ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
Revision: 1969
Committed: Wed Feb 26 14:14:50 2014 UTC (11 years, 2 months ago) by gezelter
File size: 76508 byte(s)
Log Message:
Fixes to deal with deprecation of MPI C++ bindings.  We've reverted back to the
C calls.

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41 gezelter 1938 #ifdef IS_MPI
42     #include <mpi.h>
43     #endif
44 gezelter 1329
45 skuang 1368 #include <cmath>
46 gezelter 1879 #include <sstream>
47     #include <string>
48    
49 gezelter 1731 #include "rnemd/RNEMD.hpp"
50 gezelter 1332 #include "math/Vector3.hpp"
51 gezelter 1722 #include "math/Vector.hpp"
52 gezelter 1329 #include "math/SquareMatrix3.hpp"
53 skuang 1368 #include "math/Polynomial.hpp"
54 gezelter 1329 #include "primitives/Molecule.hpp"
55     #include "primitives/StuntDouble.hpp"
56 gezelter 1390 #include "utils/PhysicalConstants.hpp"
57 gezelter 1332 #include "utils/Tuple.hpp"
58 gezelter 1879 #include "brains/Thermo.hpp"
59     #include "math/ConvexHull.hpp"
60 gezelter 1329
61 gezelter 1789 #ifdef _MSC_VER
62     #define isnan(x) _isnan((x))
63     #define isinf(x) (!_finite(x) && !_isnan(x))
64     #endif
65    
66 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
67 gezelter 1329
68 gezelter 1629 using namespace std;
69 gezelter 1390 namespace OpenMD {
70 gezelter 1329
71 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 gezelter 1879 evaluatorA_(info), seleManA_(info),
73     commonA_(info), evaluatorB_(info),
74     seleManB_(info), commonB_(info),
75     hasData_(false), hasDividingArea_(false),
76 gezelter 1629 usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77 skuang 1368
78 gezelter 1773 trialCount_ = 0;
79 skuang 1368 failTrialCount_ = 0;
80     failRootCount_ = 0;
81    
82 gezelter 1879 Globals* simParams = info->getSimParams();
83 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84 skuang 1330
85 gezelter 1776 doRNEMD_ = rnemdParams->getUseRNEMD();
86     if (!doRNEMD_) return;
87    
88 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
89     stringToMethod_["NIVS"] = rnemdNIVS;
90     stringToMethod_["VSS"] = rnemdVSS;
91 skuang 1330
92 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
93     stringToFluxType_["Px"] = rnemdPx;
94     stringToFluxType_["Py"] = rnemdPy;
95     stringToFluxType_["Pz"] = rnemdPz;
96 gezelter 1777 stringToFluxType_["Pvector"] = rnemdPvector;
97 gezelter 1879 stringToFluxType_["Lx"] = rnemdLx;
98     stringToFluxType_["Ly"] = rnemdLy;
99     stringToFluxType_["Lz"] = rnemdLz;
100     stringToFluxType_["Lvector"] = rnemdLvector;
101 gezelter 1773 stringToFluxType_["KE+Px"] = rnemdKePx;
102     stringToFluxType_["KE+Py"] = rnemdKePy;
103     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
104 gezelter 1879 stringToFluxType_["KE+Lx"] = rnemdKeLx;
105     stringToFluxType_["KE+Ly"] = rnemdKeLy;
106     stringToFluxType_["KE+Lz"] = rnemdKeLz;
107     stringToFluxType_["KE+Lvector"] = rnemdKeLvector;
108 gezelter 1773
109 jmarr 1728 runTime_ = simParams->getRunTime();
110     statusTime_ = simParams->getStatusTime();
111    
112 gezelter 1773 const string methStr = rnemdParams->getMethod();
113     bool hasFluxType = rnemdParams->haveFluxType();
114    
115 gezelter 1879 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116    
117 gezelter 1773 string fluxStr;
118     if (hasFluxType) {
119     fluxStr = rnemdParams->getFluxType();
120     } else {
121     sprintf(painCave.errMsg,
122     "RNEMD: No fluxType was set in the md file. This parameter,\n"
123     "\twhich must be one of the following values:\n"
124 gezelter 1879 "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125     "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 gezelter 1777 "\tmust be set to use RNEMD\n");
127 gezelter 1773 painCave.isFatal = 1;
128     painCave.severity = OPENMD_ERROR;
129     simError();
130     }
131    
132     bool hasKineticFlux = rnemdParams->haveKineticFlux();
133     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 gezelter 1879 bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136     bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137     hasSelectionA_ = rnemdParams->haveSelectionA();
138     hasSelectionB_ = rnemdParams->haveSelectionB();
139 gezelter 1773 bool hasSlabWidth = rnemdParams->haveSlabWidth();
140     bool hasSlabACenter = rnemdParams->haveSlabACenter();
141     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 gezelter 1879 bool hasSphereARadius = rnemdParams->haveSphereARadius();
143     hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144     bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 gezelter 1773 bool hasOutputFileName = rnemdParams->haveOutputFileName();
146     bool hasOutputFields = rnemdParams->haveOutputFields();
147    
148     map<string, RNEMDMethod>::iterator i;
149     i = stringToMethod_.find(methStr);
150     if (i != stringToMethod_.end())
151     rnemdMethod_ = i->second;
152     else {
153     sprintf(painCave.errMsg,
154     "RNEMD: The current method,\n"
155     "\t\t%s is not one of the recognized\n"
156     "\texchange methods: Swap, NIVS, or VSS\n",
157     methStr.c_str());
158     painCave.isFatal = 1;
159     painCave.severity = OPENMD_ERROR;
160     simError();
161     }
162    
163     map<string, RNEMDFluxType>::iterator j;
164     j = stringToFluxType_.find(fluxStr);
165     if (j != stringToFluxType_.end())
166     rnemdFluxType_ = j->second;
167     else {
168     sprintf(painCave.errMsg,
169     "RNEMD: The current fluxType,\n"
170     "\t\t%s\n"
171     "\tis not one of the recognized flux types.\n",
172     fluxStr.c_str());
173     painCave.isFatal = 1;
174     painCave.severity = OPENMD_ERROR;
175     simError();
176     }
177    
178     bool methodFluxMismatch = false;
179     bool hasCorrectFlux = false;
180     switch(rnemdMethod_) {
181     case rnemdSwap:
182     switch (rnemdFluxType_) {
183     case rnemdKE:
184     hasCorrectFlux = hasKineticFlux;
185     break;
186     case rnemdPx:
187     case rnemdPy:
188     case rnemdPz:
189     hasCorrectFlux = hasMomentumFlux;
190     break;
191     default :
192     methodFluxMismatch = true;
193     break;
194     }
195     break;
196     case rnemdNIVS:
197     switch (rnemdFluxType_) {
198     case rnemdKE:
199     case rnemdRotKE:
200     case rnemdFullKE:
201     hasCorrectFlux = hasKineticFlux;
202     break;
203     case rnemdPx:
204     case rnemdPy:
205     case rnemdPz:
206     hasCorrectFlux = hasMomentumFlux;
207     break;
208     case rnemdKePx:
209     case rnemdKePy:
210     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211     break;
212     default:
213     methodFluxMismatch = true;
214     break;
215     }
216     break;
217     case rnemdVSS:
218     switch (rnemdFluxType_) {
219     case rnemdKE:
220     case rnemdRotKE:
221     case rnemdFullKE:
222     hasCorrectFlux = hasKineticFlux;
223     break;
224     case rnemdPx:
225     case rnemdPy:
226     case rnemdPz:
227     hasCorrectFlux = hasMomentumFlux;
228     break;
229 gezelter 1879 case rnemdLx:
230     case rnemdLy:
231     case rnemdLz:
232     hasCorrectFlux = hasAngularMomentumFlux;
233     break;
234 gezelter 1773 case rnemdPvector:
235     hasCorrectFlux = hasMomentumFluxVector;
236 gezelter 1777 break;
237 gezelter 1879 case rnemdLvector:
238     hasCorrectFlux = hasAngularMomentumFluxVector;
239     break;
240 gezelter 1773 case rnemdKePx:
241     case rnemdKePy:
242     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243     break;
244 gezelter 1879 case rnemdKeLx:
245     case rnemdKeLy:
246     case rnemdKeLz:
247     hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248     break;
249 gezelter 1773 case rnemdKePvector:
250     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251     break;
252 gezelter 1879 case rnemdKeLvector:
253     hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254     break;
255 gezelter 1773 default:
256     methodFluxMismatch = true;
257     break;
258     }
259     default:
260     break;
261     }
262    
263     if (methodFluxMismatch) {
264     sprintf(painCave.errMsg,
265     "RNEMD: The current method,\n"
266     "\t\t%s\n"
267     "\tcannot be used with the current flux type, %s\n",
268     methStr.c_str(), fluxStr.c_str());
269     painCave.isFatal = 1;
270     painCave.severity = OPENMD_ERROR;
271     simError();
272     }
273     if (!hasCorrectFlux) {
274     sprintf(painCave.errMsg,
275 gezelter 1777 "RNEMD: The current method, %s, and flux type, %s,\n"
276 gezelter 1773 "\tdid not have the correct flux value specified. Options\n"
277 gezelter 1879 "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278     "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 gezelter 1773 methStr.c_str(), fluxStr.c_str());
280     painCave.isFatal = 1;
281     painCave.severity = OPENMD_ERROR;
282     simError();
283     }
284    
285     if (hasKineticFlux) {
286 gezelter 1777 // convert the kcal / mol / Angstroms^2 / fs values in the md file
287     // into amu / fs^3:
288     kineticFlux_ = rnemdParams->getKineticFlux()
289     * PhysicalConstants::energyConvert;
290 gezelter 1773 } else {
291     kineticFlux_ = 0.0;
292     }
293     if (hasMomentumFluxVector) {
294     momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
295     } else {
296     momentumFluxVector_ = V3Zero;
297     if (hasMomentumFlux) {
298     RealType momentumFlux = rnemdParams->getMomentumFlux();
299     switch (rnemdFluxType_) {
300     case rnemdPx:
301     momentumFluxVector_.x() = momentumFlux;
302     break;
303     case rnemdPy:
304     momentumFluxVector_.y() = momentumFlux;
305     break;
306     case rnemdPz:
307     momentumFluxVector_.z() = momentumFlux;
308     break;
309     case rnemdKePx:
310     momentumFluxVector_.x() = momentumFlux;
311     break;
312     case rnemdKePy:
313     momentumFluxVector_.y() = momentumFlux;
314     break;
315     default:
316     break;
317     }
318 gezelter 1879 }
319     if (hasAngularMomentumFluxVector) {
320     angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321     } else {
322     angularMomentumFluxVector_ = V3Zero;
323     if (hasAngularMomentumFlux) {
324     RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325     switch (rnemdFluxType_) {
326     case rnemdLx:
327     angularMomentumFluxVector_.x() = angularMomentumFlux;
328     break;
329     case rnemdLy:
330     angularMomentumFluxVector_.y() = angularMomentumFlux;
331     break;
332     case rnemdLz:
333     angularMomentumFluxVector_.z() = angularMomentumFlux;
334     break;
335     case rnemdKeLx:
336     angularMomentumFluxVector_.x() = angularMomentumFlux;
337     break;
338     case rnemdKeLy:
339     angularMomentumFluxVector_.y() = angularMomentumFlux;
340     break;
341     case rnemdKeLz:
342     angularMomentumFluxVector_.z() = angularMomentumFlux;
343     break;
344     default:
345     break;
346     }
347     }
348     }
349 gezelter 1773
350 gezelter 1879 if (hasCoordinateOrigin) {
351     coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352     } else {
353     coordinateOrigin_ = V3Zero;
354     }
355 skuang 1341
356 gezelter 1879 // do some sanity checking
357 gezelter 1801
358 gezelter 1879 int selectionCount = seleMan_.getSelectionCount();
359 skuang 1341
360 gezelter 1879 int nIntegrable = info->getNGlobalIntegrableObjects();
361 skuang 1330
362 gezelter 1879 if (selectionCount > nIntegrable) {
363     sprintf(painCave.errMsg,
364     "RNEMD: The current objectSelection,\n"
365     "\t\t%s\n"
366     "\thas resulted in %d selected objects. However,\n"
367     "\tthe total number of integrable objects in the system\n"
368     "\tis only %d. This is almost certainly not what you want\n"
369     "\tto do. A likely cause of this is forgetting the _RB_0\n"
370     "\tselector in the selection script!\n",
371     rnemdObjectSelection_.c_str(),
372     selectionCount, nIntegrable);
373     painCave.isFatal = 0;
374     painCave.severity = OPENMD_WARNING;
375     simError();
376     }
377 gezelter 1774
378 gezelter 1879 areaAccumulator_ = new Accumulator();
379 skuang 1330
380 gezelter 1879 nBins_ = rnemdParams->getOutputBins();
381     binWidth_ = rnemdParams->getOutputBinWidth();
382 skuang 1368
383 gezelter 1879 data_.resize(RNEMD::ENDINDEX);
384     OutputData z;
385     z.units = "Angstroms";
386     z.title = "Z";
387     z.dataType = "RealType";
388     z.accumulator.reserve(nBins_);
389     for (int i = 0; i < nBins_; i++)
390     z.accumulator.push_back( new Accumulator() );
391     data_[Z] = z;
392     outputMap_["Z"] = Z;
393 gezelter 1722
394 gezelter 1879 OutputData r;
395     r.units = "Angstroms";
396     r.title = "R";
397     r.dataType = "RealType";
398     r.accumulator.reserve(nBins_);
399     for (int i = 0; i < nBins_; i++)
400     r.accumulator.push_back( new Accumulator() );
401     data_[R] = r;
402     outputMap_["R"] = R;
403 skuang 1368
404 gezelter 1879 OutputData temperature;
405     temperature.units = "K";
406     temperature.title = "Temperature";
407     temperature.dataType = "RealType";
408     temperature.accumulator.reserve(nBins_);
409     for (int i = 0; i < nBins_; i++)
410     temperature.accumulator.push_back( new Accumulator() );
411     data_[TEMPERATURE] = temperature;
412     outputMap_["TEMPERATURE"] = TEMPERATURE;
413 skuang 1368
414 gezelter 1879 OutputData velocity;
415     velocity.units = "angstroms/fs";
416     velocity.title = "Velocity";
417     velocity.dataType = "Vector3d";
418     velocity.accumulator.reserve(nBins_);
419     for (int i = 0; i < nBins_; i++)
420     velocity.accumulator.push_back( new VectorAccumulator() );
421     data_[VELOCITY] = velocity;
422     outputMap_["VELOCITY"] = VELOCITY;
423    
424     OutputData angularVelocity;
425     angularVelocity.units = "angstroms^2/fs";
426     angularVelocity.title = "AngularVelocity";
427 gezelter 1941 angularVelocity.dataType = "Vector3d";
428 gezelter 1879 angularVelocity.accumulator.reserve(nBins_);
429     for (int i = 0; i < nBins_; i++)
430 gezelter 1941 angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 gezelter 1879 data_[ANGULARVELOCITY] = angularVelocity;
432     outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433    
434     OutputData density;
435     density.units = "g cm^-3";
436     density.title = "Density";
437     density.dataType = "RealType";
438     density.accumulator.reserve(nBins_);
439     for (int i = 0; i < nBins_; i++)
440     density.accumulator.push_back( new Accumulator() );
441     data_[DENSITY] = density;
442     outputMap_["DENSITY"] = DENSITY;
443    
444     if (hasOutputFields) {
445     parseOutputFileFormat(rnemdParams->getOutputFields());
446     } else {
447     if (usePeriodicBoundaryConditions_)
448     outputMask_.set(Z);
449     else
450     outputMask_.set(R);
451     switch (rnemdFluxType_) {
452     case rnemdKE:
453     case rnemdRotKE:
454     case rnemdFullKE:
455     outputMask_.set(TEMPERATURE);
456     break;
457     case rnemdPx:
458     case rnemdPy:
459     outputMask_.set(VELOCITY);
460     break;
461     case rnemdPz:
462     case rnemdPvector:
463     outputMask_.set(VELOCITY);
464     outputMask_.set(DENSITY);
465     break;
466     case rnemdLx:
467     case rnemdLy:
468     case rnemdLz:
469     case rnemdLvector:
470     outputMask_.set(ANGULARVELOCITY);
471     break;
472     case rnemdKeLx:
473     case rnemdKeLy:
474     case rnemdKeLz:
475     case rnemdKeLvector:
476     outputMask_.set(TEMPERATURE);
477     outputMask_.set(ANGULARVELOCITY);
478     break;
479     case rnemdKePx:
480     case rnemdKePy:
481     outputMask_.set(TEMPERATURE);
482     outputMask_.set(VELOCITY);
483     break;
484     case rnemdKePvector:
485     outputMask_.set(TEMPERATURE);
486     outputMask_.set(VELOCITY);
487     outputMask_.set(DENSITY);
488     break;
489     default:
490     break;
491     }
492 gezelter 1629 }
493 gezelter 1773
494 gezelter 1879 if (hasOutputFileName) {
495     rnemdFileName_ = rnemdParams->getOutputFileName();
496     } else {
497     rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498     }
499 gezelter 1722
500 gezelter 1879 exchangeTime_ = rnemdParams->getExchangeTime();
501 skuang 1338
502 gezelter 1879 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503     // total exchange sums are zeroed out at the beginning:
504 skuang 1368
505 gezelter 1879 kineticExchange_ = 0.0;
506     momentumExchange_ = V3Zero;
507     angularMomentumExchange_ = V3Zero;
508 gezelter 1773
509 gezelter 1879 std::ostringstream selectionAstream;
510     std::ostringstream selectionBstream;
511    
512     if (hasSelectionA_) {
513     selectionA_ = rnemdParams->getSelectionA();
514     } else {
515     if (usePeriodicBoundaryConditions_) {
516     Mat3x3d hmat = currentSnap_->getHmat();
517    
518     if (hasSlabWidth)
519     slabWidth_ = rnemdParams->getSlabWidth();
520     else
521     slabWidth_ = hmat(2,2) / 10.0;
522    
523     if (hasSlabACenter)
524     slabACenter_ = rnemdParams->getSlabACenter();
525     else
526     slabACenter_ = 0.0;
527    
528     selectionAstream << "select wrappedz > "
529     << slabACenter_ - 0.5*slabWidth_
530     << " && wrappedz < "
531     << slabACenter_ + 0.5*slabWidth_;
532     selectionA_ = selectionAstream.str();
533     } else {
534     if (hasSphereARadius)
535     sphereARadius_ = rnemdParams->getSphereARadius();
536     else {
537     // use an initial guess to the size of the inner slab to be 1/10 the
538     // radius of an approximately spherical hull:
539     Thermo thermo(info);
540     RealType hVol = thermo.getHullVolume();
541     sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542     }
543     selectionAstream << "select r < " << sphereARadius_;
544     selectionA_ = selectionAstream.str();
545     }
546     }
547    
548     if (hasSelectionB_) {
549     selectionB_ = rnemdParams->getSelectionB();
550 gezelter 1903
551 gezelter 1879 } else {
552     if (usePeriodicBoundaryConditions_) {
553     Mat3x3d hmat = currentSnap_->getHmat();
554    
555     if (hasSlabWidth)
556     slabWidth_ = rnemdParams->getSlabWidth();
557     else
558     slabWidth_ = hmat(2,2) / 10.0;
559    
560     if (hasSlabBCenter)
561     slabBCenter_ = rnemdParams->getSlabBCenter();
562     else
563     slabBCenter_ = hmat(2,2) / 2.0;
564    
565     selectionBstream << "select wrappedz > "
566     << slabBCenter_ - 0.5*slabWidth_
567     << " && wrappedz < "
568     << slabBCenter_ + 0.5*slabWidth_;
569     selectionB_ = selectionBstream.str();
570     } else {
571     if (hasSphereBRadius_) {
572     sphereBRadius_ = rnemdParams->getSphereBRadius();
573     selectionBstream << "select r > " << sphereBRadius_;
574     selectionB_ = selectionBstream.str();
575     } else {
576     selectionB_ = "select hull";
577 gezelter 1903 BisHull_ = true;
578 gezelter 1879 hasSelectionB_ = true;
579     }
580     }
581     }
582     }
583 gezelter 1773
584 gezelter 1879 // object evaluator:
585     evaluator_.loadScriptString(rnemdObjectSelection_);
586     seleMan_.setSelectionSet(evaluator_.evaluate());
587     evaluatorA_.loadScriptString(selectionA_);
588     evaluatorB_.loadScriptString(selectionB_);
589     seleManA_.setSelectionSet(evaluatorA_.evaluate());
590     seleManB_.setSelectionSet(evaluatorB_.evaluate());
591     commonA_ = seleManA_ & seleMan_;
592     commonB_ = seleManB_ & seleMan_;
593     }
594 gezelter 1773
595    
596 gezelter 1329 RNEMD::~RNEMD() {
597 gezelter 1776 if (!doRNEMD_) return;
598 skuang 1368 #ifdef IS_MPI
599     if (worldRank == 0) {
600     #endif
601 gezelter 1722
602 gezelter 1773 writeOutputFile();
603    
604     rnemdFile_.close();
605 jmarr 1728
606 skuang 1368 #ifdef IS_MPI
607     }
608     #endif
609 gezelter 1879
610     // delete all of the objects we created:
611     delete areaAccumulator_;
612     data_.clear();
613 gezelter 1329 }
614 gezelter 1773
615 gezelter 1879 void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
616     if (!doRNEMD_) return;
617     int selei;
618     int selej;
619 skuang 1330
620 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
621     Mat3x3d hmat = currentSnap_->getHmat();
622    
623 gezelter 1331 StuntDouble* sd;
624    
625 skuang 1338 RealType min_val;
626     bool min_found = false;
627     StuntDouble* min_sd;
628    
629     RealType max_val;
630     bool max_found = false;
631     StuntDouble* max_sd;
632    
633 gezelter 1879 for (sd = seleManA_.beginSelected(selei); sd != NULL;
634     sd = seleManA_.nextSelected(selei)) {
635 gezelter 1332
636 gezelter 1331 Vector3d pos = sd->getPos();
637 gezelter 1879
638 gezelter 1332 // wrap the stuntdouble's position back into the box:
639 gezelter 1879
640 gezelter 1331 if (usePeriodicBoundaryConditions_)
641 gezelter 1332 currentSnap_->wrapVector(pos);
642 gezelter 1879
643     RealType mass = sd->getMass();
644     Vector3d vel = sd->getVel();
645     RealType value;
646    
647     switch(rnemdFluxType_) {
648     case rnemdKE :
649 gezelter 1332
650 gezelter 1879 value = mass * vel.lengthSquare();
651    
652     if (sd->isDirectional()) {
653     Vector3d angMom = sd->getJ();
654     Mat3x3d I = sd->getI();
655 gezelter 1332
656 gezelter 1879 if (sd->isLinear()) {
657     int i = sd->linearAxis();
658     int j = (i + 1) % 3;
659     int k = (i + 2) % 3;
660     value += angMom[j] * angMom[j] / I(j, j) +
661     angMom[k] * angMom[k] / I(k, k);
662     } else {
663     value += angMom[0]*angMom[0]/I(0, 0)
664     + angMom[1]*angMom[1]/I(1, 1)
665     + angMom[2]*angMom[2]/I(2, 2);
666     }
667     } //angular momenta exchange enabled
668     value *= 0.5;
669     break;
670     case rnemdPx :
671     value = mass * vel[0];
672     break;
673     case rnemdPy :
674     value = mass * vel[1];
675     break;
676     case rnemdPz :
677     value = mass * vel[2];
678     break;
679     default :
680     break;
681     }
682     if (!max_found) {
683     max_val = value;
684     max_sd = sd;
685     max_found = true;
686     } else {
687     if (max_val < value) {
688     max_val = value;
689     max_sd = sd;
690 gezelter 1332 }
691 gezelter 1879 }
692     }
693 gezelter 1332
694 gezelter 1879 for (sd = seleManB_.beginSelected(selej); sd != NULL;
695     sd = seleManB_.nextSelected(selej)) {
696    
697     Vector3d pos = sd->getPos();
698    
699     // wrap the stuntdouble's position back into the box:
700    
701     if (usePeriodicBoundaryConditions_)
702     currentSnap_->wrapVector(pos);
703    
704     RealType mass = sd->getMass();
705     Vector3d vel = sd->getVel();
706     RealType value;
707    
708     switch(rnemdFluxType_) {
709     case rnemdKE :
710    
711     value = mass * vel.lengthSquare();
712    
713     if (sd->isDirectional()) {
714     Vector3d angMom = sd->getJ();
715     Mat3x3d I = sd->getI();
716    
717     if (sd->isLinear()) {
718     int i = sd->linearAxis();
719     int j = (i + 1) % 3;
720     int k = (i + 2) % 3;
721     value += angMom[j] * angMom[j] / I(j, j) +
722     angMom[k] * angMom[k] / I(k, k);
723     } else {
724     value += angMom[0]*angMom[0]/I(0, 0)
725     + angMom[1]*angMom[1]/I(1, 1)
726     + angMom[2]*angMom[2]/I(2, 2);
727     }
728     } //angular momenta exchange enabled
729     value *= 0.5;
730     break;
731     case rnemdPx :
732     value = mass * vel[0];
733     break;
734     case rnemdPy :
735     value = mass * vel[1];
736     break;
737     case rnemdPz :
738     value = mass * vel[2];
739     break;
740     default :
741     break;
742 gezelter 1332 }
743 gezelter 1879
744     if (!min_found) {
745     min_val = value;
746     min_sd = sd;
747     min_found = true;
748     } else {
749     if (min_val > value) {
750     min_val = value;
751     min_sd = sd;
752     }
753     }
754 gezelter 1331 }
755 gezelter 1773
756 gezelter 1793 #ifdef IS_MPI
757 gezelter 1969 int worldRank;
758     MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
759    
760     int my_min_found = min_found;
761     int my_max_found = max_found;
762 gezelter 1350
763     // Even if we didn't find a minimum, did someone else?
764 gezelter 1969 MPI_Allreduce(&my_min_found, &min_found, 1, MPI_INT, MPI_LOR,
765     MPI_COMM_WORLD);
766 gezelter 1350 // Even if we didn't find a maximum, did someone else?
767 gezelter 1969 MPI_Allreduce(&my_max_found, &max_found, 1, MPI_INT, MPI_LOR,
768     MPI_COMM_WORLD);
769 gezelter 1722 #endif
770    
771     if (max_found && min_found) {
772    
773     #ifdef IS_MPI
774     struct {
775     RealType val;
776     int rank;
777     } max_vals, min_vals;
778 jmarr 1728
779 gezelter 1722 if (my_min_found) {
780 gezelter 1350 min_vals.val = min_val;
781 gezelter 1722 } else {
782 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
783 gezelter 1722 }
784 gezelter 1350 min_vals.rank = worldRank;
785    
786     // Who had the minimum?
787 gezelter 1969 MPI_Allreduce(&min_vals, &min_vals,
788     1, MPI_REALTYPE_INT, MPI_MINLOC, MPI_COMM_WORLD);
789 gezelter 1350 min_val = min_vals.val;
790    
791 gezelter 1722 if (my_max_found) {
792 gezelter 1350 max_vals.val = max_val;
793 gezelter 1722 } else {
794 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
795 gezelter 1722 }
796 gezelter 1350 max_vals.rank = worldRank;
797    
798     // Who had the maximum?
799 gezelter 1969 MPI_Allreduce(&max_vals, &max_vals,
800     1, MPI_REALTYPE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
801 gezelter 1350 max_val = max_vals.val;
802     #endif
803 gezelter 1722
804 gezelter 1629 if (min_val < max_val) {
805 gezelter 1722
806 gezelter 1350 #ifdef IS_MPI
807     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
808     // I have both maximum and minimum, so proceed like a single
809     // processor version:
810     #endif
811 gezelter 1722
812 gezelter 1350 Vector3d min_vel = min_sd->getVel();
813     Vector3d max_vel = max_sd->getVel();
814     RealType temp_vel;
815    
816 gezelter 1773 switch(rnemdFluxType_) {
817     case rnemdKE :
818 gezelter 1350 min_sd->setVel(max_vel);
819     max_sd->setVel(min_vel);
820 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
821 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
822     Vector3d max_angMom = max_sd->getJ();
823     min_sd->setJ(max_angMom);
824     max_sd->setJ(min_angMom);
825 gezelter 1722 }//angular momenta exchange enabled
826     //assumes same rigid body identity
827 gezelter 1350 break;
828     case rnemdPx :
829     temp_vel = min_vel.x();
830     min_vel.x() = max_vel.x();
831     max_vel.x() = temp_vel;
832     min_sd->setVel(min_vel);
833     max_sd->setVel(max_vel);
834     break;
835     case rnemdPy :
836     temp_vel = min_vel.y();
837     min_vel.y() = max_vel.y();
838     max_vel.y() = temp_vel;
839     min_sd->setVel(min_vel);
840     max_sd->setVel(max_vel);
841     break;
842     case rnemdPz :
843     temp_vel = min_vel.z();
844     min_vel.z() = max_vel.z();
845     max_vel.z() = temp_vel;
846     min_sd->setVel(min_vel);
847     max_sd->setVel(max_vel);
848     break;
849     default :
850     break;
851     }
852 gezelter 1722
853 gezelter 1350 #ifdef IS_MPI
854     // the rest of the cases only apply in parallel simulations:
855     } else if (max_vals.rank == worldRank) {
856     // I had the max, but not the minimum
857    
858     Vector3d min_vel;
859     Vector3d max_vel = max_sd->getVel();
860 gezelter 1969 MPI_Status* status;
861 skuang 1341
862 gezelter 1350 // point-to-point swap of the velocity vector
863 gezelter 1969 MPI_Sendrecv(max_vel.getArrayPointer(), 3, MPI_REALTYPE,
864     min_vals.rank, 0,
865     min_vel.getArrayPointer(), 3, MPI_REALTYPE,
866     min_vals.rank, 0, MPI_COMM_WORLD, status);
867 gezelter 1350
868 gezelter 1773 switch(rnemdFluxType_) {
869     case rnemdKE :
870 gezelter 1350 max_sd->setVel(min_vel);
871 gezelter 1722 //angular momenta exchange enabled
872 gezelter 1350 if (max_sd->isDirectional()) {
873     Vector3d min_angMom;
874     Vector3d max_angMom = max_sd->getJ();
875 gezelter 1629
876 gezelter 1350 // point-to-point swap of the angular momentum vector
877 gezelter 1969 MPI_Sendrecv(max_angMom.getArrayPointer(), 3,
878     MPI_REALTYPE, min_vals.rank, 1,
879     min_angMom.getArrayPointer(), 3,
880     MPI_REALTYPE, min_vals.rank, 1,
881     MPI_COMM_WORLD, status);
882 gezelter 1629
883 gezelter 1350 max_sd->setJ(min_angMom);
884 gezelter 1722 }
885 gezelter 1350 break;
886     case rnemdPx :
887     max_vel.x() = min_vel.x();
888     max_sd->setVel(max_vel);
889     break;
890     case rnemdPy :
891     max_vel.y() = min_vel.y();
892     max_sd->setVel(max_vel);
893     break;
894     case rnemdPz :
895     max_vel.z() = min_vel.z();
896     max_sd->setVel(max_vel);
897     break;
898     default :
899     break;
900 skuang 1341 }
901 gezelter 1350 } else if (min_vals.rank == worldRank) {
902     // I had the minimum but not the maximum:
903    
904     Vector3d max_vel;
905     Vector3d min_vel = min_sd->getVel();
906 gezelter 1969 MPI_Status* status;
907 gezelter 1350
908     // point-to-point swap of the velocity vector
909 gezelter 1969 MPI_Sendrecv(min_vel.getArrayPointer(), 3, MPI_REALTYPE,
910     max_vals.rank, 0,
911     max_vel.getArrayPointer(), 3, MPI_REALTYPE,
912     max_vals.rank, 0, MPI_COMM_WORLD, status);
913 gezelter 1350
914 gezelter 1773 switch(rnemdFluxType_) {
915     case rnemdKE :
916 gezelter 1350 min_sd->setVel(max_vel);
917 gezelter 1722 //angular momenta exchange enabled
918 gezelter 1350 if (min_sd->isDirectional()) {
919     Vector3d min_angMom = min_sd->getJ();
920     Vector3d max_angMom;
921 gezelter 1629
922 gezelter 1350 // point-to-point swap of the angular momentum vector
923 gezelter 1969 MPI_Sendrecv(min_angMom.getArrayPointer(), 3,
924     MPI_REALTYPE, max_vals.rank, 1,
925     max_angMom.getArrayPointer(), 3,
926     MPI_REALTYPE, max_vals.rank, 1,
927     MPI_COMM_WORLD, status);
928 gezelter 1629
929 gezelter 1350 min_sd->setJ(max_angMom);
930     }
931     break;
932     case rnemdPx :
933     min_vel.x() = max_vel.x();
934     min_sd->setVel(min_vel);
935     break;
936     case rnemdPy :
937     min_vel.y() = max_vel.y();
938     min_sd->setVel(min_vel);
939     break;
940     case rnemdPz :
941     min_vel.z() = max_vel.z();
942     min_sd->setVel(min_vel);
943     break;
944     default :
945     break;
946     }
947     }
948     #endif
949 gezelter 1773
950     switch(rnemdFluxType_) {
951     case rnemdKE:
952     kineticExchange_ += max_val - min_val;
953     break;
954     case rnemdPx:
955     momentumExchange_.x() += max_val - min_val;
956     break;
957     case rnemdPy:
958     momentumExchange_.y() += max_val - min_val;
959     break;
960     case rnemdPz:
961     momentumExchange_.z() += max_val - min_val;
962     break;
963     default:
964     break;
965     }
966 gezelter 1629 } else {
967     sprintf(painCave.errMsg,
968 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
969 gezelter 1629 painCave.isFatal = 0;
970     painCave.severity = OPENMD_INFO;
971     simError();
972 skuang 1368 failTrialCount_++;
973 skuang 1338 }
974     } else {
975 gezelter 1629 sprintf(painCave.errMsg,
976 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
977     "\twas not present in at least one of the two slabs.\n");
978 gezelter 1629 painCave.isFatal = 0;
979     painCave.severity = OPENMD_INFO;
980     simError();
981 skuang 1368 failTrialCount_++;
982 gezelter 1773 }
983 skuang 1338 }
984 gezelter 1350
985 gezelter 1879 void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
986 gezelter 1776 if (!doRNEMD_) return;
987 gezelter 1879 int selei;
988     int selej;
989    
990 skuang 1338 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
991 gezelter 1879 RealType time = currentSnap_->getTime();
992 skuang 1338 Mat3x3d hmat = currentSnap_->getHmat();
993    
994     StuntDouble* sd;
995    
996 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
997 gezelter 1350
998 skuang 1368 RealType Phx = 0.0;
999     RealType Phy = 0.0;
1000     RealType Phz = 0.0;
1001     RealType Khx = 0.0;
1002     RealType Khy = 0.0;
1003     RealType Khz = 0.0;
1004 gezelter 1722 RealType Khw = 0.0;
1005 skuang 1368 RealType Pcx = 0.0;
1006     RealType Pcy = 0.0;
1007     RealType Pcz = 0.0;
1008     RealType Kcx = 0.0;
1009     RealType Kcy = 0.0;
1010     RealType Kcz = 0.0;
1011 gezelter 1722 RealType Kcw = 0.0;
1012 skuang 1368
1013 gezelter 1879 for (sd = smanA.beginSelected(selei); sd != NULL;
1014     sd = smanA.nextSelected(selei)) {
1015 skuang 1368
1016     Vector3d pos = sd->getPos();
1017 gezelter 1879
1018 skuang 1368 // wrap the stuntdouble's position back into the box:
1019 gezelter 1879
1020 skuang 1368 if (usePeriodicBoundaryConditions_)
1021     currentSnap_->wrapVector(pos);
1022 gezelter 1879
1023    
1024     RealType mass = sd->getMass();
1025     Vector3d vel = sd->getVel();
1026    
1027     hotBin.push_back(sd);
1028     Phx += mass * vel.x();
1029     Phy += mass * vel.y();
1030     Phz += mass * vel.z();
1031     Khx += mass * vel.x() * vel.x();
1032     Khy += mass * vel.y() * vel.y();
1033     Khz += mass * vel.z() * vel.z();
1034     if (sd->isDirectional()) {
1035     Vector3d angMom = sd->getJ();
1036     Mat3x3d I = sd->getI();
1037     if (sd->isLinear()) {
1038     int i = sd->linearAxis();
1039     int j = (i + 1) % 3;
1040     int k = (i + 2) % 3;
1041     Khw += angMom[j] * angMom[j] / I(j, j) +
1042     angMom[k] * angMom[k] / I(k, k);
1043     } else {
1044     Khw += angMom[0]*angMom[0]/I(0, 0)
1045     + angMom[1]*angMom[1]/I(1, 1)
1046     + angMom[2]*angMom[2]/I(2, 2);
1047     }
1048     }
1049     }
1050     for (sd = smanB.beginSelected(selej); sd != NULL;
1051     sd = smanB.nextSelected(selej)) {
1052     Vector3d pos = sd->getPos();
1053    
1054     // wrap the stuntdouble's position back into the box:
1055    
1056     if (usePeriodicBoundaryConditions_)
1057     currentSnap_->wrapVector(pos);
1058    
1059     RealType mass = sd->getMass();
1060     Vector3d vel = sd->getVel();
1061 skuang 1368
1062 gezelter 1879 coldBin.push_back(sd);
1063     Pcx += mass * vel.x();
1064     Pcy += mass * vel.y();
1065     Pcz += mass * vel.z();
1066     Kcx += mass * vel.x() * vel.x();
1067     Kcy += mass * vel.y() * vel.y();
1068     Kcz += mass * vel.z() * vel.z();
1069     if (sd->isDirectional()) {
1070     Vector3d angMom = sd->getJ();
1071     Mat3x3d I = sd->getI();
1072     if (sd->isLinear()) {
1073     int i = sd->linearAxis();
1074     int j = (i + 1) % 3;
1075     int k = (i + 2) % 3;
1076     Kcw += angMom[j] * angMom[j] / I(j, j) +
1077     angMom[k] * angMom[k] / I(k, k);
1078     } else {
1079     Kcw += angMom[0]*angMom[0]/I(0, 0)
1080     + angMom[1]*angMom[1]/I(1, 1)
1081     + angMom[2]*angMom[2]/I(2, 2);
1082     }
1083 skuang 1368 }
1084     }
1085 gezelter 1722
1086 skuang 1368 Khx *= 0.5;
1087     Khy *= 0.5;
1088     Khz *= 0.5;
1089 gezelter 1722 Khw *= 0.5;
1090 skuang 1368 Kcx *= 0.5;
1091     Kcy *= 0.5;
1092     Kcz *= 0.5;
1093 gezelter 1722 Kcw *= 0.5;
1094 skuang 1368
1095     #ifdef IS_MPI
1096 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Phx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1097     MPI_Allreduce(MPI_IN_PLACE, &Phy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1098     MPI_Allreduce(MPI_IN_PLACE, &Phz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1099     MPI_Allreduce(MPI_IN_PLACE, &Pcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1100     MPI_Allreduce(MPI_IN_PLACE, &Pcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1101     MPI_Allreduce(MPI_IN_PLACE, &Pcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1102 skuang 1368
1103 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Khx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1104     MPI_Allreduce(MPI_IN_PLACE, &Khy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1105     MPI_Allreduce(MPI_IN_PLACE, &Khz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1106     MPI_Allreduce(MPI_IN_PLACE, &Khw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1107 gezelter 1722
1108 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Kcx, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1109     MPI_Allreduce(MPI_IN_PLACE, &Kcy, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1110     MPI_Allreduce(MPI_IN_PLACE, &Kcz, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1111     MPI_Allreduce(MPI_IN_PLACE, &Kcw, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1112 skuang 1368 #endif
1113    
1114 gezelter 1722 //solve coldBin coeff's first
1115 skuang 1368 RealType px = Pcx / Phx;
1116     RealType py = Pcy / Phy;
1117     RealType pz = Pcz / Phz;
1118 gezelter 1722 RealType c, x, y, z;
1119     bool successfulScale = false;
1120 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
1121     (rnemdFluxType_ == rnemdRotKE)) {
1122 gezelter 1722 //may need sanity check Khw & Kcw > 0
1123 skuang 1368
1124 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1125     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1126 gezelter 1722 } else {
1127 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
1128 gezelter 1722 }
1129 skuang 1368
1130 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1131     c = sqrt(c);
1132 gezelter 1801
1133 gezelter 1722 RealType w = 0.0;
1134 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1135 gezelter 1722 x = 1.0 + px * (1.0 - c);
1136     y = 1.0 + py * (1.0 - c);
1137     z = 1.0 + pz * (1.0 - c);
1138     /* more complicated way
1139     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1140     + Khx * px * px + Khy * py * py + Khz * pz * pz)
1141     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1142     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1143     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1144     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1145     */
1146     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1147     (fabs(z - 1.0) < 0.1)) {
1148 gezelter 1773 w = 1.0 + (kineticTarget_
1149     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1150 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
1151     }//no need to calculate w if x, y or z is out of range
1152     } else {
1153 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
1154 gezelter 1722 }
1155     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1156     //if w is in the right range, so should be x, y, z.
1157     vector<StuntDouble*>::iterator sdi;
1158     Vector3d vel;
1159 gezelter 1879 for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1160 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1161 gezelter 1722 vel = (*sdi)->getVel() * c;
1162     (*sdi)->setVel(vel);
1163     }
1164     if ((*sdi)->isDirectional()) {
1165     Vector3d angMom = (*sdi)->getJ() * c;
1166     (*sdi)->setJ(angMom);
1167     }
1168     }
1169     w = sqrt(w);
1170 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1171 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1172 gezelter 1722 vel = (*sdi)->getVel();
1173     vel.x() *= x;
1174     vel.y() *= y;
1175     vel.z() *= z;
1176     (*sdi)->setVel(vel);
1177     }
1178     if ((*sdi)->isDirectional()) {
1179     Vector3d angMom = (*sdi)->getJ() * w;
1180     (*sdi)->setJ(angMom);
1181     }
1182     }
1183     successfulScale = true;
1184 gezelter 1773 kineticExchange_ += kineticTarget_;
1185 gezelter 1722 }
1186 skuang 1368 }
1187 gezelter 1722 } else {
1188     RealType a000, a110, c0, a001, a111, b01, b11, c1;
1189 gezelter 1773 switch(rnemdFluxType_) {
1190     case rnemdKE :
1191 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
1192     RealType px = Phx / Pcx;
1193     RealType py = Phy / Pcy;
1194     a110 = Khy;
1195 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
1196 gezelter 1722 a000 = Khx;
1197     a111 = Kcy * py * py;
1198     b11 = -2.0 * Kcy * py * (1.0 + py);
1199 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1200 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
1201     a001 = Kcx * px * px;
1202     */
1203     //scale all three dimensions, let c_x = c_y
1204     a000 = Kcx + Kcy;
1205     a110 = Kcz;
1206 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1207 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
1208     a111 = Khz * pz * pz;
1209     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1210     b11 = -2.0 * Khz * pz * (1.0 + pz);
1211     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1212 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
1213 gezelter 1722 break;
1214 gezelter 1773 case rnemdPx :
1215     c = 1 - momentumTarget_.x() / Pcx;
1216 gezelter 1722 a000 = Kcy;
1217     a110 = Kcz;
1218     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1219     a001 = py * py * Khy;
1220     a111 = pz * pz * Khz;
1221     b01 = -2.0 * Khy * py * (1.0 + py);
1222     b11 = -2.0 * Khz * pz * (1.0 + pz);
1223     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1224     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1225     break;
1226 gezelter 1773 case rnemdPy :
1227     c = 1 - momentumTarget_.y() / Pcy;
1228 gezelter 1722 a000 = Kcx;
1229     a110 = Kcz;
1230     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1231     a001 = px * px * Khx;
1232     a111 = pz * pz * Khz;
1233     b01 = -2.0 * Khx * px * (1.0 + px);
1234     b11 = -2.0 * Khz * pz * (1.0 + pz);
1235     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1236     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1237     break;
1238 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1239     c = 1 - momentumTarget_.z() / Pcz;
1240 gezelter 1722 a000 = Kcx;
1241     a110 = Kcy;
1242     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1243     a001 = px * px * Khx;
1244     a111 = py * py * Khy;
1245     b01 = -2.0 * Khx * px * (1.0 + px);
1246     b11 = -2.0 * Khy * py * (1.0 + py);
1247     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1248     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1249     break;
1250     default :
1251     break;
1252 skuang 1368 }
1253 gezelter 1722
1254     RealType v1 = a000 * a111 - a001 * a110;
1255     RealType v2 = a000 * b01;
1256     RealType v3 = a000 * b11;
1257     RealType v4 = a000 * c1 - a001 * c0;
1258     RealType v8 = a110 * b01;
1259     RealType v10 = - b01 * c0;
1260    
1261     RealType u0 = v2 * v10 - v4 * v4;
1262     RealType u1 = -2.0 * v3 * v4;
1263     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1264     RealType u3 = -2.0 * v1 * v3;
1265     RealType u4 = - v1 * v1;
1266     //rescale coefficients
1267     RealType maxAbs = fabs(u0);
1268     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1269     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1270     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1271     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1272     u0 /= maxAbs;
1273     u1 /= maxAbs;
1274     u2 /= maxAbs;
1275     u3 /= maxAbs;
1276     u4 /= maxAbs;
1277     //max_element(start, end) is also available.
1278     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1279     poly.setCoefficient(4, u4);
1280     poly.setCoefficient(3, u3);
1281     poly.setCoefficient(2, u2);
1282     poly.setCoefficient(1, u1);
1283     poly.setCoefficient(0, u0);
1284     vector<RealType> realRoots = poly.FindRealRoots();
1285    
1286     vector<RealType>::iterator ri;
1287     RealType r1, r2, alpha0;
1288     vector<pair<RealType,RealType> > rps;
1289 gezelter 1879 for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1290 gezelter 1722 r2 = *ri;
1291     //check if FindRealRoots() give the right answer
1292     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1293     sprintf(painCave.errMsg,
1294     "RNEMD Warning: polynomial solve seems to have an error!");
1295     painCave.isFatal = 0;
1296     simError();
1297     failRootCount_++;
1298     }
1299     //might not be useful w/o rescaling coefficients
1300     alpha0 = -c0 - a110 * r2 * r2;
1301     if (alpha0 >= 0.0) {
1302     r1 = sqrt(alpha0 / a000);
1303     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1304     < 1e-6)
1305     { rps.push_back(make_pair(r1, r2)); }
1306     if (r1 > 1e-6) { //r1 non-negative
1307     r1 = -r1;
1308     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1309     < 1e-6)
1310     { rps.push_back(make_pair(r1, r2)); }
1311     }
1312     }
1313 skuang 1368 }
1314 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1315     // best solution part so that we don't need the pairs vector
1316     if (!rps.empty()) {
1317     RealType smallestDiff = HONKING_LARGE_VALUE;
1318     RealType diff;
1319     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1320     vector<pair<RealType,RealType> >::iterator rpi;
1321 gezelter 1879 for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1322 gezelter 1722 r1 = (*rpi).first;
1323     r2 = (*rpi).second;
1324 gezelter 1773 switch(rnemdFluxType_) {
1325     case rnemdKE :
1326 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1327     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1328     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1329     break;
1330 gezelter 1773 case rnemdPx :
1331 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1332     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1333     break;
1334 gezelter 1773 case rnemdPy :
1335 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1336     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1337     break;
1338 gezelter 1773 case rnemdPz :
1339 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1340     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1341     default :
1342     break;
1343     }
1344     if (diff < smallestDiff) {
1345     smallestDiff = diff;
1346     bestPair = *rpi;
1347     }
1348     }
1349 skuang 1368 #ifdef IS_MPI
1350 gezelter 1722 if (worldRank == 0) {
1351 skuang 1368 #endif
1352 gezelter 1773 // sprintf(painCave.errMsg,
1353     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1354     // bestPair.first, bestPair.second);
1355     // painCave.isFatal = 0;
1356     // painCave.severity = OPENMD_INFO;
1357     // simError();
1358 skuang 1368 #ifdef IS_MPI
1359 gezelter 1722 }
1360 skuang 1368 #endif
1361 gezelter 1722
1362 gezelter 1773 switch(rnemdFluxType_) {
1363     case rnemdKE :
1364 gezelter 1722 x = bestPair.first;
1365     y = bestPair.first;
1366     z = bestPair.second;
1367     break;
1368 gezelter 1773 case rnemdPx :
1369 gezelter 1722 x = c;
1370     y = bestPair.first;
1371     z = bestPair.second;
1372     break;
1373 gezelter 1773 case rnemdPy :
1374 gezelter 1722 x = bestPair.first;
1375     y = c;
1376     z = bestPair.second;
1377     break;
1378 gezelter 1773 case rnemdPz :
1379 gezelter 1722 x = bestPair.first;
1380     y = bestPair.second;
1381     z = c;
1382     break;
1383     default :
1384     break;
1385     }
1386     vector<StuntDouble*>::iterator sdi;
1387     Vector3d vel;
1388 gezelter 1879 for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1389 gezelter 1722 vel = (*sdi)->getVel();
1390     vel.x() *= x;
1391     vel.y() *= y;
1392     vel.z() *= z;
1393     (*sdi)->setVel(vel);
1394     }
1395     //convert to hotBin coefficient
1396     x = 1.0 + px * (1.0 - x);
1397     y = 1.0 + py * (1.0 - y);
1398     z = 1.0 + pz * (1.0 - z);
1399 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1400 gezelter 1722 vel = (*sdi)->getVel();
1401     vel.x() *= x;
1402     vel.y() *= y;
1403     vel.z() *= z;
1404     (*sdi)->setVel(vel);
1405     }
1406     successfulScale = true;
1407 gezelter 1773 switch(rnemdFluxType_) {
1408     case rnemdKE :
1409     kineticExchange_ += kineticTarget_;
1410     break;
1411     case rnemdPx :
1412     case rnemdPy :
1413     case rnemdPz :
1414     momentumExchange_ += momentumTarget_;
1415     break;
1416     default :
1417     break;
1418     }
1419 gezelter 1629 }
1420 gezelter 1722 }
1421     if (successfulScale != true) {
1422     sprintf(painCave.errMsg,
1423 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1424     "\tthe constraint equations may not exist or there may be\n"
1425     "\tno selected objects in one or both slabs.\n");
1426 gezelter 1722 painCave.isFatal = 0;
1427     painCave.severity = OPENMD_INFO;
1428     simError();
1429     failTrialCount_++;
1430     }
1431     }
1432 gezelter 1879
1433     void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1434     if (!doRNEMD_) return;
1435     int selei;
1436     int selej;
1437 gezelter 1722
1438     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1439 jmarr 1728 RealType time = currentSnap_->getTime();
1440 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1441    
1442     StuntDouble* sd;
1443    
1444     vector<StuntDouble*> hotBin, coldBin;
1445    
1446     Vector3d Ph(V3Zero);
1447 gezelter 1879 Vector3d Lh(V3Zero);
1448 gezelter 1722 RealType Mh = 0.0;
1449 gezelter 1879 Mat3x3d Ih(0.0);
1450 gezelter 1722 RealType Kh = 0.0;
1451     Vector3d Pc(V3Zero);
1452 gezelter 1879 Vector3d Lc(V3Zero);
1453 gezelter 1722 RealType Mc = 0.0;
1454 gezelter 1879 Mat3x3d Ic(0.0);
1455 gezelter 1722 RealType Kc = 0.0;
1456 gezelter 1879
1457     // Constraints can be on only the linear or angular momentum, but
1458     // not both. Usually, the user will specify which they want, but
1459     // in case they don't, the use of periodic boundaries should make
1460     // the choice for us.
1461     bool doLinearPart = false;
1462     bool doAngularPart = false;
1463    
1464     switch (rnemdFluxType_) {
1465     case rnemdPx:
1466     case rnemdPy:
1467     case rnemdPz:
1468     case rnemdPvector:
1469     case rnemdKePx:
1470     case rnemdKePy:
1471     case rnemdKePvector:
1472     doLinearPart = true;
1473     break;
1474     case rnemdLx:
1475     case rnemdLy:
1476     case rnemdLz:
1477     case rnemdLvector:
1478     case rnemdKeLx:
1479     case rnemdKeLy:
1480     case rnemdKeLz:
1481     case rnemdKeLvector:
1482     doAngularPart = true;
1483     break;
1484     case rnemdKE:
1485     case rnemdRotKE:
1486     case rnemdFullKE:
1487     default:
1488     if (usePeriodicBoundaryConditions_)
1489     doLinearPart = true;
1490     else
1491     doAngularPart = true;
1492     break;
1493     }
1494 jmarr 1728
1495 gezelter 1879 for (sd = smanA.beginSelected(selei); sd != NULL;
1496     sd = smanA.nextSelected(selei)) {
1497 gezelter 1722
1498     Vector3d pos = sd->getPos();
1499    
1500     // wrap the stuntdouble's position back into the box:
1501 gezelter 1879
1502     if (usePeriodicBoundaryConditions_)
1503     currentSnap_->wrapVector(pos);
1504    
1505     RealType mass = sd->getMass();
1506     Vector3d vel = sd->getVel();
1507     Vector3d rPos = sd->getPos() - coordinateOrigin_;
1508     RealType r2;
1509    
1510     hotBin.push_back(sd);
1511     Ph += mass * vel;
1512     Mh += mass;
1513     Kh += mass * vel.lengthSquare();
1514     Lh += mass * cross(rPos, vel);
1515     Ih -= outProduct(rPos, rPos) * mass;
1516     r2 = rPos.lengthSquare();
1517     Ih(0, 0) += mass * r2;
1518     Ih(1, 1) += mass * r2;
1519     Ih(2, 2) += mass * r2;
1520    
1521     if (rnemdFluxType_ == rnemdFullKE) {
1522     if (sd->isDirectional()) {
1523     Vector3d angMom = sd->getJ();
1524     Mat3x3d I = sd->getI();
1525     if (sd->isLinear()) {
1526     int i = sd->linearAxis();
1527     int j = (i + 1) % 3;
1528     int k = (i + 2) % 3;
1529     Kh += angMom[j] * angMom[j] / I(j, j) +
1530     angMom[k] * angMom[k] / I(k, k);
1531     } else {
1532     Kh += angMom[0] * angMom[0] / I(0, 0) +
1533     angMom[1] * angMom[1] / I(1, 1) +
1534     angMom[2] * angMom[2] / I(2, 2);
1535     }
1536     }
1537     }
1538     }
1539     for (sd = smanB.beginSelected(selej); sd != NULL;
1540     sd = smanB.nextSelected(selej)) {
1541 gezelter 1722
1542 gezelter 1879 Vector3d pos = sd->getPos();
1543    
1544     // wrap the stuntdouble's position back into the box:
1545    
1546 gezelter 1722 if (usePeriodicBoundaryConditions_)
1547     currentSnap_->wrapVector(pos);
1548 gezelter 1879
1549     RealType mass = sd->getMass();
1550     Vector3d vel = sd->getVel();
1551     Vector3d rPos = sd->getPos() - coordinateOrigin_;
1552     RealType r2;
1553 gezelter 1722
1554 gezelter 1879 coldBin.push_back(sd);
1555     Pc += mass * vel;
1556     Mc += mass;
1557     Kc += mass * vel.lengthSquare();
1558     Lc += mass * cross(rPos, vel);
1559     Ic -= outProduct(rPos, rPos) * mass;
1560     r2 = rPos.lengthSquare();
1561     Ic(0, 0) += mass * r2;
1562     Ic(1, 1) += mass * r2;
1563     Ic(2, 2) += mass * r2;
1564 gezelter 1773
1565 gezelter 1879 if (rnemdFluxType_ == rnemdFullKE) {
1566     if (sd->isDirectional()) {
1567     Vector3d angMom = sd->getJ();
1568     Mat3x3d I = sd->getI();
1569     if (sd->isLinear()) {
1570     int i = sd->linearAxis();
1571     int j = (i + 1) % 3;
1572     int k = (i + 2) % 3;
1573     Kc += angMom[j] * angMom[j] / I(j, j) +
1574     angMom[k] * angMom[k] / I(k, k);
1575     } else {
1576     Kc += angMom[0] * angMom[0] / I(0, 0) +
1577     angMom[1] * angMom[1] / I(1, 1) +
1578     angMom[2] * angMom[2] / I(2, 2);
1579     }
1580     }
1581 skuang 1368 }
1582 gezelter 1722 }
1583    
1584     Kh *= 0.5;
1585     Kc *= 0.5;
1586 jmarr 1728
1587 gezelter 1722 #ifdef IS_MPI
1588 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &Ph[0], 3, MPI_REALTYPE, MPI_SUM,
1589     MPI_COMM_WORLD);
1590     MPI_Allreduce(MPI_IN_PLACE, &Pc[0], 3, MPI_REALTYPE, MPI_SUM,
1591     MPI_COMM_WORLD);
1592     MPI_Allreduce(MPI_IN_PLACE, &Lh[0], 3, MPI_REALTYPE, MPI_SUM,
1593     MPI_COMM_WORLD);
1594     MPI_Allreduce(MPI_IN_PLACE, &Lc[0], 3, MPI_REALTYPE, MPI_SUM,
1595     MPI_COMM_WORLD);
1596     MPI_Allreduce(MPI_IN_PLACE, &Mh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1597     MPI_Allreduce(MPI_IN_PLACE, &Kh, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1598     MPI_Allreduce(MPI_IN_PLACE, &Mc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1599     MPI_Allreduce(MPI_IN_PLACE, &Kc, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1600     MPI_Allreduce(MPI_IN_PLACE, Ih.getArrayPointer(), 9,
1601     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1602     MPI_Allreduce(MPI_IN_PLACE, Ic.getArrayPointer(), 9,
1603     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1604 gezelter 1722 #endif
1605 gezelter 1879
1606 gezelter 1722
1607 gezelter 1879 Vector3d ac, acrec, bc, bcrec;
1608     Vector3d ah, ahrec, bh, bhrec;
1609    
1610 gezelter 1722 bool successfulExchange = false;
1611     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1612     Vector3d vc = Pc / Mc;
1613 gezelter 1879 ac = -momentumTarget_ / Mc + vc;
1614     acrec = -momentumTarget_ / Mc;
1615    
1616     // We now need the inverse of the inertia tensor to calculate the
1617     // angular velocity of the cold slab;
1618     Mat3x3d Ici = Ic.inverse();
1619     Vector3d omegac = Ici * Lc;
1620     bc = -(Ici * angularMomentumTarget_) + omegac;
1621     bcrec = bc - omegac;
1622    
1623     RealType cNumerator = Kc - kineticTarget_;
1624     if (doLinearPart)
1625     cNumerator -= 0.5 * Mc * ac.lengthSquare();
1626    
1627     if (doAngularPart)
1628     cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1629    
1630 gezelter 1722 if (cNumerator > 0.0) {
1631 gezelter 1879
1632     RealType cDenominator = Kc;
1633    
1634     if (doLinearPart)
1635     cDenominator -= 0.5 * Mc * vc.lengthSquare();
1636    
1637     if (doAngularPart)
1638     cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1639    
1640 gezelter 1722 if (cDenominator > 0.0) {
1641     RealType c = sqrt(cNumerator / cDenominator);
1642     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1643 gezelter 1879
1644 gezelter 1722 Vector3d vh = Ph / Mh;
1645 gezelter 1879 ah = momentumTarget_ / Mh + vh;
1646     ahrec = momentumTarget_ / Mh;
1647    
1648     // We now need the inverse of the inertia tensor to
1649     // calculate the angular velocity of the hot slab;
1650     Mat3x3d Ihi = Ih.inverse();
1651     Vector3d omegah = Ihi * Lh;
1652     bh = (Ihi * angularMomentumTarget_) + omegah;
1653     bhrec = bh - omegah;
1654    
1655     RealType hNumerator = Kh + kineticTarget_;
1656     if (doLinearPart)
1657     hNumerator -= 0.5 * Mh * ah.lengthSquare();
1658    
1659     if (doAngularPart)
1660     hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1661    
1662     if (hNumerator > 0.0) {
1663    
1664     RealType hDenominator = Kh;
1665     if (doLinearPart)
1666     hDenominator -= 0.5 * Mh * vh.lengthSquare();
1667     if (doAngularPart)
1668     hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1669    
1670 gezelter 1722 if (hDenominator > 0.0) {
1671     RealType h = sqrt(hNumerator / hDenominator);
1672     if ((h > 0.9) && (h < 1.1)) {
1673 gezelter 1879
1674 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1675     Vector3d vel;
1676 gezelter 1879 Vector3d rPos;
1677    
1678     for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1679 gezelter 1722 //vel = (*sdi)->getVel();
1680 gezelter 1879 rPos = (*sdi)->getPos() - coordinateOrigin_;
1681     if (doLinearPart)
1682     vel = ((*sdi)->getVel() - vc) * c + ac;
1683     if (doAngularPart)
1684     vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1685    
1686 gezelter 1722 (*sdi)->setVel(vel);
1687 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1688 gezelter 1722 if ((*sdi)->isDirectional()) {
1689     Vector3d angMom = (*sdi)->getJ() * c;
1690     (*sdi)->setJ(angMom);
1691     }
1692     }
1693     }
1694 gezelter 1879 for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1695 gezelter 1722 //vel = (*sdi)->getVel();
1696 gezelter 1879 rPos = (*sdi)->getPos() - coordinateOrigin_;
1697     if (doLinearPart)
1698     vel = ((*sdi)->getVel() - vh) * h + ah;
1699     if (doAngularPart)
1700     vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);
1701    
1702 gezelter 1722 (*sdi)->setVel(vel);
1703 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1704 gezelter 1722 if ((*sdi)->isDirectional()) {
1705     Vector3d angMom = (*sdi)->getJ() * h;
1706     (*sdi)->setJ(angMom);
1707     }
1708     }
1709     }
1710     successfulExchange = true;
1711 gezelter 1773 kineticExchange_ += kineticTarget_;
1712     momentumExchange_ += momentumTarget_;
1713 gezelter 1879 angularMomentumExchange_ += angularMomentumTarget_;
1714 gezelter 1722 }
1715     }
1716     }
1717     }
1718     }
1719 skuang 1368 }
1720 gezelter 1722 }
1721     if (successfulExchange != true) {
1722 gezelter 1773 sprintf(painCave.errMsg,
1723     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1724     "\tthe constraint equations may not exist or there may be\n"
1725     "\tno selected objects in one or both slabs.\n");
1726     painCave.isFatal = 0;
1727     painCave.severity = OPENMD_INFO;
1728     simError();
1729 skuang 1368 failTrialCount_++;
1730     }
1731     }
1732    
1733 gezelter 1879 RealType RNEMD::getDividingArea() {
1734    
1735     if (hasDividingArea_) return dividingArea_;
1736    
1737     RealType areaA, areaB;
1738     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1739    
1740     if (hasSelectionA_) {
1741 gezelter 1903
1742     if (evaluatorA_.hasSurfaceArea())
1743     areaA = evaluatorA_.getSurfaceArea();
1744     else {
1745    
1746     cerr << "selection A did not have surface area, recomputing\n";
1747     int isd;
1748     StuntDouble* sd;
1749     vector<StuntDouble*> aSites;
1750     seleManA_.setSelectionSet(evaluatorA_.evaluate());
1751     for (sd = seleManA_.beginSelected(isd); sd != NULL;
1752     sd = seleManA_.nextSelected(isd)) {
1753     aSites.push_back(sd);
1754     }
1755 gezelter 1879 #if defined(HAVE_QHULL)
1756 gezelter 1903 ConvexHull* surfaceMeshA = new ConvexHull();
1757     surfaceMeshA->computeHull(aSites);
1758     areaA = surfaceMeshA->getArea();
1759     delete surfaceMeshA;
1760 gezelter 1879 #else
1761 gezelter 1903 sprintf( painCave.errMsg,
1762 gezelter 1879 "RNEMD::getDividingArea : Hull calculation is not possible\n"
1763 gezelter 1903 "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1764     painCave.severity = OPENMD_ERROR;
1765     painCave.isFatal = 1;
1766     simError();
1767 gezelter 1879 #endif
1768 gezelter 1903 }
1769 gezelter 1879
1770     } else {
1771     if (usePeriodicBoundaryConditions_) {
1772     // in periodic boundaries, the surface area is twice the x-y
1773     // area of the current box:
1774     areaA = 2.0 * snap->getXYarea();
1775     } else {
1776     // in non-periodic simulations, without explicitly setting
1777     // selections, the sphere radius sets the surface area of the
1778     // dividing surface:
1779     areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1780     }
1781     }
1782    
1783     if (hasSelectionB_) {
1784 gezelter 1903 if (evaluatorB_.hasSurfaceArea())
1785     areaB = evaluatorB_.getSurfaceArea();
1786     else {
1787     cerr << "selection B did not have surface area, recomputing\n";
1788 gezelter 1879
1789 gezelter 1903 int isd;
1790     StuntDouble* sd;
1791     vector<StuntDouble*> bSites;
1792     seleManB_.setSelectionSet(evaluatorB_.evaluate());
1793     for (sd = seleManB_.beginSelected(isd); sd != NULL;
1794     sd = seleManB_.nextSelected(isd)) {
1795     bSites.push_back(sd);
1796     }
1797    
1798 gezelter 1879 #if defined(HAVE_QHULL)
1799 gezelter 1903 ConvexHull* surfaceMeshB = new ConvexHull();
1800     surfaceMeshB->computeHull(bSites);
1801     areaB = surfaceMeshB->getArea();
1802     delete surfaceMeshB;
1803 gezelter 1879 #else
1804 gezelter 1903 sprintf( painCave.errMsg,
1805     "RNEMD::getDividingArea : Hull calculation is not possible\n"
1806     "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1807     painCave.severity = OPENMD_ERROR;
1808     painCave.isFatal = 1;
1809     simError();
1810 gezelter 1879 #endif
1811 gezelter 1903 }
1812    
1813 gezelter 1879 } else {
1814     if (usePeriodicBoundaryConditions_) {
1815     // in periodic boundaries, the surface area is twice the x-y
1816     // area of the current box:
1817     areaB = 2.0 * snap->getXYarea();
1818     } else {
1819     // in non-periodic simulations, without explicitly setting
1820     // selections, but if a sphereBradius has been set, just use that:
1821     areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1822     }
1823     }
1824 gezelter 1903
1825 gezelter 1879 dividingArea_ = min(areaA, areaB);
1826     hasDividingArea_ = true;
1827     return dividingArea_;
1828     }
1829    
1830 skuang 1368 void RNEMD::doRNEMD() {
1831 gezelter 1776 if (!doRNEMD_) return;
1832 gezelter 1773 trialCount_++;
1833 gezelter 1879
1834     // object evaluator:
1835     evaluator_.loadScriptString(rnemdObjectSelection_);
1836     seleMan_.setSelectionSet(evaluator_.evaluate());
1837    
1838     evaluatorA_.loadScriptString(selectionA_);
1839     evaluatorB_.loadScriptString(selectionB_);
1840    
1841     seleManA_.setSelectionSet(evaluatorA_.evaluate());
1842     seleManB_.setSelectionSet(evaluatorB_.evaluate());
1843    
1844     commonA_ = seleManA_ & seleMan_;
1845     commonB_ = seleManB_ & seleMan_;
1846    
1847     // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1848     // dt = exchange time interval
1849     // flux = target flux
1850     // dividingArea = smallest dividing surface between the two regions
1851    
1852     hasDividingArea_ = false;
1853     RealType area = getDividingArea();
1854    
1855     kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1856     momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1857     angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1858    
1859 gezelter 1773 switch(rnemdMethod_) {
1860     case rnemdSwap:
1861 gezelter 1879 doSwap(commonA_, commonB_);
1862 skuang 1368 break;
1863 gezelter 1773 case rnemdNIVS:
1864 gezelter 1879 doNIVS(commonA_, commonB_);
1865 gezelter 1722 break;
1866 gezelter 1773 case rnemdVSS:
1867 gezelter 1879 doVSS(commonA_, commonB_);
1868 gezelter 1773 break;
1869     case rnemdUnkownMethod:
1870 skuang 1368 default :
1871     break;
1872     }
1873     }
1874    
1875     void RNEMD::collectData() {
1876 gezelter 1776 if (!doRNEMD_) return;
1877 skuang 1368 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1878 gezelter 1879
1879     // collectData can be called more frequently than the doRNEMD, so use the
1880     // computed area from the last exchange time:
1881     RealType area = getDividingArea();
1882     areaAccumulator_->add(area);
1883 skuang 1368 Mat3x3d hmat = currentSnap_->getHmat();
1884 gezelter 1940 Vector3d u = angularMomentumFluxVector_;
1885     u.normalize();
1886    
1887 skuang 1368 seleMan_.setSelectionSet(evaluator_.evaluate());
1888    
1889 gezelter 1801 int selei(0);
1890 skuang 1368 StuntDouble* sd;
1891 gezelter 1879 int binNo;
1892 gezelter 1941 RealType mass;
1893     Vector3d vel;
1894     Vector3d rPos;
1895     RealType KE;
1896     Vector3d L;
1897     Mat3x3d I;
1898     RealType r2;
1899 skuang 1368
1900 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1901 gezelter 1941 vector<Vector3d> binP(nBins_, V3Zero);
1902 gezelter 1940 vector<RealType> binOmega(nBins_, 0.0);
1903 gezelter 1941 vector<Vector3d> binL(nBins_, V3Zero);
1904     vector<Mat3x3d> binI(nBins_);
1905 gezelter 1773 vector<RealType> binKE(nBins_, 0.0);
1906     vector<int> binDOF(nBins_, 0);
1907     vector<int> binCount(nBins_, 0);
1908 jmarr 1728
1909 gezelter 1629 // alternative approach, track all molecules instead of only those
1910     // selected for scaling/swapping:
1911     /*
1912 gezelter 1879 SimInfo::MoleculeIterator miter;
1913     vector<StuntDouble*>::iterator iiter;
1914     Molecule* mol;
1915     StuntDouble* sd;
1916     for (mol = info_->beginMolecule(miter); mol != NULL;
1917 jmarr 1728 mol = info_->nextMolecule(miter))
1918 gezelter 1769 sd is essentially sd
1919 gezelter 1879 for (sd = mol->beginIntegrableObject(iiter);
1920     sd != NULL;
1921     sd = mol->nextIntegrableObject(iiter))
1922 gezelter 1629 */
1923 gezelter 1801
1924 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1925 gezelter 1793 sd = seleMan_.nextSelected(selei)) {
1926 gezelter 1801
1927 skuang 1338 Vector3d pos = sd->getPos();
1928    
1929     // wrap the stuntdouble's position back into the box:
1930    
1931 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1932 skuang 1338 currentSnap_->wrapVector(pos);
1933 gezelter 1879 // which bin is this stuntdouble in?
1934     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1935     // Shift molecules by half a box to have bins start at 0
1936     // The modulo operator is used to wrap the case when we are
1937     // beyond the end of the bins back to the beginning.
1938     binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1939     } else {
1940     Vector3d rPos = pos - coordinateOrigin_;
1941     binNo = int(rPos.length() / binWidth_);
1942     }
1943 gezelter 1773
1944 gezelter 1941 mass = sd->getMass();
1945     vel = sd->getVel();
1946     rPos = sd->getPos() - coordinateOrigin_;
1947 gezelter 1946 KE = 0.5 * mass * vel.lengthSquare();
1948 gezelter 1941 L = mass * cross(rPos, vel);
1949     I = outProduct(rPos, rPos) * mass;
1950     r2 = rPos.lengthSquare();
1951     I(0, 0) += mass * r2;
1952     I(1, 1) += mass * r2;
1953     I(2, 2) += mass * r2;
1954 gezelter 1940
1955     // Project the relative position onto a plane perpendicular to
1956     // the angularMomentumFluxVector:
1957 gezelter 1941 // Vector3d rProj = rPos - dot(rPos, u) * u;
1958 gezelter 1940 // Project the velocity onto a plane perpendicular to the
1959     // angularMomentumFluxVector:
1960 gezelter 1941 // Vector3d vProj = vel - dot(vel, u) * u;
1961 gezelter 1940 // Compute angular velocity vector (should be nearly parallel to
1962     // angularMomentumFluxVector
1963 gezelter 1941 // Vector3d aVel = cross(rProj, vProj);
1964    
1965 gezelter 1879 if (binNo >= 0 && binNo < nBins_) {
1966     binCount[binNo]++;
1967     binMass[binNo] += mass;
1968 gezelter 1941 binP[binNo] += mass*vel;
1969     binKE[binNo] += KE;
1970     binI[binNo] += I;
1971     binL[binNo] += L;
1972 gezelter 1879 binDOF[binNo] += 3;
1973    
1974     if (sd->isDirectional()) {
1975     Vector3d angMom = sd->getJ();
1976 gezelter 1941 Mat3x3d Ia = sd->getI();
1977 gezelter 1879 if (sd->isLinear()) {
1978     int i = sd->linearAxis();
1979     int j = (i + 1) % 3;
1980     int k = (i + 2) % 3;
1981 gezelter 1941 binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +
1982     angMom[k] * angMom[k] / Ia(k, k));
1983 gezelter 1879 binDOF[binNo] += 2;
1984     } else {
1985 gezelter 1941 binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) +
1986     angMom[1] * angMom[1] / Ia(1, 1) +
1987     angMom[2] * angMom[2] / Ia(2, 2));
1988 gezelter 1879 binDOF[binNo] += 3;
1989     }
1990 gezelter 1773 }
1991 gezelter 1722 }
1992 gezelter 1773 }
1993    
1994     #ifdef IS_MPI
1995 gezelter 1941
1996     for (int i = 0; i < nBins_; i++) {
1997 gezelter 1969
1998     MPI_Allreduce(MPI_IN_PLACE, &binCount[i],
1999     1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2000     MPI_Allreduce(MPI_IN_PLACE, &binMass[i],
2001     1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2002     MPI_Allreduce(MPI_IN_PLACE, &binP[i],
2003     3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2004     MPI_Allreduce(MPI_IN_PLACE, &binL[i],
2005     3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2006     MPI_Allreduce(MPI_IN_PLACE, &binI[i],
2007     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2008     MPI_Allreduce(MPI_IN_PLACE, &binKE[i],
2009     1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2010     MPI_Allreduce(MPI_IN_PLACE, &binDOF[i],
2011     1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
2012     //MPI_Allreduce(MPI_IN_PLACE, &binOmega[i],
2013     // 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
2014 gezelter 1941 }
2015    
2016 gezelter 1773 #endif
2017    
2018 gezelter 1941 Vector3d omega;
2019 gezelter 1773 RealType den;
2020     RealType temp;
2021     RealType z;
2022 gezelter 1879 RealType r;
2023 gezelter 1773 for (int i = 0; i < nBins_; i++) {
2024 gezelter 1879 if (usePeriodicBoundaryConditions_) {
2025     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
2026     den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
2027     / currentSnap_->getVolume() ;
2028     } else {
2029     r = (((RealType)i + 0.5) * binWidth_);
2030     RealType rinner = (RealType)i * binWidth_;
2031     RealType router = (RealType)(i+1) * binWidth_;
2032     den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
2033     / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
2034     }
2035 gezelter 1941 vel = binP[i] / binMass[i];
2036 gezelter 1777
2037 gezelter 1941 omega = binI[i].inverse() * binL[i];
2038    
2039     // omega = binOmega[i] / binCount[i];
2040    
2041 gezelter 1804 if (binCount[i] > 0) {
2042     // only add values if there are things to add
2043     temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2044     PhysicalConstants::energyConvert);
2045    
2046     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2047     if(outputMask_[j]) {
2048     switch(j) {
2049     case Z:
2050     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2051     break;
2052 gezelter 1879 case R:
2053     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2054     break;
2055 gezelter 1804 case TEMPERATURE:
2056     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2057     break;
2058     case VELOCITY:
2059     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2060     break;
2061 gezelter 1879 case ANGULARVELOCITY:
2062 gezelter 1941 dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(omega);
2063 gezelter 1879 break;
2064 gezelter 1804 case DENSITY:
2065     dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2066     break;
2067     }
2068 gezelter 1773 }
2069     }
2070 gezelter 1629 }
2071 skuang 1338 }
2072 gezelter 1879 hasData_ = true;
2073 skuang 1368 }
2074    
2075     void RNEMD::getStarted() {
2076 gezelter 1776 if (!doRNEMD_) return;
2077 gezelter 1879 hasDividingArea_ = false;
2078 gezelter 1629 collectData();
2079 gezelter 1773 writeOutputFile();
2080 skuang 1368 }
2081    
2082 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
2083 gezelter 1776 if (!doRNEMD_) return;
2084 gezelter 1773 StringTokenizer tokenizer(format, " ,;|\t\n\r");
2085    
2086     while(tokenizer.hasMoreTokens()) {
2087     std::string token(tokenizer.nextToken());
2088     toUpper(token);
2089     OutputMapType::iterator i = outputMap_.find(token);
2090     if (i != outputMap_.end()) {
2091     outputMask_.set(i->second);
2092     } else {
2093     sprintf( painCave.errMsg,
2094     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2095     "\toutputFileFormat keyword.\n", token.c_str() );
2096     painCave.isFatal = 0;
2097     painCave.severity = OPENMD_ERROR;
2098     simError();
2099     }
2100     }
2101     }
2102    
2103     void RNEMD::writeOutputFile() {
2104 gezelter 1776 if (!doRNEMD_) return;
2105 gezelter 1879 if (!hasData_) return;
2106 gezelter 1773
2107 gezelter 1350 #ifdef IS_MPI
2108     // If we're the root node, should we print out the results
2109 gezelter 1969 int worldRank;
2110     MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
2111    
2112 gezelter 1350 if (worldRank == 0) {
2113     #endif
2114 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2115    
2116     if( !rnemdFile_ ){
2117     sprintf( painCave.errMsg,
2118     "Could not open \"%s\" for RNEMD output.\n",
2119     rnemdFileName_.c_str());
2120     painCave.isFatal = 1;
2121     simError();
2122     }
2123 gezelter 1722
2124 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2125    
2126     RealType time = currentSnap_->getTime();
2127 gezelter 1774 RealType avgArea;
2128     areaAccumulator_->getAverage(avgArea);
2129    
2130 gezelter 1879 RealType Jz(0.0);
2131     Vector3d JzP(V3Zero);
2132     Vector3d JzL(V3Zero);
2133     if (time >= info_->getSimParams()->getDt()) {
2134     Jz = kineticExchange_ / (time * avgArea)
2135     / PhysicalConstants::energyConvert;
2136     JzP = momentumExchange_ / (time * avgArea);
2137     JzL = angularMomentumExchange_ / (time * avgArea);
2138     }
2139    
2140 gezelter 1773 rnemdFile_ << "#######################################################\n";
2141     rnemdFile_ << "# RNEMD {\n";
2142    
2143     map<string, RNEMDMethod>::iterator mi;
2144     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2145     if ( (*mi).second == rnemdMethod_)
2146 gezelter 1774 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
2147 skuang 1368 }
2148 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
2149     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2150     if ( (*fi).second == rnemdFluxType_)
2151 gezelter 1774 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
2152 gezelter 1722 }
2153 gezelter 1773
2154 gezelter 1775 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
2155 gezelter 1773
2156     rnemdFile_ << "# objectSelection = \""
2157 gezelter 1774 << rnemdObjectSelection_ << "\";\n";
2158 gezelter 1879 rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n";
2159     rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n";
2160 gezelter 1773 rnemdFile_ << "# }\n";
2161     rnemdFile_ << "#######################################################\n";
2162 gezelter 1774 rnemdFile_ << "# RNEMD report:\n";
2163 gezelter 1879 rnemdFile_ << "# running time = " << time << " fs\n";
2164     rnemdFile_ << "# Target flux:\n";
2165     rnemdFile_ << "# kinetic = "
2166 gezelter 1777 << kineticFlux_ / PhysicalConstants::energyConvert
2167     << " (kcal/mol/A^2/fs)\n";
2168 gezelter 1879 rnemdFile_ << "# momentum = " << momentumFluxVector_
2169 gezelter 1777 << " (amu/A/fs^2)\n";
2170 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_
2171     << " (amu/A^2/fs^2)\n";
2172     rnemdFile_ << "# Target one-time exchanges:\n";
2173     rnemdFile_ << "# kinetic = "
2174 gezelter 1777 << kineticTarget_ / PhysicalConstants::energyConvert
2175     << " (kcal/mol)\n";
2176 gezelter 1879 rnemdFile_ << "# momentum = " << momentumTarget_
2177 gezelter 1777 << " (amu*A/fs)\n";
2178 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumTarget_
2179     << " (amu*A^2/fs)\n";
2180     rnemdFile_ << "# Actual exchange totals:\n";
2181     rnemdFile_ << "# kinetic = "
2182 gezelter 1777 << kineticExchange_ / PhysicalConstants::energyConvert
2183     << " (kcal/mol)\n";
2184 gezelter 1879 rnemdFile_ << "# momentum = " << momentumExchange_
2185 gezelter 1777 << " (amu*A/fs)\n";
2186 gezelter 1879 rnemdFile_ << "# angular momentum = " << angularMomentumExchange_
2187     << " (amu*A^2/fs)\n";
2188     rnemdFile_ << "# Actual flux:\n";
2189     rnemdFile_ << "# kinetic = " << Jz
2190 gezelter 1777 << " (kcal/mol/A^2/fs)\n";
2191 gezelter 1879 rnemdFile_ << "# momentum = " << JzP
2192 gezelter 1777 << " (amu/A/fs^2)\n";
2193 gezelter 1879 rnemdFile_ << "# angular momentum = " << JzL
2194     << " (amu/A^2/fs^2)\n";
2195     rnemdFile_ << "# Exchange statistics:\n";
2196     rnemdFile_ << "# attempted = " << trialCount_ << "\n";
2197     rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
2198 gezelter 1773 if (rnemdMethod_ == rnemdNIVS) {
2199 gezelter 1879 rnemdFile_ << "# NIVS root-check errors = "
2200 gezelter 1774 << failRootCount_ << "\n";
2201 gezelter 1722 }
2202 gezelter 1773 rnemdFile_ << "#######################################################\n";
2203    
2204    
2205    
2206     //write title
2207     rnemdFile_ << "#";
2208     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2209     if (outputMask_[i]) {
2210     rnemdFile_ << "\t" << data_[i].title <<
2211     "(" << data_[i].units << ")";
2212 gezelter 1777 // add some extra tabs for column alignment
2213     if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2214 skuang 1368 }
2215 gezelter 1773 }
2216     rnemdFile_ << std::endl;
2217    
2218     rnemdFile_.precision(8);
2219    
2220 gezelter 1789 for (int j = 0; j < nBins_; j++) {
2221 gezelter 1773
2222     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2223     if (outputMask_[i]) {
2224     if (data_[i].dataType == "RealType")
2225     writeReal(i,j);
2226 gezelter 1879 else if (data_[i].dataType == "Vector3d")
2227 gezelter 1773 writeVector(i,j);
2228     else {
2229     sprintf( painCave.errMsg,
2230     "RNEMD found an unknown data type for: %s ",
2231     data_[i].title.c_str());
2232     painCave.isFatal = 1;
2233     simError();
2234     }
2235     }
2236 skuang 1368 }
2237 gezelter 1773 rnemdFile_ << std::endl;
2238    
2239     }
2240 gezelter 1774
2241     rnemdFile_ << "#######################################################\n";
2242     rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2243     rnemdFile_ << "#######################################################\n";
2244    
2245    
2246 gezelter 1789 for (int j = 0; j < nBins_; j++) {
2247 gezelter 1774 rnemdFile_ << "#";
2248     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2249     if (outputMask_[i]) {
2250     if (data_[i].dataType == "RealType")
2251     writeRealStdDev(i,j);
2252     else if (data_[i].dataType == "Vector3d")
2253     writeVectorStdDev(i,j);
2254     else {
2255     sprintf( painCave.errMsg,
2256     "RNEMD found an unknown data type for: %s ",
2257     data_[i].title.c_str());
2258     painCave.isFatal = 1;
2259     simError();
2260     }
2261     }
2262     }
2263     rnemdFile_ << std::endl;
2264    
2265     }
2266 gezelter 1773
2267     rnemdFile_.flush();
2268     rnemdFile_.close();
2269    
2270 gezelter 1350 #ifdef IS_MPI
2271 gezelter 1396 }
2272 gezelter 1350 #endif
2273 jmarr 1728
2274 gezelter 1334 }
2275 gezelter 1773
2276     void RNEMD::writeReal(int index, unsigned int bin) {
2277 gezelter 1776 if (!doRNEMD_) return;
2278 gezelter 1773 assert(index >=0 && index < ENDINDEX);
2279 gezelter 1879 assert(int(bin) < nBins_);
2280 gezelter 1773 RealType s;
2281 gezelter 1879 int count;
2282 gezelter 1773
2283 gezelter 1879 count = data_[index].accumulator[bin]->count();
2284     if (count == 0) return;
2285    
2286 gezelter 1791 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2287 gezelter 1773
2288     if (! isinf(s) && ! isnan(s)) {
2289     rnemdFile_ << "\t" << s;
2290     } else{
2291     sprintf( painCave.errMsg,
2292 gezelter 1879 "RNEMD detected a numerical error writing: %s for bin %u",
2293 gezelter 1773 data_[index].title.c_str(), bin);
2294     painCave.isFatal = 1;
2295     simError();
2296     }
2297     }
2298    
2299     void RNEMD::writeVector(int index, unsigned int bin) {
2300 gezelter 1776 if (!doRNEMD_) return;
2301 gezelter 1773 assert(index >=0 && index < ENDINDEX);
2302 gezelter 1879 assert(int(bin) < nBins_);
2303 gezelter 1773 Vector3d s;
2304 gezelter 1879 int count;
2305    
2306     count = data_[index].accumulator[bin]->count();
2307    
2308     if (count == 0) return;
2309    
2310 gezelter 1773 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2311     if (isinf(s[0]) || isnan(s[0]) ||
2312     isinf(s[1]) || isnan(s[1]) ||
2313     isinf(s[2]) || isnan(s[2]) ) {
2314     sprintf( painCave.errMsg,
2315 gezelter 1879 "RNEMD detected a numerical error writing: %s for bin %u",
2316 gezelter 1773 data_[index].title.c_str(), bin);
2317     painCave.isFatal = 1;
2318     simError();
2319     } else {
2320     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2321     }
2322     }
2323 gezelter 1774
2324     void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2325 gezelter 1776 if (!doRNEMD_) return;
2326 gezelter 1774 assert(index >=0 && index < ENDINDEX);
2327 gezelter 1879 assert(int(bin) < nBins_);
2328 gezelter 1774 RealType s;
2329 gezelter 1879 int count;
2330 gezelter 1774
2331 gezelter 1879 count = data_[index].accumulator[bin]->count();
2332     if (count == 0) return;
2333    
2334 gezelter 1791 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2335 gezelter 1774
2336     if (! isinf(s) && ! isnan(s)) {
2337     rnemdFile_ << "\t" << s;
2338     } else{
2339     sprintf( painCave.errMsg,
2340 gezelter 1879 "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2341 gezelter 1774 data_[index].title.c_str(), bin);
2342     painCave.isFatal = 1;
2343     simError();
2344     }
2345     }
2346    
2347     void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2348 gezelter 1776 if (!doRNEMD_) return;
2349 gezelter 1774 assert(index >=0 && index < ENDINDEX);
2350 gezelter 1879 assert(int(bin) < nBins_);
2351 gezelter 1774 Vector3d s;
2352 gezelter 1879 int count;
2353    
2354     count = data_[index].accumulator[bin]->count();
2355     if (count == 0) return;
2356    
2357 gezelter 1774 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2358     if (isinf(s[0]) || isnan(s[0]) ||
2359     isinf(s[1]) || isnan(s[1]) ||
2360     isinf(s[2]) || isnan(s[2]) ) {
2361     sprintf( painCave.errMsg,
2362 gezelter 1879 "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2363 gezelter 1774 data_[index].title.c_str(), bin);
2364     painCave.isFatal = 1;
2365     simError();
2366     } else {
2367     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2368     }
2369     }
2370 skuang 1338 }
2371 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date