ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
Revision: 2027
Committed: Wed Oct 22 14:29:20 2014 UTC (10 years, 6 months ago) by gezelter
File size: 77418 byte(s)
Log Message:
Fixed a closing brace bug

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41 gezelter 1938 #ifdef IS_MPI
42     #include <mpi.h>
43     #endif
44 gezelter 1329
45 skuang 1368 #include <cmath>
46 gezelter 1879 #include <sstream>
47     #include <string>
48    
49 gezelter 1731 #include "rnemd/RNEMD.hpp"
50 gezelter 1332 #include "math/Vector3.hpp"
51 gezelter 1722 #include "math/Vector.hpp"
52 gezelter 1329 #include "math/SquareMatrix3.hpp"
53 skuang 1368 #include "math/Polynomial.hpp"
54 gezelter 1329 #include "primitives/Molecule.hpp"
55     #include "primitives/StuntDouble.hpp"
56 gezelter 1390 #include "utils/PhysicalConstants.hpp"
57 gezelter 1332 #include "utils/Tuple.hpp"
58 gezelter 1879 #include "brains/Thermo.hpp"
59     #include "math/ConvexHull.hpp"
60 gezelter 1329
61 gezelter 1789 #ifdef _MSC_VER
62     #define isnan(x) _isnan((x))
63     #define isinf(x) (!_finite(x) && !_isnan(x))
64     #endif
65    
66 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
67 gezelter 1329
68 gezelter 1629 using namespace std;
69 gezelter 1390 namespace OpenMD {
70 gezelter 1329
71 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 gezelter 1879 evaluatorA_(info), seleManA_(info),
73     commonA_(info), evaluatorB_(info),
74     seleManB_(info), commonB_(info),
75     hasData_(false), hasDividingArea_(false),
76 gezelter 1629 usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77 skuang 1368
78 gezelter 1773 trialCount_ = 0;
79 skuang 1368 failTrialCount_ = 0;
80     failRootCount_ = 0;
81    
82 gezelter 1879 Globals* simParams = info->getSimParams();
83 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84 skuang 1330
85 gezelter 1776 doRNEMD_ = rnemdParams->getUseRNEMD();
86     if (!doRNEMD_) return;
87    
88 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
89     stringToMethod_["NIVS"] = rnemdNIVS;
90     stringToMethod_["VSS"] = rnemdVSS;
91 skuang 1330
92 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
93     stringToFluxType_["Px"] = rnemdPx;
94     stringToFluxType_["Py"] = rnemdPy;
95     stringToFluxType_["Pz"] = rnemdPz;
96 gezelter 1777 stringToFluxType_["Pvector"] = rnemdPvector;
97 gezelter 1879 stringToFluxType_["Lx"] = rnemdLx;
98     stringToFluxType_["Ly"] = rnemdLy;
99     stringToFluxType_["Lz"] = rnemdLz;
100     stringToFluxType_["Lvector"] = rnemdLvector;
101 gezelter 1773 stringToFluxType_["KE+Px"] = rnemdKePx;
102     stringToFluxType_["KE+Py"] = rnemdKePy;
103     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
104 gezelter 1879 stringToFluxType_["KE+Lx"] = rnemdKeLx;
105     stringToFluxType_["KE+Ly"] = rnemdKeLy;
106     stringToFluxType_["KE+Lz"] = rnemdKeLz;
107     stringToFluxType_["KE+Lvector"] = rnemdKeLvector;
108 gezelter 1773
109 jmarr 1728 runTime_ = simParams->getRunTime();
110     statusTime_ = simParams->getStatusTime();
111    
112 gezelter 1773 const string methStr = rnemdParams->getMethod();
113     bool hasFluxType = rnemdParams->haveFluxType();
114    
115 gezelter 1879 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116    
117 gezelter 1773 string fluxStr;
118     if (hasFluxType) {
119     fluxStr = rnemdParams->getFluxType();
120     } else {
121     sprintf(painCave.errMsg,
122     "RNEMD: No fluxType was set in the md file. This parameter,\n"
123     "\twhich must be one of the following values:\n"
124 gezelter 1879 "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125     "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 gezelter 1777 "\tmust be set to use RNEMD\n");
127 gezelter 1773 painCave.isFatal = 1;
128     painCave.severity = OPENMD_ERROR;
129     simError();
130     }
131    
132     bool hasKineticFlux = rnemdParams->haveKineticFlux();
133     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 gezelter 1879 bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136     bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137     hasSelectionA_ = rnemdParams->haveSelectionA();
138     hasSelectionB_ = rnemdParams->haveSelectionB();
139 gezelter 1773 bool hasSlabWidth = rnemdParams->haveSlabWidth();
140     bool hasSlabACenter = rnemdParams->haveSlabACenter();
141     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 gezelter 1879 bool hasSphereARadius = rnemdParams->haveSphereARadius();
143     hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144     bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 gezelter 1773 bool hasOutputFileName = rnemdParams->haveOutputFileName();
146     bool hasOutputFields = rnemdParams->haveOutputFields();
147    
148     map<string, RNEMDMethod>::iterator i;
149     i = stringToMethod_.find(methStr);
150     if (i != stringToMethod_.end())
151     rnemdMethod_ = i->second;
152     else {
153     sprintf(painCave.errMsg,
154     "RNEMD: The current method,\n"
155     "\t\t%s is not one of the recognized\n"
156     "\texchange methods: Swap, NIVS, or VSS\n",
157     methStr.c_str());
158     painCave.isFatal = 1;
159     painCave.severity = OPENMD_ERROR;
160     simError();
161     }
162    
163     map<string, RNEMDFluxType>::iterator j;
164     j = stringToFluxType_.find(fluxStr);
165     if (j != stringToFluxType_.end())
166     rnemdFluxType_ = j->second;
167     else {
168     sprintf(painCave.errMsg,
169     "RNEMD: The current fluxType,\n"
170     "\t\t%s\n"
171     "\tis not one of the recognized flux types.\n",
172     fluxStr.c_str());
173     painCave.isFatal = 1;
174     painCave.severity = OPENMD_ERROR;
175     simError();
176     }
177    
178     bool methodFluxMismatch = false;
179     bool hasCorrectFlux = false;
180     switch(rnemdMethod_) {
181     case rnemdSwap:
182     switch (rnemdFluxType_) {
183     case rnemdKE:
184     hasCorrectFlux = hasKineticFlux;
185     break;
186     case rnemdPx:
187     case rnemdPy:
188     case rnemdPz:
189     hasCorrectFlux = hasMomentumFlux;
190     break;
191     default :
192     methodFluxMismatch = true;
193     break;
194     }
195     break;
196     case rnemdNIVS:
197     switch (rnemdFluxType_) {
198     case rnemdKE:
199     case rnemdRotKE:
200     case rnemdFullKE:
201     hasCorrectFlux = hasKineticFlux;
202     break;
203     case rnemdPx:
204     case rnemdPy:
205     case rnemdPz:
206     hasCorrectFlux = hasMomentumFlux;
207     break;
208     case rnemdKePx:
209     case rnemdKePy:
210     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211     break;
212     default:
213     methodFluxMismatch = true;
214     break;
215     }
216     break;
217     case rnemdVSS:
218     switch (rnemdFluxType_) {
219     case rnemdKE:
220     case rnemdRotKE:
221     case rnemdFullKE:
222     hasCorrectFlux = hasKineticFlux;
223     break;
224     case rnemdPx:
225     case rnemdPy:
226     case rnemdPz:
227     hasCorrectFlux = hasMomentumFlux;
228     break;
229 gezelter 1879 case rnemdLx:
230     case rnemdLy:
231     case rnemdLz:
232     hasCorrectFlux = hasAngularMomentumFlux;
233     break;
234 gezelter 1773 case rnemdPvector:
235     hasCorrectFlux = hasMomentumFluxVector;
236 gezelter 1777 break;
237 gezelter 1879 case rnemdLvector:
238     hasCorrectFlux = hasAngularMomentumFluxVector;
239     break;
240 gezelter 1773 case rnemdKePx:
241     case rnemdKePy:
242     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243     break;
244 gezelter 1879 case rnemdKeLx:
245     case rnemdKeLy:
246     case rnemdKeLz:
247     hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248     break;
249 gezelter 1773 case rnemdKePvector:
250     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251     break;
252 gezelter 1879 case rnemdKeLvector:
253     hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254     break;
255 gezelter 1773 default:
256     methodFluxMismatch = true;
257     break;
258     }
259     default:
260     break;
261     }
262    
263     if (methodFluxMismatch) {
264     sprintf(painCave.errMsg,
265     "RNEMD: The current method,\n"
266     "\t\t%s\n"
267     "\tcannot be used with the current flux type, %s\n",
268     methStr.c_str(), fluxStr.c_str());
269     painCave.isFatal = 1;
270     painCave.severity = OPENMD_ERROR;
271     simError();
272     }
273     if (!hasCorrectFlux) {
274     sprintf(painCave.errMsg,
275 gezelter 1777 "RNEMD: The current method, %s, and flux type, %s,\n"
276 gezelter 1773 "\tdid not have the correct flux value specified. Options\n"
277 gezelter 1879 "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278     "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 gezelter 1773 methStr.c_str(), fluxStr.c_str());
280     painCave.isFatal = 1;
281     painCave.severity = OPENMD_ERROR;
282     simError();
283     }
284    
285     if (hasKineticFlux) {
286 gezelter 1777 // convert the kcal / mol / Angstroms^2 / fs values in the md file
287     // into amu / fs^3:
288     kineticFlux_ = rnemdParams->getKineticFlux()
289     * PhysicalConstants::energyConvert;
290 gezelter 1773 } else {
291     kineticFlux_ = 0.0;
292     }
293     if (hasMomentumFluxVector) {
294 gezelter 2026 std::vector<RealType> mf = rnemdParams->getMomentumFluxVector();
295     if (mf.size() != 3) {
296     sprintf(painCave.errMsg,
297     "RNEMD: Incorrect number of parameters specified for momentumFluxVector.\n"
298     "\tthere should be 3 parameters, but %lu were specified.\n",
299     mf.size());
300     painCave.isFatal = 1;
301     simError();
302     }
303     momentumFluxVector_.x() = mf[0];
304     momentumFluxVector_.y() = mf[1];
305     momentumFluxVector_.z() = mf[2];
306 gezelter 1773 } else {
307     momentumFluxVector_ = V3Zero;
308     if (hasMomentumFlux) {
309     RealType momentumFlux = rnemdParams->getMomentumFlux();
310     switch (rnemdFluxType_) {
311     case rnemdPx:
312     momentumFluxVector_.x() = momentumFlux;
313     break;
314     case rnemdPy:
315     momentumFluxVector_.y() = momentumFlux;
316     break;
317     case rnemdPz:
318     momentumFluxVector_.z() = momentumFlux;
319     break;
320     case rnemdKePx:
321     momentumFluxVector_.x() = momentumFlux;
322     break;
323     case rnemdKePy:
324     momentumFluxVector_.y() = momentumFlux;
325     break;
326     default:
327     break;
328     }
329 gezelter 1879 }
330 gezelter 2027 }
331     if (hasAngularMomentumFluxVector) {
332     std::vector<RealType> amf = rnemdParams->getAngularMomentumFluxVector();
333     if (amf.size() != 3) {
334     sprintf(painCave.errMsg,
335     "RNEMD: Incorrect number of parameters specified for angularMomentumFluxVector.\n"
336     "\tthere should be 3 parameters, but %lu were specified.\n",
337     amf.size());
338     painCave.isFatal = 1;
339     simError();
340 gezelter 1879 }
341 gezelter 2027 angularMomentumFluxVector_.x() = amf[0];
342     angularMomentumFluxVector_.y() = amf[1];
343     angularMomentumFluxVector_.z() = amf[2];
344     } else {
345     angularMomentumFluxVector_ = V3Zero;
346     if (hasAngularMomentumFlux) {
347     RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
348 gezelter 1879 switch (rnemdFluxType_) {
349 gezelter 2027 case rnemdLx:
350     angularMomentumFluxVector_.x() = angularMomentumFlux;
351 gezelter 1879 break;
352 gezelter 2027 case rnemdLy:
353     angularMomentumFluxVector_.y() = angularMomentumFlux;
354 gezelter 1879 break;
355     case rnemdLz:
356 gezelter 2027 angularMomentumFluxVector_.z() = angularMomentumFlux;
357 gezelter 1879 break;
358     case rnemdKeLx:
359 gezelter 2027 angularMomentumFluxVector_.x() = angularMomentumFlux;
360     break;
361 gezelter 1879 case rnemdKeLy:
362 gezelter 2027 angularMomentumFluxVector_.y() = angularMomentumFlux;
363     break;
364 gezelter 1879 case rnemdKeLz:
365 gezelter 2027 angularMomentumFluxVector_.z() = angularMomentumFlux;
366 gezelter 1879 break;
367     default:
368     break;
369     }
370 gezelter 2027 }
371     }
372    
373     if (hasCoordinateOrigin) {
374     std::vector<RealType> co = rnemdParams->getCoordinateOrigin();
375     if (co.size() != 3) {
376     sprintf(painCave.errMsg,
377     "RNEMD: Incorrect number of parameters specified for coordinateOrigin.\n"
378     "\tthere should be 3 parameters, but %lu were specified.\n",
379     co.size());
380     painCave.isFatal = 1;
381     simError();
382 gezelter 1629 }
383 gezelter 2027 coordinateOrigin_.x() = co[0];
384     coordinateOrigin_.y() = co[1];
385     coordinateOrigin_.z() = co[2];
386     } else {
387     coordinateOrigin_ = V3Zero;
388     }
389 gezelter 1879
390 gezelter 2027 // do some sanity checking
391    
392     int selectionCount = seleMan_.getSelectionCount();
393     int nIntegrable = info->getNGlobalIntegrableObjects();
394     if (selectionCount > nIntegrable) {
395     sprintf(painCave.errMsg,
396     "RNEMD: The current objectSelection,\n"
397     "\t\t%s\n"
398     "\thas resulted in %d selected objects. However,\n"
399     "\tthe total number of integrable objects in the system\n"
400     "\tis only %d. This is almost certainly not what you want\n"
401     "\tto do. A likely cause of this is forgetting the _RB_0\n"
402     "\tselector in the selection script!\n",
403     rnemdObjectSelection_.c_str(),
404     selectionCount, nIntegrable);
405     painCave.isFatal = 0;
406     painCave.severity = OPENMD_WARNING;
407     simError();
408     }
409    
410     areaAccumulator_ = new Accumulator();
411    
412     nBins_ = rnemdParams->getOutputBins();
413     binWidth_ = rnemdParams->getOutputBinWidth();
414    
415     data_.resize(RNEMD::ENDINDEX);
416     OutputData z;
417     z.units = "Angstroms";
418     z.title = "Z";
419     z.dataType = "RealType";
420     z.accumulator.reserve(nBins_);
421     for (int i = 0; i < nBins_; i++)
422     z.accumulator.push_back( new Accumulator() );
423     data_[Z] = z;
424     outputMap_["Z"] = Z;
425    
426     OutputData r;
427     r.units = "Angstroms";
428     r.title = "R";
429     r.dataType = "RealType";
430     r.accumulator.reserve(nBins_);
431     for (int i = 0; i < nBins_; i++)
432     r.accumulator.push_back( new Accumulator() );
433     data_[R] = r;
434     outputMap_["R"] = R;
435    
436     OutputData temperature;
437     temperature.units = "K";
438     temperature.title = "Temperature";
439     temperature.dataType = "RealType";
440     temperature.accumulator.reserve(nBins_);
441     for (int i = 0; i < nBins_; i++)
442     temperature.accumulator.push_back( new Accumulator() );
443     data_[TEMPERATURE] = temperature;
444     outputMap_["TEMPERATURE"] = TEMPERATURE;
445    
446     OutputData velocity;
447     velocity.units = "angstroms/fs";
448     velocity.title = "Velocity";
449     velocity.dataType = "Vector3d";
450     velocity.accumulator.reserve(nBins_);
451     for (int i = 0; i < nBins_; i++)
452     velocity.accumulator.push_back( new VectorAccumulator() );
453     data_[VELOCITY] = velocity;
454     outputMap_["VELOCITY"] = VELOCITY;
455    
456     OutputData angularVelocity;
457     angularVelocity.units = "angstroms^2/fs";
458     angularVelocity.title = "AngularVelocity";
459     angularVelocity.dataType = "Vector3d";
460     angularVelocity.accumulator.reserve(nBins_);
461     for (int i = 0; i < nBins_; i++)
462     angularVelocity.accumulator.push_back( new VectorAccumulator() );
463     data_[ANGULARVELOCITY] = angularVelocity;
464     outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
465    
466     OutputData density;
467     density.units = "g cm^-3";
468     density.title = "Density";
469     density.dataType = "RealType";
470     density.accumulator.reserve(nBins_);
471     for (int i = 0; i < nBins_; i++)
472     density.accumulator.push_back( new Accumulator() );
473     data_[DENSITY] = density;
474     outputMap_["DENSITY"] = DENSITY;
475    
476     if (hasOutputFields) {
477     parseOutputFileFormat(rnemdParams->getOutputFields());
478     } else {
479     if (usePeriodicBoundaryConditions_)
480     outputMask_.set(Z);
481     else
482     outputMask_.set(R);
483     switch (rnemdFluxType_) {
484     case rnemdKE:
485     case rnemdRotKE:
486     case rnemdFullKE:
487     outputMask_.set(TEMPERATURE);
488     break;
489     case rnemdPx:
490     case rnemdPy:
491     outputMask_.set(VELOCITY);
492     break;
493     case rnemdPz:
494     case rnemdPvector:
495     outputMask_.set(VELOCITY);
496     outputMask_.set(DENSITY);
497     break;
498     case rnemdLx:
499     case rnemdLy:
500     case rnemdLz:
501     case rnemdLvector:
502     outputMask_.set(ANGULARVELOCITY);
503     break;
504     case rnemdKeLx:
505     case rnemdKeLy:
506     case rnemdKeLz:
507     case rnemdKeLvector:
508     outputMask_.set(TEMPERATURE);
509     outputMask_.set(ANGULARVELOCITY);
510     break;
511     case rnemdKePx:
512     case rnemdKePy:
513     outputMask_.set(TEMPERATURE);
514     outputMask_.set(VELOCITY);
515     break;
516     case rnemdKePvector:
517     outputMask_.set(TEMPERATURE);
518     outputMask_.set(VELOCITY);
519     outputMask_.set(DENSITY);
520     break;
521     default:
522     break;
523     }
524     }
525    
526     if (hasOutputFileName) {
527     rnemdFileName_ = rnemdParams->getOutputFileName();
528     } else {
529     rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
530     }
531    
532     exchangeTime_ = rnemdParams->getExchangeTime();
533    
534     Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
535     // total exchange sums are zeroed out at the beginning:
536    
537     kineticExchange_ = 0.0;
538     momentumExchange_ = V3Zero;
539     angularMomentumExchange_ = V3Zero;
540    
541     std::ostringstream selectionAstream;
542     std::ostringstream selectionBstream;
543    
544     if (hasSelectionA_) {
545     selectionA_ = rnemdParams->getSelectionA();
546     } else {
547     if (usePeriodicBoundaryConditions_) {
548     Mat3x3d hmat = currentSnap_->getHmat();
549 gezelter 1879
550 gezelter 2027 if (hasSlabWidth)
551     slabWidth_ = rnemdParams->getSlabWidth();
552     else
553     slabWidth_ = hmat(2,2) / 10.0;
554 gezelter 1879
555 gezelter 2027 if (hasSlabACenter)
556     slabACenter_ = rnemdParams->getSlabACenter();
557     else
558     slabACenter_ = 0.0;
559 gezelter 1879
560 gezelter 2027 selectionAstream << "select wrappedz > "
561     << slabACenter_ - 0.5*slabWidth_
562     << " && wrappedz < "
563     << slabACenter_ + 0.5*slabWidth_;
564     selectionA_ = selectionAstream.str();
565     } else {
566     if (hasSphereARadius)
567     sphereARadius_ = rnemdParams->getSphereARadius();
568     else {
569     // use an initial guess to the size of the inner slab to be 1/10 the
570     // radius of an approximately spherical hull:
571     Thermo thermo(info);
572     RealType hVol = thermo.getHullVolume();
573     sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
574 gezelter 1879 }
575 gezelter 2027 selectionAstream << "select r < " << sphereARadius_;
576     selectionA_ = selectionAstream.str();
577 gezelter 1879 }
578 gezelter 2027 }
579 gezelter 1879
580 gezelter 2027 if (hasSelectionB_) {
581     selectionB_ = rnemdParams->getSelectionB();
582    
583     } else {
584     if (usePeriodicBoundaryConditions_) {
585     Mat3x3d hmat = currentSnap_->getHmat();
586 gezelter 1879
587 gezelter 2027 if (hasSlabWidth)
588     slabWidth_ = rnemdParams->getSlabWidth();
589     else
590     slabWidth_ = hmat(2,2) / 10.0;
591 gezelter 1879
592 gezelter 2027 if (hasSlabBCenter)
593     slabBCenter_ = rnemdParams->getSlabBCenter();
594     else
595     slabBCenter_ = hmat(2,2) / 2.0;
596 gezelter 1879
597 gezelter 2027 selectionBstream << "select wrappedz > "
598     << slabBCenter_ - 0.5*slabWidth_
599     << " && wrappedz < "
600     << slabBCenter_ + 0.5*slabWidth_;
601     selectionB_ = selectionBstream.str();
602     } else {
603     if (hasSphereBRadius_) {
604     sphereBRadius_ = rnemdParams->getSphereBRadius();
605     selectionBstream << "select r > " << sphereBRadius_;
606 gezelter 1879 selectionB_ = selectionBstream.str();
607     } else {
608 gezelter 2027 selectionB_ = "select hull";
609     BisHull_ = true;
610     hasSelectionB_ = true;
611 gezelter 1879 }
612     }
613     }
614 gezelter 2027
615    
616 gezelter 1879 // object evaluator:
617     evaluator_.loadScriptString(rnemdObjectSelection_);
618     seleMan_.setSelectionSet(evaluator_.evaluate());
619     evaluatorA_.loadScriptString(selectionA_);
620     evaluatorB_.loadScriptString(selectionB_);
621     seleManA_.setSelectionSet(evaluatorA_.evaluate());
622     seleManB_.setSelectionSet(evaluatorB_.evaluate());
623     commonA_ = seleManA_ & seleMan_;
624     commonB_ = seleManB_ & seleMan_;
625     }
626 gezelter 1773
627    
628 gezelter 1329 RNEMD::~RNEMD() {
629 gezelter 1776 if (!doRNEMD_) return;
630 skuang 1368 #ifdef IS_MPI
631     if (worldRank == 0) {
632     #endif
633 gezelter 1722
634 gezelter 1773 writeOutputFile();
635    
636     rnemdFile_.close();
637 jmarr 1728
638 skuang 1368 #ifdef IS_MPI
639     }
640     #endif
641 gezelter 1879
642     // delete all of the objects we created:
643     delete areaAccumulator_;
644     data_.clear();
645 gezelter 1329 }
646 gezelter 1773
647 gezelter 1879 void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
648     if (!doRNEMD_) return;
649     int selei;
650     int selej;
651 skuang 1330
652 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
653     Mat3x3d hmat = currentSnap_->getHmat();
654    
655 gezelter 1331 StuntDouble* sd;
656    
657 skuang 1338 RealType min_val;
658 gezelter 1971 int min_found = 0;
659 skuang 1338 StuntDouble* min_sd;
660    
661     RealType max_val;
662 gezelter 1971 int max_found = 0;
663 skuang 1338 StuntDouble* max_sd;
664    
665 gezelter 1879 for (sd = seleManA_.beginSelected(selei); sd != NULL;
666     sd = seleManA_.nextSelected(selei)) {
667 gezelter 1332
668 gezelter 1331 Vector3d pos = sd->getPos();
669 gezelter 1879
670 gezelter 1332 // wrap the stuntdouble's position back into the box:
671 gezelter 1879
672 gezelter 1331 if (usePeriodicBoundaryConditions_)
673 gezelter 1332 currentSnap_->wrapVector(pos);
674 gezelter 1879
675     RealType mass = sd->getMass();
676     Vector3d vel = sd->getVel();
677     RealType value;
678    
679     switch(rnemdFluxType_) {
680     case rnemdKE :
681 gezelter 1332
682 gezelter 1879 value = mass * vel.lengthSquare();
683    
684     if (sd->isDirectional()) {
685     Vector3d angMom = sd->getJ();
686     Mat3x3d I = sd->getI();
687 gezelter 1332
688 gezelter 1879 if (sd->isLinear()) {
689     int i = sd->linearAxis();
690     int j = (i + 1) % 3;
691     int k = (i + 2) % 3;
692     value += angMom[j] * angMom[j] / I(j, j) +
693     angMom[k] * angMom[k] / I(k, k);
694     } else {
695     value += angMom[0]*angMom[0]/I(0, 0)
696     + angMom[1]*angMom[1]/I(1, 1)
697     + angMom[2]*angMom[2]/I(2, 2);
698     }
699     } //angular momenta exchange enabled
700     value *= 0.5;
701     break;
702     case rnemdPx :
703     value = mass * vel[0];
704     break;
705     case rnemdPy :
706     value = mass * vel[1];
707     break;
708     case rnemdPz :
709     value = mass * vel[2];
710     break;
711     default :
712     break;
713     }
714     if (!max_found) {
715     max_val = value;
716     max_sd = sd;
717 gezelter 1971 max_found = 1;
718 gezelter 1879 } else {
719     if (max_val < value) {
720     max_val = value;
721     max_sd = sd;
722 gezelter 1332 }
723 gezelter 1879 }
724     }
725 gezelter 1332
726 gezelter 1879 for (sd = seleManB_.beginSelected(selej); sd != NULL;
727     sd = seleManB_.nextSelected(selej)) {
728    
729     Vector3d pos = sd->getPos();
730    
731     // wrap the stuntdouble's position back into the box:
732    
733     if (usePeriodicBoundaryConditions_)
734     currentSnap_->wrapVector(pos);
735    
736     RealType mass = sd->getMass();
737     Vector3d vel = sd->getVel();
738     RealType value;
739    
740     switch(rnemdFluxType_) {
741     case rnemdKE :
742    
743     value = mass * vel.lengthSquare();
744    
745     if (sd->isDirectional()) {
746     Vector3d angMom = sd->getJ();
747     Mat3x3d I = sd->getI();
748    
749     if (sd->isLinear()) {
750     int i = sd->linearAxis();
751     int j = (i + 1) % 3;
752     int k = (i + 2) % 3;
753     value += angMom[j] * angMom[j] / I(j, j) +
754     angMom[k] * angMom[k] / I(k, k);
755     } else {
756     value += angMom[0]*angMom[0]/I(0, 0)
757     + angMom[1]*angMom[1]/I(1, 1)
758     + angMom[2]*angMom[2]/I(2, 2);
759     }
760     } //angular momenta exchange enabled
761     value *= 0.5;
762     break;
763     case rnemdPx :
764     value = mass * vel[0];
765     break;
766     case rnemdPy :
767     value = mass * vel[1];
768     break;
769     case rnemdPz :
770     value = mass * vel[2];
771     break;
772     default :
773     break;
774 gezelter 1332 }
775 gezelter 1879
776     if (!min_found) {
777     min_val = value;
778     min_sd = sd;
779 gezelter 1971 min_found = 1;
780 gezelter 1879 } else {
781     if (min_val > value) {
782     min_val = value;
783     min_sd = sd;
784     }
785     }
786 gezelter 1331 }
787 gezelter 1773
788 gezelter 1793 #ifdef IS_MPI
789 gezelter 1969 int worldRank;
790     MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
791    
792     int my_min_found = min_found;
793     int my_max_found = max_found;
794 gezelter 1350
795     // Even if we didn't find a minimum, did someone else?
796 gezelter 1969 MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
797     MPI_COMM_WORLD);
798 gezelter 1350 // Even if we didn't find a maximum, did someone else?
799 gezelter 1969 MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
800     MPI_COMM_WORLD);
801 gezelter 1722 #endif
802    
803     if (max_found && min_found) {
804    
805     #ifdef IS_MPI
806     struct {
807     RealType val;
808     int rank;
809     } max_vals, min_vals;
810 jmarr 1728
811 gezelter 1722 if (my_min_found) {
812 gezelter 1350 min_vals.val = min_val;
813 gezelter 1722 } else {
814 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
815 gezelter 1722 }
816 gezelter 1350 min_vals.rank = worldRank;
817    
818     // Who had the minimum?
819 gezelter 1969 MPI_Allreduce(&min_vals, &min_vals,
820     1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
821 gezelter 1350 min_val = min_vals.val;
822    
823 gezelter 1722 if (my_max_found) {
824 gezelter 1350 max_vals.val = max_val;
825 gezelter 1722 } else {
826 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
827 gezelter 1722 }
828 gezelter 1350 max_vals.rank = worldRank;
829    
830     // Who had the maximum?
831 gezelter 1969 MPI_Allreduce(&max_vals, &max_vals,
832     1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
833 gezelter 1350 max_val = max_vals.val;
834     #endif
835 gezelter 1722
836 gezelter 1629 if (min_val < max_val) {
837 gezelter 1722
838 gezelter 1350 #ifdef IS_MPI
839     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
840     // I have both maximum and minimum, so proceed like a single
841     // processor version:
842     #endif
843 gezelter 1722
844 gezelter 1350 Vector3d min_vel = min_sd->getVel();
845     Vector3d max_vel = max_sd->getVel();
846     RealType temp_vel;
847    
848 gezelter 1773 switch(rnemdFluxType_) {
849     case rnemdKE :
850 gezelter 1350 min_sd->setVel(max_vel);
851     max_sd->setVel(min_vel);
852 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
853 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
854     Vector3d max_angMom = max_sd->getJ();
855     min_sd->setJ(max_angMom);
856     max_sd->setJ(min_angMom);
857 gezelter 1722 }//angular momenta exchange enabled
858     //assumes same rigid body identity
859 gezelter 1350 break;
860     case rnemdPx :
861     temp_vel = min_vel.x();
862     min_vel.x() = max_vel.x();
863     max_vel.x() = temp_vel;
864     min_sd->setVel(min_vel);
865     max_sd->setVel(max_vel);
866     break;
867     case rnemdPy :
868     temp_vel = min_vel.y();
869     min_vel.y() = max_vel.y();
870     max_vel.y() = temp_vel;
871     min_sd->setVel(min_vel);
872     max_sd->setVel(max_vel);
873     break;
874     case rnemdPz :
875     temp_vel = min_vel.z();
876     min_vel.z() = max_vel.z();
877     max_vel.z() = temp_vel;
878     min_sd->setVel(min_vel);
879     max_sd->setVel(max_vel);
880     break;
881     default :
882     break;
883     }
884 gezelter 1722
885 gezelter 1350 #ifdef IS_MPI
886     // the rest of the cases only apply in parallel simulations:
887     } else if (max_vals.rank == worldRank) {
888     // I had the max, but not the minimum
889    
890     Vector3d min_vel;
891     Vector3d max_vel = max_sd->getVel();
892 gezelter 1980 MPI_Status status;
893 skuang 1341
894 gezelter 1350 // point-to-point swap of the velocity vector
895 gezelter 1969 MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
896     min_vals.rank, 0,
897     min_vel.getArrayPointer(), 3, MPI_REALTYPE,
898 gezelter 1980 min_vals.rank, 0, MPI_COMM_WORLD, &status);
899 gezelter 1350
900 gezelter 1773 switch(rnemdFluxType_) {
901     case rnemdKE :
902 gezelter 1350 max_sd->setVel(min_vel);
903 gezelter 1722 //angular momenta exchange enabled
904 gezelter 1350 if (max_sd->isDirectional()) {
905     Vector3d min_angMom;
906     Vector3d max_angMom = max_sd->getJ();
907 gezelter 1629
908 gezelter 1350 // point-to-point swap of the angular momentum vector
909 gezelter 1969 MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
910     MPI_REALTYPE, min_vals.rank, 1,
911     min_angMom.getArrayPointer(), 3,
912     MPI_REALTYPE, min_vals.rank, 1,
913 gezelter 1980 MPI_COMM_WORLD, &status);
914 gezelter 1629
915 gezelter 1350 max_sd->setJ(min_angMom);
916 gezelter 1722 }
917 gezelter 1350 break;
918     case rnemdPx :
919     max_vel.x() = min_vel.x();
920     max_sd->setVel(max_vel);
921     break;
922     case rnemdPy :
923     max_vel.y() = min_vel.y();
924     max_sd->setVel(max_vel);
925     break;
926     case rnemdPz :
927     max_vel.z() = min_vel.z();
928     max_sd->setVel(max_vel);
929     break;
930     default :
931     break;
932 skuang 1341 }
933 gezelter 1350 } else if (min_vals.rank == worldRank) {
934     // I had the minimum but not the maximum:
935    
936     Vector3d max_vel;
937     Vector3d min_vel = min_sd->getVel();
938 gezelter 1980 MPI_Status status;
939 gezelter 1350
940     // point-to-point swap of the velocity vector
941 gezelter 1969 MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
942     max_vals.rank, 0,
943     max_vel.getArrayPointer(), 3, MPI_REALTYPE,
944 gezelter 1980 max_vals.rank, 0, MPI_COMM_WORLD, &status);
945 gezelter 1350
946 gezelter 1773 switch(rnemdFluxType_) {
947     case rnemdKE :
948 gezelter 1350 min_sd->setVel(max_vel);
949 gezelter 1722 //angular momenta exchange enabled
950 gezelter 1350 if (min_sd->isDirectional()) {
951     Vector3d min_angMom = min_sd->getJ();
952     Vector3d max_angMom;
953 gezelter 1629
954 gezelter 1350 // point-to-point swap of the angular momentum vector
955 gezelter 1969 MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
956     MPI_REALTYPE, max_vals.rank, 1,
957     max_angMom.getArrayPointer(), 3,
958     MPI_REALTYPE, max_vals.rank, 1,
959 gezelter 1980 MPI_COMM_WORLD, &status);
960 gezelter 1629
961 gezelter 1350 min_sd->setJ(max_angMom);
962     }
963     break;
964     case rnemdPx :
965     min_vel.x() = max_vel.x();
966     min_sd->setVel(min_vel);
967     break;
968     case rnemdPy :
969     min_vel.y() = max_vel.y();
970     min_sd->setVel(min_vel);
971     break;
972     case rnemdPz :
973     min_vel.z() = max_vel.z();
974     min_sd->setVel(min_vel);
975     break;
976     default :
977     break;
978     }
979     }
980     #endif
981 gezelter 1773
982     switch(rnemdFluxType_) {
983     case rnemdKE:
984     kineticExchange_ += max_val - min_val;
985     break;
986     case rnemdPx:
987     momentumExchange_.x() += max_val - min_val;
988     break;
989     case rnemdPy:
990     momentumExchange_.y() += max_val - min_val;
991     break;
992     case rnemdPz:
993     momentumExchange_.z() += max_val - min_val;
994     break;
995     default:
996     break;
997     }
998 gezelter 1629 } else {
999     sprintf(painCave.errMsg,
1000 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
1001 gezelter 1629 painCave.isFatal = 0;
1002     painCave.severity = OPENMD_INFO;
1003     simError();
1004 skuang 1368 failTrialCount_++;
1005 skuang 1338 }
1006     } else {
1007 gezelter 1629 sprintf(painCave.errMsg,
1008 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
1009     "\twas not present in at least one of the two slabs.\n");
1010 gezelter 1629 painCave.isFatal = 0;
1011     painCave.severity = OPENMD_INFO;
1012     simError();
1013 skuang 1368 failTrialCount_++;
1014 gezelter 1773 }
1015 skuang 1338 }
1016 gezelter 1350
1017 gezelter 1879 void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
1018 gezelter 1776 if (!doRNEMD_) return;
1019 gezelter 1879 int selei;
1020     int selej;
1021    
1022 skuang 1338 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1023 gezelter 1879 RealType time = currentSnap_->getTime();
1024 skuang 1338 Mat3x3d hmat = currentSnap_->getHmat();
1025    
1026     StuntDouble* sd;
1027    
1028 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
1029 gezelter 1350
1030 skuang 1368 RealType Phx = 0.0;
1031     RealType Phy = 0.0;
1032     RealType Phz = 0.0;
1033     RealType Khx = 0.0;
1034     RealType Khy = 0.0;
1035     RealType Khz = 0.0;
1036 gezelter 1722 RealType Khw = 0.0;
1037 skuang 1368 RealType Pcx = 0.0;
1038     RealType Pcy = 0.0;
1039     RealType Pcz = 0.0;
1040     RealType Kcx = 0.0;
1041     RealType Kcy = 0.0;
1042     RealType Kcz = 0.0;
1043 gezelter 1722 RealType Kcw = 0.0;
1044 skuang 1368
1045 gezelter 1879 for (sd = smanA.beginSelected(selei); sd != NULL;
1046     sd = smanA.nextSelected(selei)) {
1047 skuang 1368
1048     Vector3d pos = sd->getPos();
1049 gezelter 1879
1050 skuang 1368 // wrap the stuntdouble's position back into the box:
1051 gezelter 1879
1052 skuang 1368 if (usePeriodicBoundaryConditions_)
1053     currentSnap_->wrapVector(pos);
1054 gezelter 1879
1055    
1056     RealType mass = sd->getMass();
1057     Vector3d vel = sd->getVel();
1058    
1059     hotBin.push_back(sd);
1060     Phx += mass * vel.x();
1061     Phy += mass * vel.y();
1062     Phz += mass * vel.z();
1063     Khx += mass * vel.x() * vel.x();
1064     Khy += mass * vel.y() * vel.y();
1065     Khz += mass * vel.z() * vel.z();
1066     if (sd->isDirectional()) {
1067     Vector3d angMom = sd->getJ();
1068     Mat3x3d I = sd->getI();
1069     if (sd->isLinear()) {
1070     int i = sd->linearAxis();
1071     int j = (i + 1) % 3;
1072     int k = (i + 2) % 3;
1073     Khw += angMom[j] * angMom[j] / I(j, j) +
1074     angMom[k] * angMom[k] / I(k, k);
1075     } else {
1076     Khw += angMom[0]*angMom[0]/I(0, 0)
1077     + angMom[1]*angMom[1]/I(1, 1)
1078     + angMom[2]*angMom[2]/I(2, 2);
1079     }
1080     }
1081     }
1082     for (sd = smanB.beginSelected(selej); sd != NULL;
1083     sd = smanB.nextSelected(selej)) {
1084     Vector3d pos = sd->getPos();
1085    
1086     // wrap the stuntdouble's position back into the box:
1087    
1088     if (usePeriodicBoundaryConditions_)
1089     currentSnap_->wrapVector(pos);
1090    
1091     RealType mass = sd->getMass();
1092     Vector3d vel = sd->getVel();
1093 skuang 1368
1094 gezelter 1879 coldBin.push_back(sd);
1095     Pcx += mass * vel.x();
1096     Pcy += mass * vel.y();
1097     Pcz += mass * vel.z();
1098     Kcx += mass * vel.x() * vel.x();
1099     Kcy += mass * vel.y() * vel.y();
1100     Kcz += mass * vel.z() * vel.z();
1101     if (sd->isDirectional()) {
1102     Vector3d angMom = sd->getJ();
1103     Mat3x3d I = sd->getI();
1104     if (sd->isLinear()) {
1105     int i = sd->linearAxis();
1106     int j = (i + 1) % 3;
1107     int k = (i + 2) % 3;
1108     Kcw += angMom[j] * angMom[j] / I(j, j) +
1109     angMom[k] * angMom[k] / I(k, k);
1110     } else {
1111     Kcw += angMom[0]*angMom[0]/I(0, 0)
1112     + angMom[1]*angMom[1]/I(1, 1)
1113     + angMom[2]*angMom[2]/I(2, 2);
1114     }
1115 skuang 1368 }
1116     }
1117 gezelter 1722
1118 skuang 1368 Khx *= 0.5;
1119     Khy *= 0.5;
1120     Khz *= 0.5;
1121 gezelter 1722 Khw *= 0.5;
1122 skuang 1368 Kcx *= 0.5;
1123     Kcy *= 0.5;
1124     Kcz *= 0.5;
1125 gezelter 1722 Kcw *= 0.5;
1126 skuang 1368
1127     #ifdef IS_MPI
1128 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1129     MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1130     MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1131     MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1132     MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1133     MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1134 skuang 1368
1135 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1136     MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1137     MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1138     MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1139 gezelter 1722
1140 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1141     MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1142     MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1143     MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1144 skuang 1368 #endif
1145    
1146 gezelter 1722 //solve coldBin coeff's first
1147 skuang 1368 RealType px = Pcx / Phx;
1148     RealType py = Pcy / Phy;
1149     RealType pz = Pcz / Phz;
1150 gezelter 1722 RealType c, x, y, z;
1151     bool successfulScale = false;
1152 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
1153     (rnemdFluxType_ == rnemdRotKE)) {
1154 gezelter 1722 //may need sanity check Khw & Kcw > 0
1155 skuang 1368
1156 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1157     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1158 gezelter 1722 } else {
1159 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
1160 gezelter 1722 }
1161 skuang 1368
1162 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1163     c = sqrt(c);
1164 gezelter 1801
1165 gezelter 1722 RealType w = 0.0;
1166 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1167 gezelter 1722 x = 1.0 + px * (1.0 - c);
1168     y = 1.0 + py * (1.0 - c);
1169     z = 1.0 + pz * (1.0 - c);
1170     /* more complicated way
1171     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1172     + Khx * px * px + Khy * py * py + Khz * pz * pz)
1173     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1174     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1175     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1176     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1177     */
1178     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1179     (fabs(z - 1.0) < 0.1)) {
1180 gezelter 1773 w = 1.0 + (kineticTarget_
1181     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1182 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
1183     }//no need to calculate w if x, y or z is out of range
1184     } else {
1185 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
1186 gezelter 1722 }
1187     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1188     //if w is in the right range, so should be x, y, z.
1189     vector<StuntDouble*>::iterator sdi;
1190     Vector3d vel;
1191 gezelter 1879 for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1192 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1193 gezelter 1722 vel = (*sdi)->getVel() * c;
1194     (*sdi)->setVel(vel);
1195     }
1196     if ((*sdi)->isDirectional()) {
1197     Vector3d angMom = (*sdi)->getJ() * c;
1198     (*sdi)->setJ(angMom);
1199     }
1200     }
1201     w = sqrt(w);
1202 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1203 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1204 gezelter 1722 vel = (*sdi)->getVel();
1205     vel.x() *= x;
1206     vel.y() *= y;
1207     vel.z() *= z;
1208     (*sdi)->setVel(vel);
1209     }
1210     if ((*sdi)->isDirectional()) {
1211     Vector3d angMom = (*sdi)->getJ() * w;
1212     (*sdi)->setJ(angMom);
1213     }
1214     }
1215     successfulScale = true;
1216 gezelter 1773 kineticExchange_ += kineticTarget_;
1217 gezelter 1722 }
1218 skuang 1368 }
1219 gezelter 1722 } else {
1220     RealType a000, a110, c0, a001, a111, b01, b11, c1;
1221 gezelter 1773 switch(rnemdFluxType_) {
1222     case rnemdKE :
1223 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
1224     RealType px = Phx / Pcx;
1225     RealType py = Phy / Pcy;
1226     a110 = Khy;
1227 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
1228 gezelter 1722 a000 = Khx;
1229     a111 = Kcy * py * py;
1230     b11 = -2.0 * Kcy * py * (1.0 + py);
1231 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1232 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
1233     a001 = Kcx * px * px;
1234     */
1235     //scale all three dimensions, let c_x = c_y
1236     a000 = Kcx + Kcy;
1237     a110 = Kcz;
1238 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1239 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
1240     a111 = Khz * pz * pz;
1241     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1242     b11 = -2.0 * Khz * pz * (1.0 + pz);
1243     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1244 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
1245 gezelter 1722 break;
1246 gezelter 1773 case rnemdPx :
1247     c = 1 - momentumTarget_.x() / Pcx;
1248 gezelter 1722 a000 = Kcy;
1249     a110 = Kcz;
1250     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1251     a001 = py * py * Khy;
1252     a111 = pz * pz * Khz;
1253     b01 = -2.0 * Khy * py * (1.0 + py);
1254     b11 = -2.0 * Khz * pz * (1.0 + pz);
1255     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1256     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1257     break;
1258 gezelter 1773 case rnemdPy :
1259     c = 1 - momentumTarget_.y() / Pcy;
1260 gezelter 1722 a000 = Kcx;
1261     a110 = Kcz;
1262     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1263     a001 = px * px * Khx;
1264     a111 = pz * pz * Khz;
1265     b01 = -2.0 * Khx * px * (1.0 + px);
1266     b11 = -2.0 * Khz * pz * (1.0 + pz);
1267     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1268     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1269     break;
1270 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1271     c = 1 - momentumTarget_.z() / Pcz;
1272 gezelter 1722 a000 = Kcx;
1273     a110 = Kcy;
1274     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1275     a001 = px * px * Khx;
1276     a111 = py * py * Khy;
1277     b01 = -2.0 * Khx * px * (1.0 + px);
1278     b11 = -2.0 * Khy * py * (1.0 + py);
1279     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1280     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1281     break;
1282     default :
1283     break;
1284 skuang 1368 }
1285 gezelter 1722
1286     RealType v1 = a000 * a111 - a001 * a110;
1287     RealType v2 = a000 * b01;
1288     RealType v3 = a000 * b11;
1289     RealType v4 = a000 * c1 - a001 * c0;
1290     RealType v8 = a110 * b01;
1291     RealType v10 = - b01 * c0;
1292    
1293     RealType u0 = v2 * v10 - v4 * v4;
1294     RealType u1 = -2.0 * v3 * v4;
1295     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1296     RealType u3 = -2.0 * v1 * v3;
1297     RealType u4 = - v1 * v1;
1298     //rescale coefficients
1299     RealType maxAbs = fabs(u0);
1300     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1301     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1302     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1303     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1304     u0 /= maxAbs;
1305     u1 /= maxAbs;
1306     u2 /= maxAbs;
1307     u3 /= maxAbs;
1308     u4 /= maxAbs;
1309     //max_element(start, end) is also available.
1310     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1311     poly.setCoefficient(4, u4);
1312     poly.setCoefficient(3, u3);
1313     poly.setCoefficient(2, u2);
1314     poly.setCoefficient(1, u1);
1315     poly.setCoefficient(0, u0);
1316     vector<RealType> realRoots = poly.FindRealRoots();
1317    
1318     vector<RealType>::iterator ri;
1319     RealType r1, r2, alpha0;
1320     vector<pair<RealType,RealType> > rps;
1321 gezelter 1879 for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1322 gezelter 1722 r2 = *ri;
1323     //check if FindRealRoots() give the right answer
1324     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1325     sprintf(painCave.errMsg,
1326     "RNEMD Warning: polynomial solve seems to have an error!");
1327     painCave.isFatal = 0;
1328     simError();
1329     failRootCount_++;
1330     }
1331     //might not be useful w/o rescaling coefficients
1332     alpha0 = -c0 - a110 * r2 * r2;
1333     if (alpha0 >= 0.0) {
1334     r1 = sqrt(alpha0 / a000);
1335     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1336     < 1e-6)
1337     { rps.push_back(make_pair(r1, r2)); }
1338     if (r1 > 1e-6) { //r1 non-negative
1339     r1 = -r1;
1340     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1341     < 1e-6)
1342     { rps.push_back(make_pair(r1, r2)); }
1343     }
1344     }
1345 skuang 1368 }
1346 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1347     // best solution part so that we don't need the pairs vector
1348     if (!rps.empty()) {
1349     RealType smallestDiff = HONKING_LARGE_VALUE;
1350     RealType diff;
1351     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1352     vector<pair<RealType,RealType> >::iterator rpi;
1353 gezelter 1879 for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1354 gezelter 1722 r1 = (*rpi).first;
1355     r2 = (*rpi).second;
1356 gezelter 1773 switch(rnemdFluxType_) {
1357     case rnemdKE :
1358 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1359     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1360     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1361     break;
1362 gezelter 1773 case rnemdPx :
1363 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1364     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1365     break;
1366 gezelter 1773 case rnemdPy :
1367 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1368     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1369     break;
1370 gezelter 1773 case rnemdPz :
1371 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1372     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1373     default :
1374     break;
1375     }
1376     if (diff < smallestDiff) {
1377     smallestDiff = diff;
1378     bestPair = *rpi;
1379     }
1380     }
1381 skuang 1368 #ifdef IS_MPI
1382 gezelter 1722 if (worldRank == 0) {
1383 skuang 1368 #endif
1384 gezelter 1773 // sprintf(painCave.errMsg,
1385     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1386     // bestPair.first, bestPair.second);
1387     // painCave.isFatal = 0;
1388     // painCave.severity = OPENMD_INFO;
1389     // simError();
1390 skuang 1368 #ifdef IS_MPI
1391 gezelter 1722 }
1392 skuang 1368 #endif
1393 gezelter 1722
1394 gezelter 1773 switch(rnemdFluxType_) {
1395     case rnemdKE :
1396 gezelter 1722 x = bestPair.first;
1397     y = bestPair.first;
1398     z = bestPair.second;
1399     break;
1400 gezelter 1773 case rnemdPx :
1401 gezelter 1722 x = c;
1402     y = bestPair.first;
1403     z = bestPair.second;
1404     break;
1405 gezelter 1773 case rnemdPy :
1406 gezelter 1722 x = bestPair.first;
1407     y = c;
1408     z = bestPair.second;
1409     break;
1410 gezelter 1773 case rnemdPz :
1411 gezelter 1722 x = bestPair.first;
1412     y = bestPair.second;
1413     z = c;
1414     break;
1415     default :
1416     break;
1417     }
1418     vector<StuntDouble*>::iterator sdi;
1419     Vector3d vel;
1420 gezelter 1879 for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1421 gezelter 1722 vel = (*sdi)->getVel();
1422     vel.x() *= x;
1423     vel.y() *= y;
1424     vel.z() *= z;
1425     (*sdi)->setVel(vel);
1426     }
1427     //convert to hotBin coefficient
1428     x = 1.0 + px * (1.0 - x);
1429     y = 1.0 + py * (1.0 - y);
1430     z = 1.0 + pz * (1.0 - z);
1431 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1432 gezelter 1722 vel = (*sdi)->getVel();
1433     vel.x() *= x;
1434     vel.y() *= y;
1435     vel.z() *= z;
1436     (*sdi)->setVel(vel);
1437     }
1438     successfulScale = true;
1439 gezelter 1773 switch(rnemdFluxType_) {
1440     case rnemdKE :
1441     kineticExchange_ += kineticTarget_;
1442     break;
1443     case rnemdPx :
1444     case rnemdPy :
1445     case rnemdPz :
1446     momentumExchange_ += momentumTarget_;
1447     break;
1448     default :
1449     break;
1450     }
1451 gezelter 1629 }
1452 gezelter 1722 }
1453     if (successfulScale != true) {
1454     sprintf(painCave.errMsg,
1455 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1456     "\tthe constraint equations may not exist or there may be\n"
1457     "\tno selected objects in one or both slabs.\n");
1458 gezelter 1722 painCave.isFatal = 0;
1459     painCave.severity = OPENMD_INFO;
1460     simError();
1461     failTrialCount_++;
1462     }
1463     }
1464 gezelter 1879
1465     void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1466     if (!doRNEMD_) return;
1467     int selei;
1468     int selej;
1469 gezelter 1722
1470     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1471 jmarr 1728 RealType time = currentSnap_->getTime();
1472 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1473    
1474     StuntDouble* sd;
1475    
1476     vector<StuntDouble*> hotBin, coldBin;
1477    
1478     Vector3d Ph(V3Zero);
1479 gezelter 1879 Vector3d Lh(V3Zero);
1480 gezelter 1722 RealType Mh = 0.0;
1481 gezelter 1879 Mat3x3d Ih(0.0);
1482 gezelter 1722 RealType Kh = 0.0;
1483     Vector3d Pc(V3Zero);
1484 gezelter 1879 Vector3d Lc(V3Zero);
1485 gezelter 1722 RealType Mc = 0.0;
1486 gezelter 1879 Mat3x3d Ic(0.0);
1487 gezelter 1722 RealType Kc = 0.0;
1488 gezelter 1879
1489     // Constraints can be on only the linear or angular momentum, but
1490     // not both. Usually, the user will specify which they want, but
1491     // in case they don't, the use of periodic boundaries should make
1492     // the choice for us.
1493     bool doLinearPart = false;
1494     bool doAngularPart = false;
1495    
1496     switch (rnemdFluxType_) {
1497     case rnemdPx:
1498     case rnemdPy:
1499     case rnemdPz:
1500     case rnemdPvector:
1501     case rnemdKePx:
1502     case rnemdKePy:
1503     case rnemdKePvector:
1504     doLinearPart = true;
1505     break;
1506     case rnemdLx:
1507     case rnemdLy:
1508     case rnemdLz:
1509     case rnemdLvector:
1510     case rnemdKeLx:
1511     case rnemdKeLy:
1512     case rnemdKeLz:
1513     case rnemdKeLvector:
1514     doAngularPart = true;
1515     break;
1516     case rnemdKE:
1517     case rnemdRotKE:
1518     case rnemdFullKE:
1519     default:
1520     if (usePeriodicBoundaryConditions_)
1521     doLinearPart = true;
1522     else
1523     doAngularPart = true;
1524     break;
1525     }
1526 jmarr 1728
1527 gezelter 1879 for (sd = smanA.beginSelected(selei); sd != NULL;
1528     sd = smanA.nextSelected(selei)) {
1529 gezelter 1722
1530     Vector3d pos = sd->getPos();
1531    
1532     // wrap the stuntdouble's position back into the box:
1533 gezelter 1879
1534     if (usePeriodicBoundaryConditions_)
1535     currentSnap_->wrapVector(pos);
1536    
1537     RealType mass = sd->getMass();
1538     Vector3d vel = sd->getVel();
1539     Vector3d rPos = sd->getPos() - coordinateOrigin_;
1540     RealType r2;
1541    
1542     hotBin.push_back(sd);
1543     Ph += mass * vel;
1544     Mh += mass;
1545     Kh += mass * vel.lengthSquare();
1546     Lh += mass * cross(rPos, vel);
1547     Ih -= outProduct(rPos, rPos) * mass;
1548     r2 = rPos.lengthSquare();
1549     Ih(0, 0) += mass * r2;
1550     Ih(1, 1) += mass * r2;
1551     Ih(2, 2) += mass * r2;
1552    
1553     if (rnemdFluxType_ == rnemdFullKE) {
1554     if (sd->isDirectional()) {
1555     Vector3d angMom = sd->getJ();
1556     Mat3x3d I = sd->getI();
1557     if (sd->isLinear()) {
1558     int i = sd->linearAxis();
1559     int j = (i + 1) % 3;
1560     int k = (i + 2) % 3;
1561     Kh += angMom[j] * angMom[j] / I(j, j) +
1562     angMom[k] * angMom[k] / I(k, k);
1563     } else {
1564     Kh += angMom[0] * angMom[0] / I(0, 0) +
1565     angMom[1] * angMom[1] / I(1, 1) +
1566     angMom[2] * angMom[2] / I(2, 2);
1567     }
1568     }
1569     }
1570     }
1571     for (sd = smanB.beginSelected(selej); sd != NULL;
1572     sd = smanB.nextSelected(selej)) {
1573 gezelter 1722
1574 gezelter 1879 Vector3d pos = sd->getPos();
1575    
1576     // wrap the stuntdouble's position back into the box:
1577    
1578 gezelter 1722 if (usePeriodicBoundaryConditions_)
1579     currentSnap_->wrapVector(pos);
1580 gezelter 1879
1581     RealType mass = sd->getMass();
1582     Vector3d vel = sd->getVel();
1583     Vector3d rPos = sd->getPos() - coordinateOrigin_;
1584     RealType r2;
1585 gezelter 1722
1586 gezelter 1879 coldBin.push_back(sd);
1587     Pc += mass * vel;
1588     Mc += mass;
1589     Kc += mass * vel.lengthSquare();
1590     Lc += mass * cross(rPos, vel);
1591     Ic -= outProduct(rPos, rPos) * mass;
1592     r2 = rPos.lengthSquare();
1593     Ic(0, 0) += mass * r2;
1594     Ic(1, 1) += mass * r2;
1595     Ic(2, 2) += mass * r2;
1596 gezelter 1773
1597 gezelter 1879 if (rnemdFluxType_ == rnemdFullKE) {
1598     if (sd->isDirectional()) {
1599     Vector3d angMom = sd->getJ();
1600     Mat3x3d I = sd->getI();
1601     if (sd->isLinear()) {
1602     int i = sd->linearAxis();
1603     int j = (i + 1) % 3;
1604     int k = (i + 2) % 3;
1605     Kc += angMom[j] * angMom[j] / I(j, j) +
1606     angMom[k] * angMom[k] / I(k, k);
1607     } else {
1608     Kc += angMom[0] * angMom[0] / I(0, 0) +
1609     angMom[1] * angMom[1] / I(1, 1) +
1610     angMom[2] * angMom[2] / I(2, 2);
1611     }
1612     }
1613 skuang 1368 }
1614 gezelter 1722 }
1615    
1616     Kh *= 0.5;
1617     Kc *= 0.5;
1618 jmarr 1728
1619 gezelter 1722 #ifdef IS_MPI
1620 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1621     MPI_COMM_WORLD);
1622     MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1623     MPI_COMM_WORLD);
1624     MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1625     MPI_COMM_WORLD);
1626     MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1627     MPI_COMM_WORLD);
1628     MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1629     MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1630     MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1631     MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1632     MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1633     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1634     MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1635     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1636 gezelter 1722 #endif
1637 gezelter 1879
1638 gezelter 1722
1639 gezelter 1879 Vector3d ac, acrec, bc, bcrec;
1640     Vector3d ah, ahrec, bh, bhrec;
1641    
1642 gezelter 1722 bool successfulExchange = false;
1643     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1644     Vector3d vc = Pc / Mc;
1645 gezelter 1879 ac = -momentumTarget_ / Mc + vc;
1646     acrec = -momentumTarget_ / Mc;
1647    
1648     // We now need the inverse of the inertia tensor to calculate the
1649     // angular velocity of the cold slab;
1650     Mat3x3d Ici = Ic.inverse();
1651     Vector3d omegac = Ici * Lc;
1652     bc = -(Ici * angularMomentumTarget_) + omegac;
1653     bcrec = bc - omegac;
1654    
1655     RealType cNumerator = Kc - kineticTarget_;
1656     if (doLinearPart)
1657     cNumerator -= 0.5 * Mc * ac.lengthSquare();
1658    
1659     if (doAngularPart)
1660     cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1661    
1662 gezelter 1722 if (cNumerator > 0.0) {
1663 gezelter 1879
1664     RealType cDenominator = Kc;
1665    
1666     if (doLinearPart)
1667     cDenominator -= 0.5 * Mc * vc.lengthSquare();
1668    
1669     if (doAngularPart)
1670     cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1671    
1672 gezelter 1722 if (cDenominator > 0.0) {
1673     RealType c = sqrt(cNumerator / cDenominator);
1674     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1675 gezelter 1879
1676 gezelter 1722 Vector3d vh = Ph / Mh;
1677 gezelter 1879 ah = momentumTarget_ / Mh + vh;
1678     ahrec = momentumTarget_ / Mh;
1679    
1680     // We now need the inverse of the inertia tensor to
1681     // calculate the angular velocity of the hot slab;
1682     Mat3x3d Ihi = Ih.inverse();
1683     Vector3d omegah = Ihi * Lh;
1684     bh = (Ihi * angularMomentumTarget_) + omegah;
1685     bhrec = bh - omegah;
1686    
1687     RealType hNumerator = Kh + kineticTarget_;
1688     if (doLinearPart)
1689     hNumerator -= 0.5 * Mh * ah.lengthSquare();
1690    
1691     if (doAngularPart)
1692     hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1693    
1694     if (hNumerator > 0.0) {
1695    
1696     RealType hDenominator = Kh;
1697     if (doLinearPart)
1698     hDenominator -= 0.5 * Mh * vh.lengthSquare();
1699     if (doAngularPart)
1700     hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1701    
1702 gezelter 1722 if (hDenominator > 0.0) {
1703     RealType h = sqrt(hNumerator / hDenominator);
1704     if ((h > 0.9) && (h < 1.1)) {
1705 gezelter 1879
1706 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1707     Vector3d vel;
1708 gezelter 1879 Vector3d rPos;
1709    
1710     for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1711 gezelter 1722 //vel = (*sdi)->getVel();
1712 gezelter 1879 rPos = (*sdi)->getPos() - coordinateOrigin_;
1713     if (doLinearPart)
1714     vel = ((*sdi)->getVel() - vc) * c + ac;
1715     if (doAngularPart)
1716     vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1717    
1718 gezelter 1722 (*sdi)->setVel(vel);
1719 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1720 gezelter 1722 if ((*sdi)->isDirectional()) {
1721     Vector3d angMom = (*sdi)->getJ() * c;
1722     (*sdi)->setJ(angMom);
1723     }
1724     }
1725     }
1726 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1727 gezelter 1722 //vel = (*sdi)->getVel();
1728 gezelter 1879 rPos = (*sdi)->getPos() - coordinateOrigin_;
1729     if (doLinearPart)
1730     vel = ((*sdi)->getVel() - vh) * h + ah;
1731     if (doAngularPart)
1732     vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);
1733    
1734 gezelter 1722 (*sdi)->setVel(vel);
1735 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1736 gezelter 1722 if ((*sdi)->isDirectional()) {
1737     Vector3d angMom = (*sdi)->getJ() * h;
1738     (*sdi)->setJ(angMom);
1739     }
1740     }
1741     }
1742     successfulExchange = true;
1743 gezelter 1773 kineticExchange_ += kineticTarget_;
1744     momentumExchange_ += momentumTarget_;
1745 gezelter 1879 angularMomentumExchange_ += angularMomentumTarget_;
1746 gezelter 1722 }
1747     }
1748     }
1749     }
1750     }
1751 skuang 1368 }
1752 gezelter 1722 }
1753     if (successfulExchange != true) {
1754 gezelter 1773 sprintf(painCave.errMsg,
1755     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1756     "\tthe constraint equations may not exist or there may be\n"
1757     "\tno selected objects in one or both slabs.\n");
1758     painCave.isFatal = 0;
1759     painCave.severity = OPENMD_INFO;
1760     simError();
1761 skuang 1368 failTrialCount_++;
1762     }
1763     }
1764    
1765 gezelter 1879 RealType RNEMD::getDividingArea() {
1766    
1767     if (hasDividingArea_) return dividingArea_;
1768    
1769     RealType areaA, areaB;
1770     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1771    
1772     if (hasSelectionA_) {
1773 gezelter 1903
1774     if (evaluatorA_.hasSurfaceArea())
1775     areaA = evaluatorA_.getSurfaceArea();
1776     else {
1777    
1778     int isd;
1779     StuntDouble* sd;
1780     vector<StuntDouble*> aSites;
1781     seleManA_.setSelectionSet(evaluatorA_.evaluate());
1782     for (sd = seleManA_.beginSelected(isd); sd != NULL;
1783     sd = seleManA_.nextSelected(isd)) {
1784     aSites.push_back(sd);
1785     }
1786 gezelter 1879 #if defined(HAVE_QHULL)
1787 gezelter 1903 ConvexHull* surfaceMeshA = new ConvexHull();
1788     surfaceMeshA->computeHull(aSites);
1789     areaA = surfaceMeshA->getArea();
1790     delete surfaceMeshA;
1791 gezelter 1879 #else
1792 gezelter 1903 sprintf( painCave.errMsg,
1793 gezelter 1879 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1794 gezelter 1903 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1795     painCave.severity = OPENMD_ERROR;
1796     painCave.isFatal = 1;
1797     simError();
1798 gezelter 1879 #endif
1799 gezelter 1903 }
1800 gezelter 1879
1801     } else {
1802     if (usePeriodicBoundaryConditions_) {
1803     // in periodic boundaries, the surface area is twice the x-y
1804     // area of the current box:
1805     areaA = 2.0 * snap->getXYarea();
1806     } else {
1807     // in non-periodic simulations, without explicitly setting
1808     // selections, the sphere radius sets the surface area of the
1809     // dividing surface:
1810     areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1811     }
1812     }
1813    
1814     if (hasSelectionB_) {
1815 gezelter 1903 if (evaluatorB_.hasSurfaceArea())
1816     areaB = evaluatorB_.getSurfaceArea();
1817     else {
1818 gezelter 1879
1819 gezelter 1903 int isd;
1820     StuntDouble* sd;
1821     vector<StuntDouble*> bSites;
1822     seleManB_.setSelectionSet(evaluatorB_.evaluate());
1823     for (sd = seleManB_.beginSelected(isd); sd != NULL;
1824     sd = seleManB_.nextSelected(isd)) {
1825     bSites.push_back(sd);
1826     }
1827    
1828 gezelter 1879 #if defined(HAVE_QHULL)
1829 gezelter 1903 ConvexHull* surfaceMeshB = new ConvexHull();
1830     surfaceMeshB->computeHull(bSites);
1831     areaB = surfaceMeshB->getArea();
1832     delete surfaceMeshB;
1833 gezelter 1879 #else
1834 gezelter 1903 sprintf( painCave.errMsg,
1835     "RNEMD::getDividingArea : Hull calculation is not possible\n"
1836     "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1837     painCave.severity = OPENMD_ERROR;
1838     painCave.isFatal = 1;
1839     simError();
1840 gezelter 1879 #endif
1841 gezelter 1903 }
1842    
1843 gezelter 1879 } else {
1844     if (usePeriodicBoundaryConditions_) {
1845     // in periodic boundaries, the surface area is twice the x-y
1846     // area of the current box:
1847     areaB = 2.0 * snap->getXYarea();
1848     } else {
1849     // in non-periodic simulations, without explicitly setting
1850     // selections, but if a sphereBradius has been set, just use that:
1851     areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1852     }
1853     }
1854 gezelter 1903
1855 gezelter 1879 dividingArea_ = min(areaA, areaB);
1856     hasDividingArea_ = true;
1857     return dividingArea_;
1858     }
1859    
1860 skuang 1368 void RNEMD::doRNEMD() {
1861 gezelter 1776 if (!doRNEMD_) return;
1862 gezelter 1773 trialCount_++;
1863 gezelter 1879
1864     // object evaluator:
1865     evaluator_.loadScriptString(rnemdObjectSelection_);
1866     seleMan_.setSelectionSet(evaluator_.evaluate());
1867    
1868     evaluatorA_.loadScriptString(selectionA_);
1869     evaluatorB_.loadScriptString(selectionB_);
1870    
1871     seleManA_.setSelectionSet(evaluatorA_.evaluate());
1872     seleManB_.setSelectionSet(evaluatorB_.evaluate());
1873    
1874     commonA_ = seleManA_ & seleMan_;
1875     commonB_ = seleManB_ & seleMan_;
1876    
1877     // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1878     // dt = exchange time interval
1879     // flux = target flux
1880     // dividingArea = smallest dividing surface between the two regions
1881    
1882     hasDividingArea_ = false;
1883     RealType area = getDividingArea();
1884    
1885     kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1886     momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1887     angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1888    
1889 gezelter 1773 switch(rnemdMethod_) {
1890     case rnemdSwap:
1891 gezelter 1879 doSwap(commonA_, commonB_);
1892 skuang 1368 break;
1893 gezelter 1773 case rnemdNIVS:
1894 gezelter 1879 doNIVS(commonA_, commonB_);
1895 gezelter 1722 break;
1896 gezelter 1773 case rnemdVSS:
1897 gezelter 1879 doVSS(commonA_, commonB_);
1898 gezelter 1773 break;
1899     case rnemdUnkownMethod:
1900 skuang 1368 default :
1901     break;
1902     }
1903     }
1904    
1905     void RNEMD::collectData() {
1906 gezelter 1776 if (!doRNEMD_) return;
1907 skuang 1368 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1908 gezelter 2027
1909 gezelter 1879 // collectData can be called more frequently than the doRNEMD, so use the
1910     // computed area from the last exchange time:
1911     RealType area = getDividingArea();
1912     areaAccumulator_->add(area);
1913 skuang 1368 Mat3x3d hmat = currentSnap_->getHmat();
1914 gezelter 1940 Vector3d u = angularMomentumFluxVector_;
1915     u.normalize();
1916    
1917 skuang 1368 seleMan_.setSelectionSet(evaluator_.evaluate());
1918    
1919 gezelter 1801 int selei(0);
1920 skuang 1368 StuntDouble* sd;
1921 gezelter 1879 int binNo;
1922 gezelter 1941 RealType mass;
1923     Vector3d vel;
1924     Vector3d rPos;
1925     RealType KE;
1926     Vector3d L;
1927     Mat3x3d I;
1928     RealType r2;
1929 skuang 1368
1930 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1931 gezelter 1941 vector<Vector3d> binP(nBins_, V3Zero);
1932 gezelter 1940 vector<RealType> binOmega(nBins_, 0.0);
1933 gezelter 1941 vector<Vector3d> binL(nBins_, V3Zero);
1934     vector<Mat3x3d> binI(nBins_);
1935 gezelter 1773 vector<RealType> binKE(nBins_, 0.0);
1936     vector<int> binDOF(nBins_, 0);
1937     vector<int> binCount(nBins_, 0);
1938 jmarr 1728
1939 gezelter 1629 // alternative approach, track all molecules instead of only those
1940     // selected for scaling/swapping:
1941     /*
1942 gezelter 1879 SimInfo::MoleculeIterator miter;
1943     vector<StuntDouble*>::iterator iiter;
1944     Molecule* mol;
1945     StuntDouble* sd;
1946     for (mol = info_->beginMolecule(miter); mol != NULL;
1947 jmarr 1728 mol = info_->nextMolecule(miter))
1948 gezelter 1769 sd is essentially sd
1949 gezelter 1879 for (sd = mol->beginIntegrableObject(iiter);
1950     sd != NULL;
1951     sd = mol->nextIntegrableObject(iiter))
1952 gezelter 1629 */
1953 gezelter 1801
1954 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1955 gezelter 1793 sd = seleMan_.nextSelected(selei)) {
1956 gezelter 1801
1957 skuang 1338 Vector3d pos = sd->getPos();
1958    
1959     // wrap the stuntdouble's position back into the box:
1960    
1961 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1962 skuang 1338 currentSnap_->wrapVector(pos);
1963 gezelter 1879 // which bin is this stuntdouble in?
1964     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1965     // Shift molecules by half a box to have bins start at 0
1966     // The modulo operator is used to wrap the case when we are
1967     // beyond the end of the bins back to the beginning.
1968     binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1969     } else {
1970     Vector3d rPos = pos - coordinateOrigin_;
1971     binNo = int(rPos.length() / binWidth_);
1972     }
1973 gezelter 1773
1974 gezelter 1941 mass = sd->getMass();
1975     vel = sd->getVel();
1976     rPos = sd->getPos() - coordinateOrigin_;
1977 gezelter 1946 KE = 0.5 * mass * vel.lengthSquare();
1978 gezelter 1941 L = mass * cross(rPos, vel);
1979     I = outProduct(rPos, rPos) * mass;
1980     r2 = rPos.lengthSquare();
1981     I(0, 0) += mass * r2;
1982     I(1, 1) += mass * r2;
1983     I(2, 2) += mass * r2;
1984 gezelter 1940
1985     // Project the relative position onto a plane perpendicular to
1986     // the angularMomentumFluxVector:
1987 gezelter 1941 // Vector3d rProj = rPos - dot(rPos, u) * u;
1988 gezelter 1940 // Project the velocity onto a plane perpendicular to the
1989     // angularMomentumFluxVector:
1990 gezelter 1941 // Vector3d vProj = vel - dot(vel, u) * u;
1991 gezelter 1940 // Compute angular velocity vector (should be nearly parallel to
1992     // angularMomentumFluxVector
1993 gezelter 1941 // Vector3d aVel = cross(rProj, vProj);
1994    
1995 gezelter 1879 if (binNo >= 0 && binNo < nBins_) {
1996     binCount[binNo]++;
1997     binMass[binNo] += mass;
1998 gezelter 1941 binP[binNo] += mass*vel;
1999     binKE[binNo] += KE;
2000     binI[binNo] += I;
2001     binL[binNo] += L;
2002 gezelter 1879 binDOF[binNo] += 3;
2003    
2004     if (sd->isDirectional()) {
2005     Vector3d angMom = sd->getJ();
2006 gezelter 1941 Mat3x3d Ia = sd->getI();
2007 gezelter 1879 if (sd->isLinear()) {
2008     int i = sd->linearAxis();
2009     int j = (i + 1) % 3;
2010     int k = (i + 2) % 3;
2011 gezelter 1941 binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
2012     angMom[k] * angMom[k] / Ia(k, k));
2013 gezelter 1879 binDOF[binNo] += 2;
2014     } else {
2015 gezelter 1941 binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
2016     angMom[1] * angMom[1] / Ia(1, 1) +
2017     angMom[2] * angMom[2] / Ia(2, 2));
2018 gezelter 1879 binDOF[binNo] += 3;
2019     }
2020 gezelter 1773 }
2021 gezelter 1722 }
2022 gezelter 1773 }
2023 gezelter 2027
2024 gezelter 1773 #ifdef IS_MPI
2025 gezelter 1941
2026     for (int i = 0; i < nBins_; i++) {
2027 gezelter 1969
2028     MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
2029     1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2030     MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2031     1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2032 gezelter 1971 MPI_Allreduce(MPI_IN_PLACE, binP[i].getArrayPointer(),
2033 gezelter 1969 3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2034 gezelter 1971 MPI_Allreduce(MPI_IN_PLACE, binL[i].getArrayPointer(),
2035 gezelter 1969 3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2036 gezelter 1971 MPI_Allreduce(MPI_IN_PLACE, binI[i].getArrayPointer(),
2037 gezelter 1969 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2038     MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2039     1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2040     MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2041     1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2042     //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2043     // 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2044 gezelter 1941 }
2045    
2046 gezelter 1773 #endif
2047    
2048 gezelter 1941 Vector3d omega;
2049 gezelter 1773 RealType den;
2050     RealType temp;
2051     RealType z;
2052 gezelter 1879 RealType r;
2053 gezelter 1773 for (int i = 0; i < nBins_; i++) {
2054 gezelter 1879 if (usePeriodicBoundaryConditions_) {
2055     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2056     den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2057     / currentSnap_->getVolume() ;
2058     } else {
2059     r = (((RealType)i + 0.5) * binWidth_);
2060     RealType rinner = (RealType)i * binWidth_;
2061     RealType router = (RealType)(i+1) * binWidth_;
2062     den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2063     / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2064     }
2065 gezelter 1941 vel = binP[i] / binMass[i];
2066 gezelter 1777
2067 gezelter 1941 omega = binI[i].inverse() * binL[i];
2068    
2069     // omega = binOmega[i] / binCount[i];
2070    
2071 gezelter 1804 if (binCount[i] > 0) {
2072     // only add values if there are things to add
2073     temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2074     PhysicalConstants::energyConvert);
2075    
2076     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2077     if(outputMask_[j]) {
2078     switch(j) {
2079     case Z:
2080     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2081     break;
2082 gezelter 1879 case R:
2083     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2084     break;
2085 gezelter 1804 case TEMPERATURE:
2086     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2087     break;
2088     case VELOCITY:
2089     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2090     break;
2091 gezelter 1879 case ANGULARVELOCITY:
2092 gezelter 1941 dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2093 gezelter 1879 break;
2094 gezelter 1804 case DENSITY:
2095     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2096     break;
2097     }
2098 gezelter 1773 }
2099     }
2100 gezelter 1629 }
2101 skuang 1338 }
2102 gezelter 1879 hasData_ = true;
2103 skuang 1368 }
2104    
2105     void RNEMD::getStarted() {
2106 gezelter 1776 if (!doRNEMD_) return;
2107 gezelter 1879 hasDividingArea_ = false;
2108 gezelter 1629 collectData();
2109 gezelter 1773 writeOutputFile();
2110 skuang 1368 }
2111    
2112 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
2113 gezelter 1776 if (!doRNEMD_) return;
2114 gezelter 1773 StringTokenizer tokenizer(format, " ,;|\t\n\r");
2115    
2116     while(tokenizer.hasMoreTokens()) {
2117     std::string token(tokenizer.nextToken());
2118     toUpper(token);
2119     OutputMapType::iterator i = outputMap_.find(token);
2120     if (i != outputMap_.end()) {
2121     outputMask_.set(i->second);
2122     } else {
2123     sprintf( painCave.errMsg,
2124     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2125     "\toutputFileFormat keyword.\n", token.c_str() );
2126     painCave.isFatal = 0;
2127     painCave.severity = OPENMD_ERROR;
2128     simError();
2129     }
2130 gezelter 2027 }
2131 gezelter 1773 }
2132    
2133     void RNEMD::writeOutputFile() {
2134 gezelter 1776 if (!doRNEMD_) return;
2135 gezelter 1879 if (!hasData_) return;
2136 gezelter 1773
2137 gezelter 1350 #ifdef IS_MPI
2138     // If we're the root node, should we print out the results
2139 gezelter 1969 int worldRank;
2140     MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2141    
2142 gezelter 1350 if (worldRank == 0) {
2143     #endif
2144 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2145    
2146     if( !rnemdFile_ ){
2147     sprintf( painCave.errMsg,
2148     "Could not open \"%s\" for RNEMD output.\n",
2149     rnemdFileName_.c_str());
2150     painCave.isFatal = 1;
2151     simError();
2152     }
2153 gezelter 1722
2154 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2155    
2156     RealType time = currentSnap_->getTime();
2157 gezelter 1774 RealType avgArea;
2158     areaAccumulator_->getAverage(avgArea);
2159    
2160 gezelter 1879 RealType Jz(0.0);
2161     Vector3d JzP(V3Zero);
2162     Vector3d JzL(V3Zero);
2163     if (time >= info_->getSimParams()->getDt()) {
2164     Jz = kineticExchange_ / (time * avgArea)
2165     / PhysicalConstants::energyConvert;
2166     JzP = momentumExchange_ / (time * avgArea);
2167     JzL = angularMomentumExchange_ / (time * avgArea);
2168     }
2169    
2170 gezelter 1773 rnemdFile_ << "#######################################################\n";
2171     rnemdFile_ << "# RNEMD {\n";
2172    
2173     map<string, RNEMDMethod>::iterator mi;
2174     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2175     if ( (*mi).second == rnemdMethod_)
2176 gezelter 1774 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
2177 skuang 1368 }
2178 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
2179     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2180     if ( (*fi).second == rnemdFluxType_)
2181 gezelter 1774 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
2182 gezelter 1722 }
2183 gezelter 1773
2184 gezelter 1775 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
2185 gezelter 1773
2186     rnemdFile_ << "# objectSelection = \""
2187 gezelter 1774 << rnemdObjectSelection_ << "\";\n";
2188 gezelter 1879 rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n";
2189     rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n";
2190 gezelter 1773 rnemdFile_ << "# }\n";
2191     rnemdFile_ << "#######################################################\n";
2192 gezelter 1774 rnemdFile_ << "# RNEMD report:\n";
2193 gezelter 1879 rnemdFile_ << "# running time = " << time << " fs\n";
2194     rnemdFile_ << "# Target flux:\n";
2195     rnemdFile_ << "# kinetic = "
2196 gezelter 1777 << kineticFlux_ / PhysicalConstants::energyConvert
2197     << " (kcal/mol/A^2/fs)\n";
2198 gezelter 1879 rnemdFile_ << "# momentum = " << momentumFluxVector_
2199 gezelter 1777 << " (amu/A/fs^2)\n";
2200 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_
2201     << " (amu/A^2/fs^2)\n";
2202     rnemdFile_ << "# Target one-time exchanges:\n";
2203     rnemdFile_ << "# kinetic = "
2204 gezelter 1777 << kineticTarget_ / PhysicalConstants::energyConvert
2205     << " (kcal/mol)\n";
2206 gezelter 1879 rnemdFile_ << "# momentum = " << momentumTarget_
2207 gezelter 1777 << " (amu*A/fs)\n";
2208 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumTarget_
2209     << " (amu*A^2/fs)\n";
2210     rnemdFile_ << "# Actual exchange totals:\n";
2211     rnemdFile_ << "# kinetic = "
2212 gezelter 1777 << kineticExchange_ / PhysicalConstants::energyConvert
2213     << " (kcal/mol)\n";
2214 gezelter 1879 rnemdFile_ << "# momentum = " << momentumExchange_
2215 gezelter 1777 << " (amu*A/fs)\n";
2216 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumExchange_
2217     << " (amu*A^2/fs)\n";
2218     rnemdFile_ << "# Actual flux:\n";
2219     rnemdFile_ << "# kinetic = " << Jz
2220 gezelter 1777 << " (kcal/mol/A^2/fs)\n";
2221 gezelter 1879 rnemdFile_ << "# momentum = " << JzP
2222 gezelter 1777 << " (amu/A/fs^2)\n";
2223 gezelter 1879 rnemdFile_ << "# angular momentum = " << JzL
2224     << " (amu/A^2/fs^2)\n";
2225     rnemdFile_ << "# Exchange statistics:\n";
2226     rnemdFile_ << "# attempted = " << trialCount_ << "\n";
2227     rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
2228 gezelter 1773 if (rnemdMethod_ == rnemdNIVS) {
2229 gezelter 1879 rnemdFile_ << "# NIVS root-check errors = "
2230 gezelter 1774 << failRootCount_ << "\n";
2231 gezelter 1722 }
2232 gezelter 1773 rnemdFile_ << "#######################################################\n";
2233    
2234    
2235    
2236     //write title
2237     rnemdFile_ << "#";
2238     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2239     if (outputMask_[i]) {
2240     rnemdFile_ << "\t" << data_[i].title <<
2241     "(" << data_[i].units << ")";
2242 gezelter 1777 // add some extra tabs for column alignment
2243     if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2244 skuang 1368 }
2245 gezelter 1773 }
2246     rnemdFile_ << std::endl;
2247    
2248     rnemdFile_.precision(8);
2249    
2250 gezelter 1789 for (int j = 0; j < nBins_; j++) {
2251 gezelter 1773
2252     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2253     if (outputMask_[i]) {
2254     if (data_[i].dataType == "RealType")
2255     writeReal(i,j);
2256 gezelter 1879 else if (data_[i].dataType == "Vector3d")
2257 gezelter 1773 writeVector(i,j);
2258     else {
2259     sprintf( painCave.errMsg,
2260     "RNEMD found an unknown data type for: %s ",
2261     data_[i].title.c_str());
2262     painCave.isFatal = 1;
2263     simError();
2264     }
2265     }
2266 skuang 1368 }
2267 gezelter 1773 rnemdFile_ << std::endl;
2268    
2269     }
2270 gezelter 1774
2271     rnemdFile_ << "#######################################################\n";
2272 gezelter 1979 rnemdFile_ << "# 95% confidence intervals in those quantities follow:\n";
2273 gezelter 1774 rnemdFile_ << "#######################################################\n";
2274    
2275    
2276 gezelter 1789 for (int j = 0; j < nBins_; j++) {
2277 gezelter 1774 rnemdFile_ << "#";
2278     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2279     if (outputMask_[i]) {
2280     if (data_[i].dataType == "RealType")
2281 gezelter 1979 writeRealErrorBars(i,j);
2282 gezelter 1774 else if (data_[i].dataType == "Vector3d")
2283 gezelter 1979 writeVectorErrorBars(i,j);
2284 gezelter 1774 else {
2285     sprintf( painCave.errMsg,
2286     "RNEMD found an unknown data type for: %s ",
2287     data_[i].title.c_str());
2288     painCave.isFatal = 1;
2289     simError();
2290     }
2291     }
2292     }
2293     rnemdFile_ << std::endl;
2294    
2295     }
2296 gezelter 1773
2297     rnemdFile_.flush();
2298     rnemdFile_.close();
2299    
2300 gezelter 1350 #ifdef IS_MPI
2301 gezelter 1396 }
2302 gezelter 1350 #endif
2303 jmarr 1728
2304 gezelter 1334 }
2305 gezelter 1773
2306     void RNEMD::writeReal(int index, unsigned int bin) {
2307 gezelter 1776 if (!doRNEMD_) return;
2308 gezelter 1773 assert(index >=0 && index < ENDINDEX);
2309 gezelter 1879 assert(int(bin) < nBins_);
2310 gezelter 1773 RealType s;
2311 gezelter 1879 int count;
2312 gezelter 1773
2313 gezelter 1879 count = data_[index].accumulator[bin]->count();
2314     if (count == 0) return;
2315    
2316 gezelter 1791 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2317 gezelter 1773
2318     if (! isinf(s) && ! isnan(s)) {
2319     rnemdFile_ << "\t" << s;
2320     } else{
2321     sprintf( painCave.errMsg,
2322 gezelter 1879 "RNEMD detected a numerical error writing: %s for bin %u",
2323 gezelter 1773 data_[index].title.c_str(), bin);
2324     painCave.isFatal = 1;
2325     simError();
2326     }
2327     }
2328    
2329     void RNEMD::writeVector(int index, unsigned int bin) {
2330 gezelter 1776 if (!doRNEMD_) return;
2331 gezelter 1773 assert(index >=0 && index < ENDINDEX);
2332 gezelter 1879 assert(int(bin) < nBins_);
2333 gezelter 1773 Vector3d s;
2334 gezelter 1879 int count;
2335    
2336     count = data_[index].accumulator[bin]->count();
2337    
2338     if (count == 0) return;
2339    
2340 gezelter 1773 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2341     if (isinf(s[0]) || isnan(s[0]) ||
2342     isinf(s[1]) || isnan(s[1]) ||
2343     isinf(s[2]) || isnan(s[2]) ) {
2344     sprintf( painCave.errMsg,
2345 gezelter 1879 "RNEMD detected a numerical error writing: %s for bin %u",
2346 gezelter 1773 data_[index].title.c_str(), bin);
2347     painCave.isFatal = 1;
2348     simError();
2349     } else {
2350     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2351     }
2352     }
2353 gezelter 1774
2354 gezelter 1979 void RNEMD::writeRealErrorBars(int index, unsigned int bin) {
2355 gezelter 1776 if (!doRNEMD_) return;
2356 gezelter 1774 assert(index >=0 && index < ENDINDEX);
2357 gezelter 1879 assert(int(bin) < nBins_);
2358 gezelter 1774 RealType s;
2359 gezelter 1879 int count;
2360 gezelter 1774
2361 gezelter 1879 count = data_[index].accumulator[bin]->count();
2362     if (count == 0) return;
2363    
2364 gezelter 1979 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2365 gezelter 1774
2366     if (! isinf(s) && ! isnan(s)) {
2367     rnemdFile_ << "\t" << s;
2368     } else{
2369     sprintf( painCave.errMsg,
2370 gezelter 1879 "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2371 gezelter 1774 data_[index].title.c_str(), bin);
2372     painCave.isFatal = 1;
2373     simError();
2374     }
2375     }
2376    
2377 gezelter 1979 void RNEMD::writeVectorErrorBars(int index, unsigned int bin) {
2378 gezelter 1776 if (!doRNEMD_) return;
2379 gezelter 1774 assert(index >=0 && index < ENDINDEX);
2380 gezelter 1879 assert(int(bin) < nBins_);
2381 gezelter 1774 Vector3d s;
2382 gezelter 1879 int count;
2383    
2384     count = data_[index].accumulator[bin]->count();
2385     if (count == 0) return;
2386    
2387 gezelter 1979 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->get95percentConfidenceInterval(s);
2388 gezelter 1774 if (isinf(s[0]) || isnan(s[0]) ||
2389     isinf(s[1]) || isnan(s[1]) ||
2390     isinf(s[2]) || isnan(s[2]) ) {
2391     sprintf( painCave.errMsg,
2392 gezelter 1879 "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2393 gezelter 1774 data_[index].title.c_str(), bin);
2394     painCave.isFatal = 1;
2395     simError();
2396     } else {
2397     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2398     }
2399     }
2400 skuang 1338 }
2401 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date