216     break;
217     }
218     break;
219     case rnemdVSS:
220     switch (rnemdFluxType_) {
221     case rnemdKE:
222     case rnemdRotKE:
223     case rnemdFullKE:
224     hasCorrectFlux = hasKineticFlux;
225     break;
226     case rnemdPx:
227     case rnemdPy:
228     case rnemdPz:
229     hasCorrectFlux = hasMomentumFlux;
230     break;
231 gezelter 1879 case rnemdLx:
232     case rnemdLy:
233     case rnemdLz:
234     hasCorrectFlux = hasAngularMomentumFlux;
235     break;
236 gezelter 1773 case rnemdPvector:
237     hasCorrectFlux = hasMomentumFluxVector;
238 gezelter 1777 break;
239 gezelter 1879 case rnemdLvector:
240     hasCorrectFlux = hasAngularMomentumFluxVector;
241     break;
242 gezelter 1773 case rnemdKePx:
243     case rnemdKePy:
244     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
245     break;
246 gezelter 1879 case rnemdKeLx:
247     case rnemdKeLy:
248     case rnemdKeLz:
249     hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
250     break;
251 gezelter 1773 case rnemdKePvector:
252     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
253     break;
254 gezelter 1879 case rnemdKeLvector:
255     hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
256     break;
257 gezelter 1773 default:
258     methodFluxMismatch = true;
259     break;
260     }
261     default:
262     break;
263     }
264    
265     if (methodFluxMismatch) {
266     sprintf(painCave.errMsg,
267     "RNEMD: The current method,\n"
268     "\t\t%s\n"
269     "\tcannot be used with the current flux type, %s\n",
270     methStr.c_str(), fluxStr.c_str());
271     painCave.isFatal = 1;
272     painCave.severity = OPENMD_ERROR;
273     simError();
274     }
275     if (!hasCorrectFlux) {
276     sprintf(painCave.errMsg,
277 gezelter 1777 "RNEMD: The current method, %s, and flux type, %s,\n"
278 gezelter 1773 "\tdid not have the correct flux value specified. Options\n"
279 gezelter 1879 "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
280     "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
281 gezelter 1773 methStr.c_str(), fluxStr.c_str());
282     painCave.isFatal = 1;
283     painCave.severity = OPENMD_ERROR;
284     simError();
285     }
286    
287     if (hasKineticFlux) {
288 gezelter 1777 // convert the kcal / mol / Angstroms^2 / fs values in the md file
289     // into amu / fs^3:
290     kineticFlux_ = rnemdParams->getKineticFlux()
291     * PhysicalConstants::energyConvert;
292 gezelter 1773 } else {
293     kineticFlux_ = 0.0;
294     }
295     if (hasMomentumFluxVector) {
296 gezelter 2026 std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
297     if (mf.size() != 3) {
298     sprintf(painCave.errMsg,
299     "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
300     "\tthere should be 3 parameters, but %lu were specified.\n",
301     mf.size());
302     painCave.isFatal = 1;
303     simError();
304     }
305     momentumFluxVector_.x() = mf[0];
306     momentumFluxVector_.y() = mf[1];
307     momentumFluxVector_.z() = mf[2];
308 gezelter 1773 } else {
309     momentumFluxVector_ = V3Zero;
310     if (hasMomentumFlux) {
311     RealType momentumFlux = rnemdParams->getMomentumFlux();
312     switch (rnemdFluxType_) {
313     case rnemdPx:
314     momentumFluxVector_.x() = momentumFlux;
315     break;
316     case rnemdPy:
317     momentumFluxVector_.y() = momentumFlux;
318     break;
319     case rnemdPz:
320     momentumFluxVector_.z() = momentumFlux;
321     break;
322     case rnemdKePx:
323     momentumFluxVector_.x() = momentumFlux;
324     break;
325     case rnemdKePy:
326     momentumFluxVector_.y() = momentumFlux;
327     break;
328     default:
329     break;
330     }
331 gezelter 1879 }
332 gezelter 2027 }
333     if (hasAngularMomentumFluxVector) {
334     std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
335     if (amf.size() != 3) {
336     sprintf(painCave.errMsg,
337     "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
338     "\tthere should be 3 parameters, but %lu were specified.\n",
339     amf.size());
340     painCave.isFatal = 1;
341     simError();
342 gezelter 1879 }
343 gezelter 2027 angularMomentumFluxVector_.x() = amf[0];
344     angularMomentumFluxVector_.y() = amf[1];
345     angularMomentumFluxVector_.z() = amf[2];
346     } else {
347     angularMomentumFluxVector_ = V3Zero;
348     if (hasAngularMomentumFlux) {
349     RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
350 gezelter 1879 switch (rnemdFluxType_) {
351 gezelter 2027 case rnemdLx:
352     angularMomentumFluxVector_.x() = angularMomentumFlux;
353 gezelter 1879 break;
354 gezelter 2027 case rnemdLy:
355     angularMomentumFluxVector_.y() = angularMomentumFlux;
356 gezelter 1879 break;
357     case rnemdLz:
358 gezelter 2027 angularMomentumFluxVector_.z() = angularMomentumFlux;
359 gezelter 1879 break;
360     case rnemdKeLx:
361 gezelter 2027 angularMomentumFluxVector_.x() = angularMomentumFlux;
362     break;
363 gezelter 1879 case rnemdKeLy:
364 gezelter 2027 angularMomentumFluxVector_.y() = angularMomentumFlux;
365     break;
366 gezelter 1879 case rnemdKeLz:
367 gezelter 2027 angularMomentumFluxVector_.z() = angularMomentumFlux;
368 gezelter 1879 break;
369     default:
370     break;
371     }
372 gezelter 2027 }
373     }
374    
375     if (hasCoordinateOrigin) {
376     std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
377     if (co.size() != 3) {
378     sprintf(painCave.errMsg,
379     "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
380     "\tthere should be 3 parameters, but %lu were specified.\n",
381     co.size());
382     painCave.isFatal = 1;
383     simError();
384 gezelter 1629 }
385 gezelter 2027 coordinateOrigin_.x() = co[0];
386     coordinateOrigin_.y() = co[1];
387     coordinateOrigin_.z() = co[2];
388     } else {
389     coordinateOrigin_ = V3Zero;
390     }
391 gezelter 1879
392 gezelter 2027 // do some sanity checking
393    
394     int selectionCount = seleMan_.getSelectionCount();
395     int nIntegrable = info->getNGlobalIntegrableObjects();
396     if (selectionCount > nIntegrable) {
397     sprintf(painCave.errMsg,
398     "RNEMD: The current objectSelection,\n"
399     "\t\t%s\n"
400     "\thas resulted in %d selected objects. However,\n"
401     "\tthe total number of integrable objects in the system\n"
402     "\tis only %d. This is almost certainly not what you want\n"
403     "\tto do. A likely cause of this is forgetting the _RB_0\n"
404     "\tselector in the selection script!\n",
405     rnemdObjectSelection_.c_str(),
406     selectionCount, nIntegrable);
407     painCave.isFatal = 0;
408     painCave.severity = OPENMD_WARNING;
409     simError();
410     }
411    
412     areaAccumulator_ = new Accumulator();
413    
414     nBins_ = rnemdParams->getOutputBins();
415     binWidth_ = rnemdParams->getOutputBinWidth();
416    
417     data_.resize(RNEMD::ENDINDEX);
418     OutputData z;
419     z.units = "Angstroms";
420     z.title = "Z";
421     z.dataType = "RealType";
422     z.accumulator.reserve(nBins_);
423     for (int i = 0; i < nBins_; i++)
424     z.accumulator.push_back( new Accumulator() );
425     data_[Z] = z;
426     outputMap_["Z"] = Z;
427    
428     OutputData r;
429     r.units = "Angstroms";
430     r.title = "R";
431     r.dataType = "RealType";
432     r.accumulator.reserve(nBins_);
433     for (int i = 0; i < nBins_; i++)
434     r.accumulator.push_back( new Accumulator() );
435     data_[R] = r;
436     outputMap_["R"] = R;
437    
438     OutputData temperature;
439     temperature.units = "K";
440     temperature.title = "Temperature";
441     temperature.dataType = "RealType";
442     temperature.accumulator.reserve(nBins_);
443     for (int i = 0; i < nBins_; i++)
444     temperature.accumulator.push_back( new Accumulator() );
445     data_[TEMPERATURE] = temperature;
446     outputMap_["TEMPERATURE"] = TEMPERATURE;
447    
448     OutputData velocity;
449     velocity.units = "angstroms/fs";
450     velocity.title = "Velocity";
451     velocity.dataType = "Vector3d";
452     velocity.accumulator.reserve(nBins_);
453     for (int i = 0; i < nBins_; i++)
454     velocity.accumulator.push_back( new VectorAccumulator() );
455     data_[VELOCITY] = velocity;
456     outputMap_["VELOCITY"] = VELOCITY;
457    
458     OutputData angularVelocity;
459     angularVelocity.units = "angstroms^2/fs";
460     angularVelocity.title = "AngularVelocity";
461     angularVelocity.dataType = "Vector3d";
462     angularVelocity.accumulator.reserve(nBins_);
463     for (int i = 0; i < nBins_; i++)
464     angularVelocity.accumulator.push_back( new VectorAccumulator() );
465     data_[ANGULARVELOCITY] = angularVelocity;
466     outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
467    
468     OutputData density;
469     density.units = "g cm^-3";
470     density.title = "Density";
471     density.dataType = "RealType";
472     density.accumulator.reserve(nBins_);
473     for (int i = 0; i < nBins_; i++)
474     density.accumulator.push_back( new Accumulator() );
475     data_[DENSITY] = density;
476     outputMap_["DENSITY"] = DENSITY;
477    
478     if (hasOutputFields) {
479     parseOutputFileFormat(rnemdParams->getOutputFields());
480     } else {
481     if (usePeriodicBoundaryConditions_)
482     outputMask_.set(Z);
483     else
484     outputMask_.set(R);
485     switch (rnemdFluxType_) {
486     case rnemdKE:
487     case rnemdRotKE:
488     case rnemdFullKE:
489     outputMask_.set(TEMPERATURE);
490     break;
491     case rnemdPx:
492     case rnemdPy:
493     outputMask_.set(VELOCITY);
494     break;
495     case rnemdPz:
496     case rnemdPvector:
497     outputMask_.set(VELOCITY);
498     outputMask_.set(DENSITY);
499     break;
500     case rnemdLx:
501     case rnemdLy:
502     case rnemdLz:
503     case rnemdLvector:
504     outputMask_.set(ANGULARVELOCITY);
505     break;
506     case rnemdKeLx:
507     case rnemdKeLy:
508     case rnemdKeLz:
509     case rnemdKeLvector:
510     outputMask_.set(TEMPERATURE);
511     outputMask_.set(ANGULARVELOCITY);
512     break;
513     case rnemdKePx:
514     case rnemdKePy:
515     outputMask_.set(TEMPERATURE);
516     outputMask_.set(VELOCITY);
517     break;
518     case rnemdKePvector:
519     outputMask_.set(TEMPERATURE);
520     outputMask_.set(VELOCITY);
521     outputMask_.set(DENSITY);
522     break;
523     default:
524     break;
525     }
526     }
527    
528     if (hasOutputFileName) {
529     rnemdFileName_ = rnemdParams->getOutputFileName();
530     } else {
531     rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
532     }
533    
534     exchangeTime_ = rnemdParams->getExchangeTime();
535    
536     Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
537     // total exchange sums are zeroed out at the beginning:
538    
539     kineticExchange_ = 0.0;
540     momentumExchange_ = V3Zero;
541     angularMomentumExchange_ = V3Zero;
542    
543     std::ostringstream selectionAstream;
544     std::ostringstream selectionBstream;
545    
546     if (hasSelectionA_) {
547     selectionA_ = rnemdParams->getSelectionA();
548     } else {
549     if (usePeriodicBoundaryConditions_) {
550     Mat3x3d hmat = currentSnap_->getHmat();
551 gezelter 1879
552 gezelter 2027 if (hasSlabWidth)
553     slabWidth_ = rnemdParams->getSlabWidth();
554     else
555     slabWidth_ = hmat(2,2) / 10.0;
556 gezelter 1879
557 gezelter 2027 if (hasSlabACenter)
558     slabACenter_ = rnemdParams->getSlabACenter();
559     else
560     slabACenter_ = 0.0;
561 gezelter 1879
562 gezelter 2027 selectionAstream << "select wrappedz > "
563     << slabACenter_ - 0.5*slabWidth_
564     << " && wrappedz < "
565     << slabACenter_ + 0.5*slabWidth_;
566     selectionA_ = selectionAstream.str();
567     } else {
568     if (hasSphereARadius)
569     sphereARadius_ = rnemdParams->getSphereARadius();
570     else {
571     // use an initial guess to the size of the inner slab to be 1/10 the
572     // radius of an approximately spherical hull:
573     Thermo thermo(info);
574     RealType hVol = thermo.getHullVolume();
575     sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
576 gezelter 1879 }
577 gezelter 2027 selectionAstream << "select r < " << sphereARadius_;
578     selectionA_ = selectionAstream.str();
579 gezelter 1879 }
580 gezelter 2027 }
581 gezelter 1879
582 gezelter 2027 if (hasSelectionB_) {
583     selectionB_ = rnemdParams->getSelectionB();
584    
585     } else {
586     if (usePeriodicBoundaryConditions_) {
587     Mat3x3d hmat = currentSnap_->getHmat();
588 gezelter 1879
589 gezelter 2027 if (hasSlabWidth)
590     slabWidth_ = rnemdParams->getSlabWidth();
591     else
592     slabWidth_ = hmat(2,2) / 10.0;
593 gezelter 1879
594 gezelter 2027 if (hasSlabBCenter)
595     slabBCenter_ = rnemdParams->getSlabBCenter();
596     else
597     slabBCenter_ = hmat(2,2) / 2.0;
598 gezelter 1879
599 gezelter 2027 selectionBstream << "select wrappedz > "
600     << slabBCenter_ - 0.5*slabWidth_
601     << " && wrappedz < "
602     << slabBCenter_ + 0.5*slabWidth_;
603     selectionB_ = selectionBstream.str();
604     } else {
605     if (hasSphereBRadius_) {
606     sphereBRadius_ = rnemdParams->getSphereBRadius();
607     selectionBstream << "select r > " << sphereBRadius_;
608 gezelter 1879 selectionB_ = selectionBstream.str();
609     } else {
610 gezelter 2027 selectionB_ = "select hull";
611     BisHull_ = true;
612     hasSelectionB_ = true;
613 gezelter 1879 }
614     }
615     }
616 gezelter 2027
617    
618 gezelter 1879 // object evaluator:
619     evaluator_.loadScriptString(rnemdObjectSelection_);
620     seleMan_.setSelectionSet(evaluator_.evaluate());
621     evaluatorA_.loadScriptString(selectionA_);
622     evaluatorB_.loadScriptString(selectionB_);
623     seleManA_.setSelectionSet(evaluatorA_.evaluate());
624     seleManB_.setSelectionSet(evaluatorB_.evaluate());
625     commonA_ = seleManA_ & seleMan_;
626     commonB_ = seleManB_ & seleMan_;
627     }
628 gezelter 1773
629    
630 gezelter 1329 RNEMD::~RNEMD() {
631 gezelter 1776 if (!doRNEMD_) return;
632 skuang 1368 #ifdef IS_MPI
633     if (worldRank == 0) {
634     #endif
635 gezelter 1722
636 gezelter 1773 writeOutputFile();
637    
638     rnemdFile_.close();
639 jmarr 1728
640 skuang 1368 #ifdef IS_MPI
641     }
642     #endif
643 gezelter 1879
644     // delete all of the objects we created:
645     delete areaAccumulator_;
646     data_.clear();
647 gezelter 1329 }
648 gezelter 1773
649 gezelter 1879 void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
650     if (!doRNEMD_) return;
651     int selei;
652     int selej;
653 skuang 1330
654 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
655     Mat3x3d hmat = currentSnap_->getHmat();
656    
657 gezelter 1331 StuntDouble* sd;
658    
659 gezelter 2068 RealType min_val(0.0);
660 gezelter 1971 int min_found = 0;
661 gezelter 2068 StuntDouble* min_sd = NULL;
662 skuang 1338
663 gezelter 2068 RealType max_val(0.0);
664 gezelter 1971 int max_found = 0;
665 gezelter 2068 StuntDouble* max_sd = NULL;
666 skuang 1338
667 gezelter 1879 for (sd = seleManA_.beginSelected(selei); sd != NULL;
668     sd = seleManA_.nextSelected(selei)) {
669 gezelter 1332
670 gezelter 1331 Vector3d pos = sd->getPos();
671 gezelter 1879
672 gezelter 1332 // wrap the stuntdouble's position back into the box:
673 gezelter 1879
674 gezelter 1331 if (usePeriodicBoundaryConditions_)
675 gezelter 1332 currentSnap_->wrapVector(pos);
676 gezelter 1879
677     RealType mass = sd->getMass();
678     Vector3d vel = sd->getVel();
679 gezelter 2071 RealType value(0.0);
680 gezelter 1879
681     switch(rnemdFluxType_) {
682     case rnemdKE :
683 gezelter 1332
684 gezelter 1879 value = mass * vel.lengthSquare();
685    
686     if (sd->isDirectional()) {
687     Vector3d angMom = sd->getJ();
688     Mat3x3d I = sd->getI();
689 gezelter 1332
690 gezelter 1879 if (sd->isLinear()) {
691     int i = sd->linearAxis();
692     int j = (i + 1) % 3;
693     int k = (i + 2) % 3;
694     value += angMom[j] * angMom[j] / I(j, j) +
695     angMom[k] * angMom[k] / I(k, k);
696     } else {
697     value += angMom[0]*angMom[0]/I(0, 0)
698     + angMom[1]*angMom[1]/I(1, 1)
699     + angMom[2]*angMom[2]/I(2, 2);
700     }
701     } //angular momenta exchange enabled
702     value *= 0.5;
703     break;
704     case rnemdPx :
705     value = mass * vel[0];
706     break;
707     case rnemdPy :
708     value = mass * vel[1];
709     break;
710     case rnemdPz :
711     value = mass * vel[2];
712     break;
713     default :
714     break;
715     }
716     if (!max_found) {
717     max_val = value;
718     max_sd = sd;
719 gezelter 1971 max_found = 1;
720 gezelter 1879 } else {
721     if (max_val < value) {
722     max_val = value;
723     max_sd = sd;
724 gezelter 1332 }
725 gezelter 1879 }
726     }
727 gezelter 1332
728 gezelter 1879 for (sd = seleManB_.beginSelected(selej); sd != NULL;
729     sd = seleManB_.nextSelected(selej)) {
730    
731     Vector3d pos = sd->getPos();
732    
733     // wrap the stuntdouble's position back into the box:
734    
735     if (usePeriodicBoundaryConditions_)
736     currentSnap_->wrapVector(pos);
737    
738     RealType mass = sd->getMass();
739     Vector3d vel = sd->getVel();
740 gezelter 2071 RealType value(0.0);
741 gezelter 1879
742     switch(rnemdFluxType_) {
743     case rnemdKE :
744    
745     value = mass * vel.lengthSquare();
746    
747     if (sd->isDirectional()) {
748     Vector3d angMom = sd->getJ();
749     Mat3x3d I = sd->getI();
750    
751     if (sd->isLinear()) {
752     int i = sd->linearAxis();
753     int j = (i + 1) % 3;
754     int k = (i + 2) % 3;
755     value += angMom[j] * angMom[j] / I(j, j) +
756     angMom[k] * angMom[k] / I(k, k);
757     } else {
758     value += angMom[0]*angMom[0]/I(0, 0)
759     + angMom[1]*angMom[1]/I(1, 1)
760     + angMom[2]*angMom[2]/I(2, 2);
761     }
762     } //angular momenta exchange enabled
763     value *= 0.5;
764     break;
765     case rnemdPx :
766     value = mass * vel[0];
767     break;
768     case rnemdPy :
769     value = mass * vel[1];
770     break;
771     case rnemdPz :
772     value = mass * vel[2];
773     break;
774     default :
775     break;
776 gezelter 1332 }
777 gezelter 1879
778     if (!min_found) {
779     min_val = value;
780     min_sd = sd;
781 gezelter 1971 min_found = 1;
782 gezelter 1879 } else {
783     if (min_val > value) {
784     min_val = value;
785     min_sd = sd;
786     }
787     }
788 gezelter 1331 }
789 gezelter 1773
790 gezelter 1793 #ifdef IS_MPI
791 gezelter 1969 int worldRank;
792     MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
793    
794     int my_min_found = min_found;
795     int my_max_found = max_found;
796 gezelter 1350
797     // Even if we didn't find a minimum, did someone else?
798 gezelter 1969 MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
799     MPI_COMM_WORLD);
800 gezelter 1350 // Even if we didn't find a maximum, did someone else?
801 gezelter 1969 MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
802     MPI_COMM_WORLD);
803 gezelter 1722 #endif
804    
805     if (max_found && min_found) {
806    
807     #ifdef IS_MPI
808     struct {
809     RealType val;
810     int rank;
811     } max_vals, min_vals;
812 jmarr 1728
813 gezelter 1722 if (my_min_found) {
814 gezelter 1350 min_vals.val = min_val;
815 gezelter 1722 } else {
816 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
817 gezelter 1722 }
818 gezelter 1350 min_vals.rank = worldRank;
819    
820     // Who had the minimum?
821 gezelter 1969 MPI_Allreduce(&min_vals, &min_vals,
822     1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
823 gezelter 1350 min_val = min_vals.val;
824    
825 gezelter 1722 if (my_max_found) {
826 gezelter 1350 max_vals.val = max_val;
827 gezelter 1722 } else {
828 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
829 gezelter 1722 }
830 gezelter 1350 max_vals.rank = worldRank;
831    
832     // Who had the maximum?
833 gezelter 1969 MPI_Allreduce(&max_vals, &max_vals,
834     1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
835 gezelter 1350 max_val = max_vals.val;
836     #endif
837 gezelter 1722
838 gezelter 1629 if (min_val < max_val) {
839 gezelter 1722
840 gezelter 1350 #ifdef IS_MPI
841     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
842     // I have both maximum and minimum, so proceed like a single
843     // processor version:
844     #endif
845 gezelter 1722
846 gezelter 1350 Vector3d min_vel = min_sd->getVel();
847     Vector3d max_vel = max_sd->getVel();
848     RealType temp_vel;
849    
850 gezelter 1773 switch(rnemdFluxType_) {
851     case rnemdKE :
852 gezelter 1350 min_sd->setVel(max_vel);
853     max_sd->setVel(min_vel);
854 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
855 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
856     Vector3d max_angMom = max_sd->getJ();
857     min_sd->setJ(max_angMom);
858     max_sd->setJ(min_angMom);
859 gezelter 1722 }//angular momenta exchange enabled
860     //assumes same rigid body identity
861 gezelter 1350 break;
862     case rnemdPx :
863     temp_vel = min_vel.x();
864     min_vel.x() = max_vel.x();
865     max_vel.x() = temp_vel;
866     min_sd->setVel(min_vel);
867     max_sd->setVel(max_vel);
868     break;
869     case rnemdPy :
870     temp_vel = min_vel.y();
871     min_vel.y() = max_vel.y();
872     max_vel.y() = temp_vel;
873     min_sd->setVel(min_vel);
874     max_sd->setVel(max_vel);
875     break;
876     case rnemdPz :
877     temp_vel = min_vel.z();
878     min_vel.z() = max_vel.z();
879     max_vel.z() = temp_vel;
880     min_sd->setVel(min_vel);
881     max_sd->setVel(max_vel);
882     break;
883     default :
884     break;
885     }
886 gezelter 1722
887 gezelter 1350 #ifdef IS_MPI
888     // the rest of the cases only apply in parallel simulations:
889     } else if (max_vals.rank == worldRank) {
890     // I had the max, but not the minimum
891    
892     Vector3d min_vel;
893     Vector3d max_vel = max_sd->getVel();
894 gezelter 1980 MPI_Status status;
895 skuang 1341
896 gezelter 1350 // point-to-point swap of the velocity vector
897 gezelter 1969 MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
898     min_vals.rank, 0,
899     min_vel.getArrayPointer(), 3, MPI_REALTYPE,
900 gezelter 1980 min_vals.rank, 0, MPI_COMM_WORLD, &status);
901 gezelter 1350
902 gezelter 1773 switch(rnemdFluxType_) {
903     case rnemdKE :
904 gezelter 1350 max_sd->setVel(min_vel);
905 gezelter 1722 //angular momenta exchange enabled
906 gezelter 1350 if (max_sd->isDirectional()) {
907     Vector3d min_angMom;
908     Vector3d max_angMom = max_sd->getJ();
909 gezelter 1629
910 gezelter 1350 // point-to-point swap of the angular momentum vector
911 gezelter 1969 MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
912     MPI_REALTYPE, min_vals.rank, 1,
913     min_angMom.getArrayPointer(), 3,
914     MPI_REALTYPE, min_vals.rank, 1,
915 gezelter 1980 MPI_COMM_WORLD, &status);
916 gezelter 1629
917 gezelter 1350 max_sd->setJ(min_angMom);
918 gezelter 1722 }
919 gezelter 1350 break;
920     case rnemdPx :
921     max_vel.x() = min_vel.x();
922     max_sd->setVel(max_vel);
923     break;
924     case rnemdPy :
925     max_vel.y() = min_vel.y();
926     max_sd->setVel(max_vel);
927     break;
928     case rnemdPz :
929     max_vel.z() = min_vel.z();
930     max_sd->setVel(max_vel);
931     break;
932     default :
933     break;
934 skuang 1341 }
935 gezelter 1350 } else if (min_vals.rank == worldRank) {
936     // I had the minimum but not the maximum:
937    
938     Vector3d max_vel;
939     Vector3d min_vel = min_sd->getVel();
940 gezelter 1980 MPI_Status status;
941 gezelter 1350
942     // point-to-point swap of the velocity vector
943 gezelter 1969 MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
944     max_vals.rank, 0,
945     max_vel.getArrayPointer(), 3, MPI_REALTYPE,
946 gezelter 1980 max_vals.rank, 0, MPI_COMM_WORLD, &status);
947 gezelter 1350
948 gezelter 1773 switch(rnemdFluxType_) {
949     case rnemdKE :
950 gezelter 1350 min_sd->setVel(max_vel);
951 gezelter 1722 //angular momenta exchange enabled
952 gezelter 1350 if (min_sd->isDirectional()) {
953     Vector3d min_angMom = min_sd->getJ();
954     Vector3d max_angMom;
955 gezelter 1629
956 gezelter 1350 // point-to-point swap of the angular momentum vector
957 gezelter 1969 MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
958     MPI_REALTYPE, max_vals.rank, 1,
959     max_angMom.getArrayPointer(), 3,
960     MPI_REALTYPE, max_vals.rank, 1,
961 gezelter 1980 MPI_COMM_WORLD, &status);
962 gezelter 1629
963 gezelter 1350 min_sd->setJ(max_angMom);
964     }
965     break;
966     case rnemdPx :
967     min_vel.x() = max_vel.x();
968     min_sd->setVel(min_vel);
969     break;
970     case rnemdPy :
971     min_vel.y() = max_vel.y();
972     min_sd->setVel(min_vel);
973     break;
974     case rnemdPz :
975     min_vel.z() = max_vel.z();
976     min_sd->setVel(min_vel);
977     break;
978     default :
979     break;
980     }
981     }
982     #endif
983 gezelter 1773
984     switch(rnemdFluxType_) {
985     case rnemdKE:
986     kineticExchange_ += max_val - min_val;
987     break;
988     case rnemdPx:
989     momentumExchange_.x() += max_val - min_val;
990     break;
991     case rnemdPy:
992     momentumExchange_.y() += max_val - min_val;
993     break;
994     case rnemdPz:
995     momentumExchange_.z() += max_val - min_val;
996     break;
997     default:
998     break;
999     }
1000 gezelter 1629 } else {
1001     sprintf(painCave.errMsg,
1002 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
1003 gezelter 1629 painCave.isFatal = 0;
1004     painCave.severity = OPENMD_INFO;
1005     simError();
1006 skuang 1368 failTrialCount_++;
1007 skuang 1338 }
1008     } else {
1009 gezelter 1629 sprintf(painCave.errMsg,
1010 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
1011     "\twas not present in at least one of the two slabs.\n");
1012 gezelter 1629 painCave.isFatal = 0;
1013     painCave.severity = OPENMD_INFO;
1014     simError();
1015 skuang 1368 failTrialCount_++;
1016 gezelter 1773 }
1017 skuang 1338 }
1018 gezelter 1350
1019 gezelter 1879 void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1020 gezelter 1776 if (!doRNEMD_) return;
1021 gezelter 1879 int selei;
1022     int selej;
1023    
1024 skuang 1338 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1025     Mat3x3d hmat = currentSnap_->getHmat();
1026    
1027     StuntDouble* sd;
1028    
1029 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
1030 gezelter 1350
1031 skuang 1368 RealType Phx = 0.0;
1032     RealType Phy = 0.0;
1033     RealType Phz = 0.0;
1034     RealType Khx = 0.0;
1035     RealType Khy = 0.0;
1036     RealType Khz = 0.0;
1037 gezelter 1722 RealType Khw = 0.0;
1038 skuang 1368 RealType Pcx = 0.0;
1039     RealType Pcy = 0.0;
1040     RealType Pcz = 0.0;
1041     RealType Kcx = 0.0;
1042     RealType Kcy = 0.0;
1043     RealType Kcz = 0.0;
1044 gezelter 1722 RealType Kcw = 0.0;
1045 skuang 1368
1046 gezelter 1879 for (sd = smanA.beginSelected(selei); sd != NULL;
1047     sd = smanA.nextSelected(selei)) {
1048 skuang 1368
1049     Vector3d pos = sd->getPos();
1050 gezelter 1879
1051 skuang 1368 // wrap the stuntdouble's position back into the box:
1052 gezelter 1879
1053 skuang 1368 if (usePeriodicBoundaryConditions_)
1054     currentSnap_->wrapVector(pos);
1055 gezelter 1879
1056    
1057     RealType mass = sd->getMass();
1058     Vector3d vel = sd->getVel();
1059    
1060     hotBin.push_back(sd);
1061     Phx += mass * vel.x();
1062     Phy += mass * vel.y();
1063     Phz += mass * vel.z();
1064     Khx += mass * vel.x() * vel.x();
1065     Khy += mass * vel.y() * vel.y();
1066     Khz += mass * vel.z() * vel.z();
1067     if (sd->isDirectional()) {
1068     Vector3d angMom = sd->getJ();
1069     Mat3x3d I = sd->getI();
1070     if (sd->isLinear()) {
1071     int i = sd->linearAxis();
1072     int j = (i + 1) % 3;
1073     int k = (i + 2) % 3;
1074     Khw += angMom[j] * angMom[j] / I(j, j) +
1075     angMom[k] * angMom[k] / I(k, k);
1076     } else {
1077     Khw += angMom[0]*angMom[0]/I(0, 0)
1078     + angMom[1]*angMom[1]/I(1, 1)
1079     + angMom[2]*angMom[2]/I(2, 2);
1080     }
1081     }
1082     }
1083     for (sd = smanB.beginSelected(selej); sd != NULL;
1084     sd = smanB.nextSelected(selej)) {
1085     Vector3d pos = sd->getPos();
1086    
1087     // wrap the stuntdouble's position back into the box:
1088    
1089     if (usePeriodicBoundaryConditions_)
1090     currentSnap_->wrapVector(pos);
1091    
1092     RealType mass = sd->getMass();
1093     Vector3d vel = sd->getVel();
1094 skuang 1368
1095 gezelter 1879 coldBin.push_back(sd);
1096     Pcx += mass * vel.x();
1097     Pcy += mass * vel.y();
1098     Pcz += mass * vel.z();
1099     Kcx += mass * vel.x() * vel.x();
1100     Kcy += mass * vel.y() * vel.y();
1101     Kcz += mass * vel.z() * vel.z();
1102     if (sd->isDirectional()) {
1103     Vector3d angMom = sd->getJ();
1104     Mat3x3d I = sd->getI();
1105     if (sd->isLinear()) {
1106     int i = sd->linearAxis();
1107     int j = (i + 1) % 3;
1108     int k = (i + 2) % 3;
1109     Kcw += angMom[j] * angMom[j] / I(j, j) +
1110     angMom[k] * angMom[k] / I(k, k);
1111     } else {
1112     Kcw += angMom[0]*angMom[0]/I(0, 0)
1113     + angMom[1]*angMom[1]/I(1, 1)
1114     + angMom[2]*angMom[2]/I(2, 2);
1115     }
1116 skuang 1368 }
1117     }
1118 gezelter 1722
1119 skuang 1368 Khx *= 0.5;
1120     Khy *= 0.5;
1121     Khz *= 0.5;
1122 gezelter 1722 Khw *= 0.5;
1123 skuang 1368 Kcx *= 0.5;
1124     Kcy *= 0.5;
1125     Kcz *= 0.5;
1126 gezelter 1722 Kcw *= 0.5;
1127 skuang 1368
1128     #ifdef IS_MPI
1129 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130     MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131     MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132     MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133     MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1134     MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1135 skuang 1368
1136 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137     MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138     MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1139     MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1140 gezelter 1722
1141 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142     MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143     MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1144     MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1145 skuang 1368 #endif
1146    
1147 gezelter 1722 //solve coldBin coeff's first
1148 skuang 1368 RealType px = Pcx / Phx;
1149     RealType py = Pcy / Phy;
1150     RealType pz = Pcz / Phz;
1151 gezelter 2071 RealType c(0.0), x(0.0), y(0.0), z(0.0);
1152 gezelter 1722 bool successfulScale = false;
1153 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
1154     (rnemdFluxType_ == rnemdRotKE)) {
1155 gezelter 1722 //may need sanity check Khw & Kcw > 0
1156 skuang 1368
1157 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1158     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1159 gezelter 1722 } else {
1160 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
1161 gezelter 1722 }
1162 skuang 1368
1163 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1164     c = sqrt(c);
1165 gezelter 1801
1166 gezelter 1722 RealType w = 0.0;
1167 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1168 gezelter 1722 x = 1.0 + px * (1.0 - c);
1169     y = 1.0 + py * (1.0 - c);
1170     z = 1.0 + pz * (1.0 - c);
1171     /* more complicated way
1172     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1173     + Khx * px * px + Khy * py * py + Khz * pz * pz)
1174     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1175     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1176     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1177     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1178     */
1179     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1180     (fabs(z - 1.0) < 0.1)) {
1181 gezelter 1773 w = 1.0 + (kineticTarget_
1182     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1183 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
1184     }//no need to calculate w if x, y or z is out of range
1185     } else {
1186 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
1187 gezelter 1722 }
1188     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1189     //if w is in the right range, so should be x, y, z.
1190     vector<StuntDouble*>::iterator sdi;
1191     Vector3d vel;
1192 gezelter 1879 for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1193 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1194 gezelter 1722 vel = (*sdi)->getVel() * c;
1195     (*sdi)->setVel(vel);
1196     }
1197     if ((*sdi)->isDirectional()) {
1198     Vector3d angMom = (*sdi)->getJ() * c;
1199     (*sdi)->setJ(angMom);
1200     }
1201     }
1202     w = sqrt(w);
1203 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1204 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1205 gezelter 1722 vel = (*sdi)->getVel();
1206     vel.x() *= x;
1207     vel.y() *= y;
1208     vel.z() *= z;
1209     (*sdi)->setVel(vel);
1210     }
1211     if ((*sdi)->isDirectional()) {
1212     Vector3d angMom = (*sdi)->getJ() * w;
1213     (*sdi)->setJ(angMom);
1214     }
1215     }
1216     successfulScale = true;
1217 gezelter 1773 kineticExchange_ += kineticTarget_;
1218 gezelter 1722 }
1219 skuang 1368 }
1220 gezelter 1722 } else {
1221 gezelter 2071 RealType a000(0.0), a110(0.0), c0(0.0);
1222     RealType a001(0.0), a111(0.0), b01(0.0), b11(0.0), c1(0.0);
1223 gezelter 1773 switch(rnemdFluxType_) {
1224     case rnemdKE :
1225 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
1226     RealType px = Phx / Pcx;
1227     RealType py = Phy / Pcy;
1228     a110 = Khy;
1229 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
1230 gezelter 1722 a000 = Khx;
1231     a111 = Kcy * py * py;
1232     b11 = -2.0 * Kcy * py * (1.0 + py);
1233 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1234 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
1235     a001 = Kcx * px * px;
1236     */
1237     //scale all three dimensions, let c_x = c_y
1238     a000 = Kcx + Kcy;
1239     a110 = Kcz;
1240 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1241 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
1242     a111 = Khz * pz * pz;
1243     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1244     b11 = -2.0 * Khz * pz * (1.0 + pz);
1245     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1246 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
1247 gezelter 1722 break;
1248 gezelter 1773 case rnemdPx :
1249     c = 1 - momentumTarget_.x() / Pcx;
1250 gezelter 1722 a000 = Kcy;
1251     a110 = Kcz;
1252     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1253     a001 = py * py * Khy;
1254     a111 = pz * pz * Khz;
1255     b01 = -2.0 * Khy * py * (1.0 + py);
1256     b11 = -2.0 * Khz * pz * (1.0 + pz);
1257     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1258     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1259     break;
1260 gezelter 1773 case rnemdPy :
1261     c = 1 - momentumTarget_.y() / Pcy;
1262 gezelter 1722 a000 = Kcx;
1263     a110 = Kcz;
1264     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1265     a001 = px * px * Khx;
1266     a111 = pz * pz * Khz;
1267     b01 = -2.0 * Khx * px * (1.0 + px);
1268     b11 = -2.0 * Khz * pz * (1.0 + pz);
1269     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1270     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1271     break;
1272 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1273     c = 1 - momentumTarget_.z() / Pcz;
1274 gezelter 1722 a000 = Kcx;
1275     a110 = Kcy;
1276     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1277     a001 = px * px * Khx;
1278     a111 = py * py * Khy;
1279     b01 = -2.0 * Khx * px * (1.0 + px);
1280     b11 = -2.0 * Khy * py * (1.0 + py);
1281     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1282     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1283     break;
1284     default :
1285     break;
1286 skuang 1368 }
1287 gezelter 1722
1288     RealType v1 = a000 * a111 - a001 * a110;
1289     RealType v2 = a000 * b01;
1290     RealType v3 = a000 * b11;
1291     RealType v4 = a000 * c1 - a001 * c0;
1292     RealType v8 = a110 * b01;
1293     RealType v10 = - b01 * c0;
1294    
1295     RealType u0 = v2 * v10 - v4 * v4;
1296     RealType u1 = -2.0 * v3 * v4;
1297     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1298     RealType u3 = -2.0 * v1 * v3;
1299     RealType u4 = - v1 * v1;
1300     //rescale coefficients
1301     RealType maxAbs = fabs(u0);
1302     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1303     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1304     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1305     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1306     u0 /= maxAbs;
1307     u1 /= maxAbs;
1308     u2 /= maxAbs;
1309     u3 /= maxAbs;
1310     u4 /= maxAbs;
1311     //max_element(start, end) is also available.
1312     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1313     poly.setCoefficient(4, u4);
1314     poly.setCoefficient(3, u3);
1315     poly.setCoefficient(2, u2);
1316     poly.setCoefficient(1, u1);
1317     poly.setCoefficient(0, u0);
1318     vector<RealType> realRoots = poly.FindRealRoots();
1319    
1320     vector<RealType>::iterator ri;
1321     RealType r1, r2, alpha0;
1322     vector<pair<RealType,RealType> > rps;
1323 gezelter 1879 for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1324 gezelter 1722 r2 = *ri;
1325 gezelter 2071 // Check to see if FindRealRoots() gave the right answer:
1326 gezelter 1722 if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1327     sprintf(painCave.errMsg,
1328     "RNEMD Warning: polynomial solve seems to have an error!");
1329     painCave.isFatal = 0;
1330     simError();
1331     failRootCount_++;
1332     }
1333 gezelter 2071 // Might not be useful w/o rescaling coefficients
1334 gezelter 1722 alpha0 = -c0 - a110 * r2 * r2;
1335     if (alpha0 >= 0.0) {
1336     r1 = sqrt(alpha0 / a000);
1337     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1338     < 1e-6)
1339     { rps.push_back(make_pair(r1, r2)); }
1340     if (r1 > 1e-6) { //r1 non-negative
1341     r1 = -r1;
1342     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1343     < 1e-6)
1344     { rps.push_back(make_pair(r1, r2)); }
1345     }
1346     }
1347 skuang 1368 }
1348 gezelter 2071 // Consider combining together the part for solving for the pair
1349     // w/ the searching for the best solution part so that we don't
1350     // need the pairs vector:
1351 gezelter 1722 if (!rps.empty()) {
1352     RealType smallestDiff = HONKING_LARGE_VALUE;
1353 gezelter 2071 RealType diff(0.0);
1354     std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1355     std::vector<std::pair<RealType,RealType> >::iterator rpi;
1356 gezelter 1879 for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1357 gezelter 1722 r1 = (*rpi).first;
1358     r2 = (*rpi).second;
1359 gezelter 1773 switch(rnemdFluxType_) {
1360     case rnemdKE :
1361 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1362     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1363     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1364     break;
1365 gezelter 1773 case rnemdPx :
1366 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1367     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1368     break;
1369 gezelter 1773 case rnemdPy :
1370 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1371     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1372     break;
1373 gezelter 1773 case rnemdPz :
1374 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1375     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1376     default :
1377     break;
1378     }
1379     if (diff < smallestDiff) {
1380     smallestDiff = diff;
1381     bestPair = *rpi;
1382     }
1383     }
1384 skuang 1368 #ifdef IS_MPI
1385 gezelter 1722 if (worldRank == 0) {
1386 skuang 1368 #endif
1387 gezelter 1773 // sprintf(painCave.errMsg,
1388     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1389     // bestPair.first, bestPair.second);
1390     // painCave.isFatal = 0;
1391     // painCave.severity = OPENMD_INFO;
1392     // simError();
1393 skuang 1368 #ifdef IS_MPI
1394 gezelter 1722 }
1395 skuang 1368 #endif
1396 gezelter 1722
1397 gezelter 1773 switch(rnemdFluxType_) {
1398     case rnemdKE :
1399 gezelter 1722 x = bestPair.first;
1400     y = bestPair.first;
1401     z = bestPair.second;
1402     break;
1403 gezelter 1773 case rnemdPx :
1404 gezelter 1722 x = c;
1405     y = bestPair.first;
1406     z = bestPair.second;
1407     break;
1408 gezelter 1773 case rnemdPy :
1409 gezelter 1722 x = bestPair.first;
1410     y = c;
1411     z = bestPair.second;
1412     break;
1413 gezelter 1773 case rnemdPz :
1414 gezelter 1722 x = bestPair.first;
1415     y = bestPair.second;
1416     z = c;
1417     break;
1418     default :
1419     break;
1420     }
1421     vector<StuntDouble*>::iterator sdi;
1422     Vector3d vel;
1423 gezelter 1879 for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1424 gezelter 1722 vel = (*sdi)->getVel();
1425     vel.x() *= x;
1426     vel.y() *= y;
1427     vel.z() *= z;
1428     (*sdi)->setVel(vel);
1429     }
1430     //convert to hotBin coefficient
1431     x = 1.0 + px * (1.0 - x);
1432     y = 1.0 + py * (1.0 - y);
1433     z = 1.0 + pz * (1.0 - z);
1434 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1435 gezelter 1722 vel = (*sdi)->getVel();
1436     vel.x() *= x;
1437     vel.y() *= y;
1438     vel.z() *= z;
1439     (*sdi)->setVel(vel);
1440     }
1441     successfulScale = true;
1442 gezelter 1773 switch(rnemdFluxType_) {
1443     case rnemdKE :
1444     kineticExchange_ += kineticTarget_;
1445     break;
1446     case rnemdPx :
1447     case rnemdPy :
1448     case rnemdPz :
1449     momentumExchange_ += momentumTarget_;
1450     break;
1451     default :
1452     break;
1453     }
1454 gezelter 1629 }
1455 gezelter 1722 }
1456     if (successfulScale != true) {
1457     sprintf(painCave.errMsg,
1458 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1459     "\tthe constraint equations may not exist or there may be\n"
1460     "\tno selected objects in one or both slabs.\n");
1461 gezelter 1722 painCave.isFatal = 0;
1462     painCave.severity = OPENMD_INFO;
1463     simError();
1464     failTrialCount_++;
1465     }
1466     }
1467 gezelter 1879
1468     void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1469     if (!doRNEMD_) return;
1470     int selei;
1471     int selej;
1472 gezelter 1722
1473     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1474     Mat3x3d hmat = currentSnap_->getHmat();
1475    
1476     StuntDouble* sd;
1477    
1478     vector<StuntDouble*> hotBin, coldBin;
1479    
1480     Vector3d Ph(V3Zero);
1481 gezelter 1879 Vector3d Lh(V3Zero);
1482 gezelter 1722 RealType Mh = 0.0;
1483 gezelter 1879 Mat3x3d Ih(0.0);
1484 gezelter 1722 RealType Kh = 0.0;
1485     Vector3d Pc(V3Zero);
1486 gezelter 1879 Vector3d Lc(V3Zero);
1487 gezelter 1722 RealType Mc = 0.0;
1488 gezelter 1879 Mat3x3d Ic(0.0);
1489 gezelter 1722 RealType Kc = 0.0;
1490 gezelter 1879
1491     // Constraints can be on only the linear or angular momentum, but
1492     // not both. Usually, the user will specify which they want, but
1493     // in case they don't, the use of periodic boundaries should make
1494     // the choice for us.
1495     bool doLinearPart = false;
1496     bool doAngularPart = false;
1497    
1498     switch (rnemdFluxType_) {
1499     case rnemdPx:
1500     case rnemdPy:
1501     case rnemdPz:
1502     case rnemdPvector:
1503     case rnemdKePx:
1504     case rnemdKePy:
1505     case rnemdKePvector:
1506     doLinearPart = true;
1507     break;
1508     case rnemdLx:
1509     case rnemdLy:
1510     case rnemdLz:
1511     case rnemdLvector:
1512     case rnemdKeLx:
1513     case rnemdKeLy:
1514     case rnemdKeLz:
1515     case rnemdKeLvector:
1516     doAngularPart = true;
1517     break;
1518     case rnemdKE:
1519     case rnemdRotKE:
1520     case rnemdFullKE:
1521     default:
1522     if (usePeriodicBoundaryConditions_)
1523     doLinearPart = true;
1524     else
1525     doAngularPart = true;
1526     break;
1527     }
1528 jmarr 1728
1529 gezelter 1879 for (sd = smanA.beginSelected(selei); sd != NULL;
1530     sd = smanA.nextSelected(selei)) {
1531 gezelter 1722
1532     Vector3d pos = sd->getPos();
1533    
1534     // wrap the stuntdouble's position back into the box:
1535 gezelter 1879
1536     if (usePeriodicBoundaryConditions_)
1537     currentSnap_->wrapVector(pos);
1538    
1539     RealType mass = sd->getMass();
1540     Vector3d vel = sd->getVel();
1541     Vector3d rPos = sd->getPos() - coordinateOrigin_;
1542     RealType r2;
1543    
1544     hotBin.push_back(sd);
1545     Ph += mass * vel;
1546     Mh += mass;
1547     Kh += mass * vel.lengthSquare();
1548     Lh += mass * cross(rPos, vel);
1549     Ih -= outProduct(rPos, rPos) * mass;
1550     r2 = rPos.lengthSquare();
1551     Ih(0, 0) += mass * r2;
1552     Ih(1, 1) += mass * r2;
1553     Ih(2, 2) += mass * r2;
1554    
1555     if (rnemdFluxType_ == rnemdFullKE) {
1556     if (sd->isDirectional()) {
1557     Vector3d angMom = sd->getJ();
1558     Mat3x3d I = sd->getI();
1559     if (sd->isLinear()) {
1560     int i = sd->linearAxis();
1561     int j = (i + 1) % 3;
1562     int k = (i + 2) % 3;
1563     Kh += angMom[j] * angMom[j] / I(j, j) +
1564     angMom[k] * angMom[k] / I(k, k);
1565     } else {
1566     Kh += angMom[0] * angMom[0] / I(0, 0) +
1567     angMom[1] * angMom[1] / I(1, 1) +
1568     angMom[2] * angMom[2] / I(2, 2);
1569     }
1570     }
1571     }
1572     }
1573     for (sd = smanB.beginSelected(selej); sd != NULL;
1574     sd = smanB.nextSelected(selej)) {
1575 gezelter 1722
1576 gezelter 1879 Vector3d pos = sd->getPos();
1577    
1578     // wrap the stuntdouble's position back into the box:
1579    
1580 gezelter 1722 if (usePeriodicBoundaryConditions_)
1581     currentSnap_->wrapVector(pos);
1582 gezelter 1879
1583     RealType mass = sd->getMass();
1584     Vector3d vel = sd->getVel();
1585     Vector3d rPos = sd->getPos() - coordinateOrigin_;
1586     RealType r2;
1587 gezelter 1722
1588 gezelter 1879 coldBin.push_back(sd);
1589     Pc += mass * vel;
1590     Mc += mass;
1591     Kc += mass * vel.lengthSquare();
1592     Lc += mass * cross(rPos, vel);
1593     Ic -= outProduct(rPos, rPos) * mass;
1594     r2 = rPos.lengthSquare();
1595     Ic(0, 0) += mass * r2;
1596     Ic(1, 1) += mass * r2;
1597     Ic(2, 2) += mass * r2;
1598 gezelter 1773
1599 gezelter 1879 if (rnemdFluxType_ == rnemdFullKE) {
1600     if (sd->isDirectional()) {
1601     Vector3d angMom = sd->getJ();
1602     Mat3x3d I = sd->getI();
1603     if (sd->isLinear()) {
1604     int i = sd->linearAxis();
1605     int j = (i + 1) % 3;
1606     int k = (i + 2) % 3;
1607     Kc += angMom[j] * angMom[j] / I(j, j) +
1608     angMom[k] * angMom[k] / I(k, k);
1609     } else {
1610     Kc += angMom[0] * angMom[0] / I(0, 0) +
1611     angMom[1] * angMom[1] / I(1, 1) +
1612     angMom[2] * angMom[2] / I(2, 2);
1613     }
1614     }
1615 skuang 1368 }
1616 gezelter 1722 }
1617    
1618     Kh *= 0.5;
1619     Kc *= 0.5;
1620 jmarr 1728
1621 gezelter 1722 #ifdef IS_MPI
1622 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1623     MPI_COMM_WORLD);
1624     MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1625     MPI_COMM_WORLD);
1626     MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1627     MPI_COMM_WORLD);
1628     MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1629     MPI_COMM_WORLD);
1630     MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1631     MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632     MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1633     MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634     MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1635     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1636     MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1637     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1638 gezelter 1722 #endif
1639 gezelter 1879
1640 gezelter 1722
1641 gezelter 1879 Vector3d ac, acrec, bc, bcrec;
1642     Vector3d ah, ahrec, bh, bhrec;
1643    
1644 gezelter 1722 bool successfulExchange = false;
1645     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1646     Vector3d vc = Pc / Mc;
1647 gezelter 1879 ac = -momentumTarget_ / Mc + vc;
1648     acrec = -momentumTarget_ / Mc;
1649    
1650     // We now need the inverse of the inertia tensor to calculate the
1651     // angular velocity of the cold slab;
1652     Mat3x3d Ici = Ic.inverse();
1653     Vector3d omegac = Ici * Lc;
1654     bc = -(Ici * angularMomentumTarget_) + omegac;
1655     bcrec = bc - omegac;
1656    
1657     RealType cNumerator = Kc - kineticTarget_;
1658     if (doLinearPart)
1659     cNumerator -= 0.5 * Mc * ac.lengthSquare();
1660    
1661     if (doAngularPart)
1662     cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1663    
1664 gezelter 1722 if (cNumerator > 0.0) {
1665 gezelter 1879
1666     RealType cDenominator = Kc;
1667    
1668     if (doLinearPart)
1669     cDenominator -= 0.5 * Mc * vc.lengthSquare();
1670    
1671     if (doAngularPart)
1672     cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1673    
1674 gezelter 1722 if (cDenominator > 0.0) {
1675     RealType c = sqrt(cNumerator / cDenominator);
1676     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1677 gezelter 1879
1678 gezelter 1722 Vector3d vh = Ph / Mh;
1679 gezelter 1879 ah = momentumTarget_ / Mh + vh;
1680     ahrec = momentumTarget_ / Mh;
1681    
1682     // We now need the inverse of the inertia tensor to
1683     // calculate the angular velocity of the hot slab;
1684     Mat3x3d Ihi = Ih.inverse();
1685     Vector3d omegah = Ihi * Lh;
1686     bh = (Ihi * angularMomentumTarget_) + omegah;
1687     bhrec = bh - omegah;
1688    
1689     RealType hNumerator = Kh + kineticTarget_;
1690     if (doLinearPart)
1691     hNumerator -= 0.5 * Mh * ah.lengthSquare();
1692    
1693     if (doAngularPart)
1694     hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1695    
1696     if (hNumerator > 0.0) {
1697    
1698     RealType hDenominator = Kh;
1699     if (doLinearPart)
1700     hDenominator -= 0.5 * Mh * vh.lengthSquare();
1701     if (doAngularPart)
1702     hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1703    
1704 gezelter 1722 if (hDenominator > 0.0) {
1705     RealType h = sqrt(hNumerator / hDenominator);
1706     if ((h > 0.9) && (h < 1.1)) {
1707 gezelter 1879
1708 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1709     Vector3d vel;
1710 gezelter 1879 Vector3d rPos;
1711    
1712     for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1713 gezelter 1722 //vel = (*sdi)->getVel();
1714 gezelter 1879 rPos = (*sdi)->getPos() - coordinateOrigin_;
1715     if (doLinearPart)
1716     vel = ((*sdi)->getVel() - vc) * c + ac;
1717     if (doAngularPart)
1718     vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1719    
1720 gezelter 1722 (*sdi)->setVel(vel);
1721 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1722 gezelter 1722 if ((*sdi)->isDirectional()) {
1723     Vector3d angMom = (*sdi)->getJ() * c;
1724     (*sdi)->setJ(angMom);
1725     }
1726     }
1727     }
1728 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1729 gezelter 1722 //vel = (*sdi)->getVel();
1730 gezelter 1879 rPos = (*sdi)->getPos() - coordinateOrigin_;
1731     if (doLinearPart)
1732     vel = ((*sdi)->getVel() - vh) * h + ah;
1733     if (doAngularPart)
1734     vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);
1735    
1736 gezelter 1722 (*sdi)->setVel(vel);
1737 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1738 gezelter 1722 if ((*sdi)->isDirectional()) {
1739     Vector3d angMom = (*sdi)->getJ() * h;
1740     (*sdi)->setJ(angMom);
1741     }
1742     }
1743     }
1744     successfulExchange = true;
1745 gezelter 1773 kineticExchange_ += kineticTarget_;
1746     momentumExchange_ += momentumTarget_;
1747 gezelter 1879 angularMomentumExchange_ += angularMomentumTarget_;
1748 gezelter 1722 }
1749     }
1750     }
1751     }
1752     }
1753 skuang 1368 }
1754 gezelter 1722 }
1755     if (successfulExchange != true) {
1756 gezelter 1773 sprintf(painCave.errMsg,
1757     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1758     "\tthe constraint equations may not exist or there may be\n"
1759     "\tno selected objects in one or both slabs.\n");
1760     painCave.isFatal = 0;
1761     painCave.severity = OPENMD_INFO;
1762     simError();
1763 skuang 1368 failTrialCount_++;
1764     }
1765     }
1766    
1767 gezelter 1879 RealType RNEMD::getDividingArea() {
1768    
1769     if (hasDividingArea_) return dividingArea_;
1770    
1771     RealType areaA, areaB;
1772     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1773    
1774     if (hasSelectionA_) {
1775 gezelter 1903
1776     if (evaluatorA_.hasSurfaceArea())
1777     areaA = evaluatorA_.getSurfaceArea();
1778     else {
1779    
1780     int isd;
1781     StuntDouble* sd;
1782     vector<StuntDouble*> aSites;
1783     seleManA_.setSelectionSet(evaluatorA_.evaluate());
1784     for (sd = seleManA_.beginSelected(isd); sd != NULL;
1785     sd = seleManA_.nextSelected(isd)) {
1786     aSites.push_back(sd);
1787     }
1788 gezelter 1879 #if defined(HAVE_QHULL)
1789 gezelter 1903 ConvexHull* surfaceMeshA = new ConvexHull();
1790     surfaceMeshA->computeHull(aSites);
1791     areaA = surfaceMeshA->getArea();
1792     delete surfaceMeshA;
1793 gezelter 1879 #else
1794 gezelter 1903 sprintf( painCave.errMsg,
1795 gezelter 1879 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1796 gezelter 1903 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1797     painCave.severity = OPENMD_ERROR;
1798     painCave.isFatal = 1;
1799     simError();
1800 gezelter 1879 #endif
1801 gezelter 1903 }
1802 gezelter 1879
1803     } else {
1804     if (usePeriodicBoundaryConditions_) {
1805     // in periodic boundaries, the surface area is twice the x-y
1806     // area of the current box:
1807     areaA = 2.0 * snap->getXYarea();
1808     } else {
1809     // in non-periodic simulations, without explicitly setting
1810     // selections, the sphere radius sets the surface area of the
1811     // dividing surface:
1812     areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1813     }
1814     }
1815    
1816     if (hasSelectionB_) {
1817 gezelter 2056 if (evaluatorB_.hasSurfaceArea()) {
1818 gezelter 1903 areaB = evaluatorB_.getSurfaceArea();
1819 gezelter 2056 } else {
1820 gezelter 1879
1821 gezelter 1903 int isd;
1822     StuntDouble* sd;
1823     vector<StuntDouble*> bSites;
1824     seleManB_.setSelectionSet(evaluatorB_.evaluate());
1825     for (sd = seleManB_.beginSelected(isd); sd != NULL;
1826     sd = seleManB_.nextSelected(isd)) {
1827     bSites.push_back(sd);
1828     }
1829    
1830 gezelter 1879 #if defined(HAVE_QHULL)
1831 gezelter 1903 ConvexHull* surfaceMeshB = new ConvexHull();
1832     surfaceMeshB->computeHull(bSites);
1833     areaB = surfaceMeshB->getArea();
1834     delete surfaceMeshB;
1835 gezelter 1879 #else
1836 gezelter 1903 sprintf( painCave.errMsg,
1837     "RNEMD::getDividingArea : Hull calculation is not possible\n"
1838     "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1839     painCave.severity = OPENMD_ERROR;
1840     painCave.isFatal = 1;
1841     simError();
1842 gezelter 1879 #endif
1843 gezelter 1903 }
1844    
1845 gezelter 1879 } else {
1846     if (usePeriodicBoundaryConditions_) {
1847     // in periodic boundaries, the surface area is twice the x-y
1848     // area of the current box:
1849     areaB = 2.0 * snap->getXYarea();
1850     } else {
1851     // in non-periodic simulations, without explicitly setting
1852     // selections, but if a sphereBradius has been set, just use that:
1853     areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1854     }
1855     }
1856 gezelter 1903
1857 gezelter 1879 dividingArea_ = min(areaA, areaB);
1858     hasDividingArea_ = true;
1859     return dividingArea_;
1860     }
1861    
1862 skuang 1368 void RNEMD::doRNEMD() {
1863 gezelter 1776 if (!doRNEMD_) return;
1864 gezelter 1773 trialCount_++;
1865 gezelter 1879
1866     // object evaluator:
1867     evaluator_.loadScriptString(rnemdObjectSelection_);
1868     seleMan_.setSelectionSet(evaluator_.evaluate());
1869    
1870     evaluatorA_.loadScriptString(selectionA_);
1871     evaluatorB_.loadScriptString(selectionB_);
1872    
1873     seleManA_.setSelectionSet(evaluatorA_.evaluate());
1874     seleManB_.setSelectionSet(evaluatorB_.evaluate());
1875    
1876     commonA_ = seleManA_ & seleMan_;
1877     commonB_ = seleManB_ & seleMan_;
1878    
1879     // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1880     // dt = exchange time interval
1881     // flux = target flux
1882     // dividingArea = smallest dividing surface between the two regions
1883    
1884     hasDividingArea_ = false;
1885     RealType area = getDividingArea();
1886    
1887     kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1888     momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1889     angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1890    
1891 gezelter 1773 switch(rnemdMethod_) {
1892     case rnemdSwap:
1893 gezelter 1879 doSwap(commonA_, commonB_);
1894 skuang 1368 break;
1895 gezelter 1773 case rnemdNIVS:
1896 gezelter 1879 doNIVS(commonA_, commonB_);
1897 gezelter 1722 break;
1898 gezelter 1773 case rnemdVSS:
1899 gezelter 1879 doVSS(commonA_, commonB_);
1900 gezelter 1773 break;
1901     case rnemdUnkownMethod:
1902 skuang 1368 default :
1903     break;
1904     }
1905     }
1906    
1907     void RNEMD::collectData() {
1908 gezelter 1776 if (!doRNEMD_) return;
1909 skuang 1368 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1910 gezelter 2027
1911 gezelter 1879 // collectData can be called more frequently than the doRNEMD, so use the
1912     // computed area from the last exchange time:
1913     RealType area = getDividingArea();
1914     areaAccumulator_->add(area);
1915 skuang 1368 Mat3x3d hmat = currentSnap_->getHmat();
1916 gezelter 1940 Vector3d u = angularMomentumFluxVector_;
1917     u.normalize();
1918    
1919 skuang 1368 seleMan_.setSelectionSet(evaluator_.evaluate());
1920    
1921 gezelter 1801 int selei(0);
1922 skuang 1368 StuntDouble* sd;
1923 gezelter 1879 int binNo;
1924 gezelter 1941 RealType mass;
1925     Vector3d vel;
1926     Vector3d rPos;
1927     RealType KE;
1928     Vector3d L;
1929     Mat3x3d I;
1930     RealType r2;
1931 skuang 1368
1932 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1933 gezelter 1941 vector<Vector3d> binP(nBins_, V3Zero);
1934 gezelter 1940 vector<RealType> binOmega(nBins_, 0.0);
1935 gezelter 1941 vector<Vector3d> binL(nBins_, V3Zero);
1936     vector<Mat3x3d> binI(nBins_);
1937 gezelter 1773 vector<RealType> binKE(nBins_, 0.0);
1938     vector<int> binDOF(nBins_, 0);
1939     vector<int> binCount(nBins_, 0);
1940 jmarr 1728
1941 gezelter 1629 // alternative approach, track all molecules instead of only those
1942     // selected for scaling/swapping:
1943     /*
1944 gezelter 1879 SimInfo::MoleculeIterator miter;
1945     vector<StuntDouble*>::iterator iiter;
1946     Molecule* mol;
1947     StuntDouble* sd;
1948     for (mol = info_->beginMolecule(miter); mol != NULL;
1949 jmarr 1728 mol = info_->nextMolecule(miter))
1950 gezelter 1769 sd is essentially sd
1951 gezelter 1879 for (sd = mol->beginIntegrableObject(iiter);
1952     sd != NULL;
1953     sd = mol->nextIntegrableObject(iiter))
1954 gezelter 1629 */
1955 gezelter 1801
1956 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1957 gezelter 1793 sd = seleMan_.nextSelected(selei)) {
1958 gezelter 1801
1959 skuang 1338 Vector3d pos = sd->getPos();
1960    
1961     // wrap the stuntdouble's position back into the box:
1962    
1963 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1964 skuang 1338 currentSnap_->wrapVector(pos);
1965 gezelter 1879 // which bin is this stuntdouble in?
1966     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1967     // Shift molecules by half a box to have bins start at 0
1968     // The modulo operator is used to wrap the case when we are
1969     // beyond the end of the bins back to the beginning.
1970     binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1971     } else {
1972     Vector3d rPos = pos - coordinateOrigin_;
1973     binNo = int(rPos.length() / binWidth_);
1974     }
1975 gezelter 1773
1976 gezelter 1941 mass = sd->getMass();
1977     vel = sd->getVel();
1978     rPos = sd->getPos() - coordinateOrigin_;
1979 gezelter 1946 KE = 0.5 * mass * vel.lengthSquare();
1980 gezelter 1941 L = mass * cross(rPos, vel);
1981     I = outProduct(rPos, rPos) * mass;
1982     r2 = rPos.lengthSquare();
1983     I(0, 0) += mass * r2;
1984     I(1, 1) += mass * r2;
1985     I(2, 2) += mass * r2;
1986 gezelter 1940
1987     // Project the relative position onto a plane perpendicular to
1988     // the angularMomentumFluxVector:
1989 gezelter 1941 // Vector3d rProj = rPos - dot(rPos, u) * u;
1990 gezelter 1940 // Project the velocity onto a plane perpendicular to the
1991     // angularMomentumFluxVector:
1992 gezelter 1941 // Vector3d vProj = vel - dot(vel, u) * u;
1993 gezelter 1940 // Compute angular velocity vector (should be nearly parallel to
1994     // angularMomentumFluxVector
1995 gezelter 1941 // Vector3d aVel = cross(rProj, vProj);
1996    
1997 gezelter 1879 if (binNo >= 0 && binNo < nBins_) {
1998     binCount[binNo]++;
1999     binMass[binNo] += mass;
2000 gezelter 1941 binP[binNo] += mass*vel;
2001     binKE[binNo] += KE;
2002     binI[binNo] += I;
2003     binL[binNo] += L;
2004 gezelter 1879 binDOF[binNo] += 3;
2005    
2006     if (sd->isDirectional()) {
2007     Vector3d angMom = sd->getJ();
2008 gezelter 1941 Mat3x3d Ia = sd->getI();
2009 gezelter 1879 if (sd->isLinear()) {
2010     int i = sd->linearAxis();
2011     int j = (i + 1) % 3;
2012     int k = (i + 2) % 3;
2013 gezelter 1941 binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2014     angMom[k] * angMom[k] / Ia(k, k));
2015 gezelter 1879 binDOF[binNo] += 2;
2016     } else {
2017 gezelter 1941 binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2018     angMom[1] * angMom[1] / Ia(1, 1) +
2019     angMom[2] * angMom[2] / Ia(2, 2));
2020 gezelter 1879 binDOF[binNo] += 3;
2021     }
2022 gezelter 1773 }
2023 gezelter 1722 }
2024 gezelter 1773 }
2025 gezelter 2027
2026 gezelter 1773 #ifdef IS_MPI
2027 gezelter 1941
2028     for (int i = 0; i < nBins_; i++) {
2029 gezelter 1969
2030     MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2031     1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2032     MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2033     1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 gezelter 1971 MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2035 gezelter 1969 3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 gezelter 1971 MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2037 gezelter 1969 3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038 gezelter 1971 MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2039 gezelter 1969 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2040     MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2041     1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2042     MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2043     1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2044     //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2045     // 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2046 gezelter 1941 }
2047    
2048 gezelter 1773 #endif
2049    
2050 gezelter 1941 Vector3d omega;
2051 gezelter 1773 RealType den;
2052     RealType temp;
2053     RealType z;
2054 gezelter 1879 RealType r;
2055 gezelter 1773 for (int i = 0; i < nBins_; i++) {
2056 gezelter 1879 if (usePeriodicBoundaryConditions_) {
2057     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2058     den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2059     / currentSnap_->getVolume() ;
2060     } else {
2061     r = (((RealType)i + 0.5) * binWidth_);
2062     RealType rinner = (RealType)i * binWidth_;
2063     RealType router = (RealType)(i+1) * binWidth_;
2064     den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2065     / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2066     }
2067 gezelter 1941 vel = binP[i] / binMass[i];
2068 gezelter 1777
2069 gezelter 1941 omega = binI[i].inverse() * binL[i];
2070    
2071     // omega = binOmega[i] / binCount[i];
2072    
2073 gezelter 1804 if (binCount[i] > 0) {
2074     // only add values if there are things to add
2075     temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2076     PhysicalConstants::energyConvert);
2077    
2078     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2079     if(outputMask_[j]) {
2080     switch(j) {
2081     case Z:
2082     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2083     break;
2084 gezelter 1879 case R:
2085     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2086     break;
2087 gezelter 1804 case TEMPERATURE:
2088     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2089     break;
2090     case VELOCITY:
2091     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2092     break;
2093 gezelter 1879 case ANGULARVELOCITY:
2094 gezelter 1941 dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2095 gezelter 1879 break;
2096 gezelter 1804 case DENSITY:
2097     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2098     break;
2099     }
2100 gezelter 1773 }
2101     }
2102 gezelter 1629 }
2103 skuang 1338 }
2104 gezelter 1879 hasData_ = true;
2105 skuang 1368 }
2106    
2107     void RNEMD::getStarted() {
2108 gezelter 1776 if (!doRNEMD_) return;
2109 gezelter 1879 hasDividingArea_ = false;
2110 gezelter 1629 collectData();
2111 gezelter 1773 writeOutputFile();
2112 skuang 1368 }
2113    
2114 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
2115 gezelter 1776 if (!doRNEMD_) return;
2116 gezelter 1773 StringTokenizer tokenizer(format, " ,;|\t\n\r");
2117    
2118     while(tokenizer.hasMoreTokens()) {
2119     std::string token(tokenizer.nextToken());
2120     toUpper(token);
2121     OutputMapType::iterator i = outputMap_.find(token);
2122     if (i != outputMap_.end()) {
2123     outputMask_.set(i->second);
2124     } else {
2125     sprintf( painCave.errMsg,
2126     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2127     "\toutputFileFormat keyword.\n", token.c_str() );
2128     painCave.isFatal = 0;
2129     painCave.severity = OPENMD_ERROR;
2130     simError();
2131     }
2132 gezelter 2027 }
2133 gezelter 1773 }
2134    
2135     void RNEMD::writeOutputFile() {
2136 gezelter 1776 if (!doRNEMD_) return;
2137 gezelter 1879 if (!hasData_) return;
2138 gezelter 1773
2139 gezelter 1350 #ifdef IS_MPI
2140     // If we're the root node, should we print out the results
2141 gezelter 1969 int worldRank;
2142     MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2143    
2144 gezelter 1350 if (worldRank == 0) {
2145     #endif
2146 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2147    
2148     if( !rnemdFile_ ){
2149     sprintf( painCave.errMsg,
2150     "Could not open \"%s\" for RNEMD output.\n",
2151     rnemdFileName_.c_str());
2152     painCave.isFatal = 1;
2153     simError();
2154     }
2155 gezelter 1722
2156 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2157    
2158     RealType time = currentSnap_->getTime();
2159 gezelter 1774 RealType avgArea;
2160     areaAccumulator_->getAverage(avgArea);
2161    
2162 gezelter 1879 RealType Jz(0.0);
2163     Vector3d JzP(V3Zero);
2164     Vector3d JzL(V3Zero);
2165     if (time >= info_->getSimParams()->getDt()) {
2166     Jz = kineticExchange_ / (time * avgArea)
2167     / PhysicalConstants::energyConvert;
2168     JzP = momentumExchange_ / (time * avgArea);
2169     JzL = angularMomentumExchange_ / (time * avgArea);
2170     }
2171    
2172 gezelter 1773 rnemdFile_ << "#######################################################\n";
2173     rnemdFile_ << "# RNEMD {\n";
2174    
2175     map<string, RNEMDMethod>::iterator mi;
2176     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2177     if ( (*mi).second == rnemdMethod_)
2178 gezelter 1774 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
2179 skuang 1368 }
2180 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
2181     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2182     if ( (*fi).second == rnemdFluxType_)
2183 gezelter 1774 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
2184 gezelter 1722 }
2185 gezelter 1773
2186 gezelter 1775 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
2187 gezelter 1773
2188     rnemdFile_ << "# objectSelection = \""
2189 gezelter 1774 << rnemdObjectSelection_ << "\";\n";
2190 gezelter 1879 rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n";
2191     rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n";
2192 gezelter 1773 rnemdFile_ << "# }\n";
2193     rnemdFile_ << "#######################################################\n";
2194 gezelter 1774 rnemdFile_ << "# RNEMD report:\n";
2195 gezelter 1879 rnemdFile_ << "# running time = " << time << " fs\n";
2196     rnemdFile_ << "# Target flux:\n";
2197     rnemdFile_ << "# kinetic = "
2198 gezelter 1777 << kineticFlux_ / PhysicalConstants::energyConvert
2199     << " (kcal/mol/A^2/fs)\n";
2200 gezelter 1879 rnemdFile_ << "# momentum = " << momentumFluxVector_
2201 gezelter 1777 << " (amu/A/fs^2)\n";
2202 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_
2203     << " (amu/A^2/fs^2)\n";
2204     rnemdFile_ << "# Target one-time exchanges:\n";
2205     rnemdFile_ << "# kinetic = "
2206 gezelter 1777 << kineticTarget_ / PhysicalConstants::energyConvert
2207     << " (kcal/mol)\n";
2208 gezelter 1879 rnemdFile_ << "# momentum = " << momentumTarget_
2209 gezelter 1777 << " (amu*A/fs)\n";
2210 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumTarget_
2211     << " (amu*A^2/fs)\n";
2212     rnemdFile_ << "# Actual exchange totals:\n";
2213     rnemdFile_ << "# kinetic = "
2214 gezelter 1777 << kineticExchange_ / PhysicalConstants::energyConvert
2215     << " (kcal/mol)\n";
2216 gezelter 1879 rnemdFile_ << "# momentum = " << momentumExchange_
2217 gezelter 1777 << " (amu*A/fs)\n";
2218 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumExchange_
2219     << " (amu*A^2/fs)\n";
2220     rnemdFile_ << "# Actual flux:\n";
2221     rnemdFile_ << "# kinetic = " << Jz
2222 gezelter 1777 << " (kcal/mol/A^2/fs)\n";
2223 gezelter 1879 rnemdFile_ << "# momentum = " << JzP
2224 gezelter 1777 << " (amu/A/fs^2)\n";
2225 gezelter 1879 rnemdFile_ << "# angular momentum = " << JzL
2226     << " (amu/A^2/fs^2)\n";
2227     rnemdFile_ << "# Exchange statistics:\n";
2228     rnemdFile_ << "# attempted = " << trialCount_ << "\n";
2229     rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
2230 gezelter 1773 if (rnemdMethod_ == rnemdNIVS) {
2231 gezelter 1879 rnemdFile_ << "# NIVS root-check errors = "
2232 gezelter 1774 << failRootCount_ << "\n";
2233 gezelter 1722 }
2234 gezelter 1773 rnemdFile_ << "#######################################################\n";
2235    
2236    
2237    
2238     //write title
2239     rnemdFile_ << "#";
2240     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2241     if (outputMask_[i]) {
2242     rnemdFile_ << "\t" << data_[i].title <<
2243     "(" << data_[i].units << ")";
2244 gezelter 1777 // add some extra tabs for column alignment
2245     if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2246 skuang 1368 }
2247 gezelter 1773 }
2248     rnemdFile_ << std::endl;
2249    
2250     rnemdFile_.precision(8);
2251    
2252 gezelter 1789 for (int j = 0; j < nBins_; j++) {
2253 gezelter 1773
2254     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2255     if (outputMask_[i]) {
2256     if (data_[i].dataType == "RealType")
2257     writeReal(i,j);
2258 gezelter 1879 else if (data_[i].dataType == "Vector3d")
2259 gezelter 1773 writeVector(i,j);
2260     else {
2261     sprintf( painCave.errMsg,
2262     "RNEMD found an unknown data type for: %s ",
2263     data_[i].title.c_str());
2264     painCave.isFatal = 1;
2265     simError();
2266     }
2267     }
2268 skuang 1368 }
2269 gezelter 1773 rnemdFile_ << std::endl;
2270    
2271     }
2272 gezelter 1774
2273     rnemdFile_ << "#######################################################\n";
2274 gezelter 1979 rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2275 gezelter 1774 rnemdFile_ << "#######################################################\n";
2276    
2277    
2278 gezelter 1789 for (int j = 0; j < nBins_; j++) {
2279 gezelter 1774 rnemdFile_ << "#";
2280     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2281     if (outputMask_[i]) {
2282     if (data_[i].dataType == "RealType")
2283 gezelter 1979 writeRealErrorBars(i,j);
2284 gezelter 1774 else if (data_[i].dataType == "Vector3d")
2285 gezelter 1979 writeVectorErrorBars(i,j);
2286 gezelter 1774 else {
2287     sprintf( painCave.errMsg,
2288     "RNEMD found an unknown data type for: %s ",
2289     data_[i].title.c_str());
2290     painCave.isFatal = 1;
2291     simError();
2292     }
2293     }
2294     }
2295     rnemdFile_ << std::endl;
2296    
2297     }
2298 gezelter 1773
2299     rnemdFile_.flush();
2300     rnemdFile_.close();
2301    
2302 gezelter 1350 #ifdef IS_MPI
2303 gezelter 1396 }
2304 gezelter 1350 #endif
2305 jmarr 1728
2306 gezelter 1334 }
2307 gezelter 1773
2308     void RNEMD::writeReal(int index, unsigned int bin) {
2309 gezelter 1776 if (!doRNEMD_) return;
2310 gezelter 1773 assert(index >=0 && index < ENDINDEX);
2311 gezelter 1879 assert(int(bin) < nBins_);
2312 gezelter 1773 RealType s;
2313 gezelter 1879 int count;
2314 gezelter 1773
2315 gezelter 1879 count = data_[index].accumulator[bin]->count();
2316     if (count == 0) return;
2317    
2318 gezelter 1791 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2319 gezelter 1773
2320     if (! isinf(s) && ! isnan(s)) {
2321     rnemdFile_ << "\t" << s;
2322     } else{
2323     sprintf( painCave.errMsg,
2324 gezelter 1879 "RNEMD detected a numerical error writing: %s for bin %u",
2325 gezelter 1773 data_[index].title.c_str(), bin);
2326     painCave.isFatal = 1;
2327     simError();
2328     }
2329     }
2330    
2331     void RNEMD::writeVector(int index, unsigned int bin) {
2332 gezelter 1776 if (!doRNEMD_) return;
2333 gezelter 1773 assert(index >=0 && index < ENDINDEX);
2334 gezelter 1879 assert(int(bin) < nBins_);
2335 gezelter 1773 Vector3d s;
2336 gezelter 1879 int count;
2337    
2338     count = data_[index].accumulator[bin]->count();
2339    
2340     if (count == 0) return;
2341    
2342 gezelter 1773 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2343     if (isinf(s[0]) || isnan(s[0]) ||
2344     isinf(s[1]) || isnan(s[1]) ||
2345     isinf(s[2]) || isnan(s[2]) ) {
2346     sprintf( painCave.errMsg,
2347 gezelter 1879 "RNEMD detected a numerical error writing: %s for bin %u",
2348 gezelter 1773 data_[index].title.c_str(), bin);
2349     painCave.isFatal = 1;
2350     simError();
2351     } else {
2352     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2353     }
2354     }
2355 gezelter 1774
2356 gezelter 1979 void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2357 gezelter 1776 if (!doRNEMD_) return;
2358 gezelter 1774 assert(index >=0 && index < ENDINDEX);
2359 gezelter 1879 assert(int(bin) < nBins_);
2360 gezelter 1774 RealType s;
2361 gezelter 1879 int count;
2362 gezelter 1774
2363 gezelter 1879 count = data_[index].accumulator[bin]->count();
2364     if (count == 0) return;
2365    
2366 gezelter 1979 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2367 gezelter 1774
2368     if (! isinf(s) && ! isnan(s)) {
2369     rnemdFile_ << "\t" << s;
2370     } else{
2371     sprintf( painCave.errMsg,
2372 gezelter 1879 "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2373 gezelter 1774 data_[index].title.c_str(), bin);
2374     painCave.isFatal = 1;
2375     simError();
2376     }
2377     }
2378    
2379 gezelter 1979 void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2380 gezelter 1776 if (!doRNEMD_) return;
2381 gezelter 1774 assert(index >=0 && index < ENDINDEX);
2382 gezelter 1879 assert(int(bin) < nBins_);
2383 gezelter 1774 Vector3d s;
2384 gezelter 1879 int count;
2385    
2386     count = data_[index].accumulator[bin]->count();
2387     if (count == 0) return;
2388    
2389 gezelter 1979 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2390 gezelter 1774 if (isinf(s[0]) || isnan(s[0]) ||
2391     isinf(s[1]) || isnan(s[1]) ||
2392     isinf(s[2]) || isnan(s[2]) ) {
2393     sprintf( painCave.errMsg,
2394 gezelter 1879 "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2395 gezelter 1774 data_[index].title.c_str(), bin);
2396     painCave.isFatal = 1;
2397     simError();
2398     } else {
2399     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2400     }
2401     }
2402 skuang 1338 }
2403 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date