ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/rnemd/RNEMD.cpp
Revision: 1789
Committed: Wed Aug 29 20:52:19 2012 UTC (12 years, 8 months ago) by gezelter
File size: 57122 byte(s)
Log Message:
Fixing a compilation issue on Windows

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1731 #include "rnemd/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1773 #ifdef IS_MPI
53 gezelter 1723 #include <mpi.h>
54 gezelter 1329 #endif
55    
56 gezelter 1789 #ifdef _MSC_VER
57     #define isnan(x) _isnan((x))
58     #define isinf(x) (!_finite(x) && !_isnan(x))
59     #endif
60    
61 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
62 gezelter 1329
63 gezelter 1629 using namespace std;
64 gezelter 1390 namespace OpenMD {
65 gezelter 1329
66 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
67     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
68 skuang 1368
69 gezelter 1773 trialCount_ = 0;
70 skuang 1368 failTrialCount_ = 0;
71     failRootCount_ = 0;
72    
73 gezelter 1329 Globals * simParams = info->getSimParams();
74 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
75 skuang 1330
76 gezelter 1776 doRNEMD_ = rnemdParams->getUseRNEMD();
77     if (!doRNEMD_) return;
78    
79 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
80     stringToMethod_["NIVS"] = rnemdNIVS;
81     stringToMethod_["VSS"] = rnemdVSS;
82 skuang 1330
83 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
84     stringToFluxType_["Px"] = rnemdPx;
85     stringToFluxType_["Py"] = rnemdPy;
86     stringToFluxType_["Pz"] = rnemdPz;
87 gezelter 1777 stringToFluxType_["Pvector"] = rnemdPvector;
88 gezelter 1773 stringToFluxType_["KE+Px"] = rnemdKePx;
89     stringToFluxType_["KE+Py"] = rnemdKePy;
90     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
91    
92 jmarr 1728 runTime_ = simParams->getRunTime();
93     statusTime_ = simParams->getStatusTime();
94    
95 gezelter 1731 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
96 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
97     seleMan_.setSelectionSet(evaluator_.evaluate());
98 gezelter 1331
99 gezelter 1773 const string methStr = rnemdParams->getMethod();
100     bool hasFluxType = rnemdParams->haveFluxType();
101    
102     string fluxStr;
103     if (hasFluxType) {
104     fluxStr = rnemdParams->getFluxType();
105     } else {
106     sprintf(painCave.errMsg,
107     "RNEMD: No fluxType was set in the md file. This parameter,\n"
108     "\twhich must be one of the following values:\n"
109 gezelter 1777 "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
110     "\tmust be set to use RNEMD\n");
111 gezelter 1773 painCave.isFatal = 1;
112     painCave.severity = OPENMD_ERROR;
113     simError();
114     }
115    
116     bool hasKineticFlux = rnemdParams->haveKineticFlux();
117     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
118     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
119     bool hasSlabWidth = rnemdParams->haveSlabWidth();
120     bool hasSlabACenter = rnemdParams->haveSlabACenter();
121     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
122     bool hasOutputFileName = rnemdParams->haveOutputFileName();
123     bool hasOutputFields = rnemdParams->haveOutputFields();
124    
125     map<string, RNEMDMethod>::iterator i;
126     i = stringToMethod_.find(methStr);
127     if (i != stringToMethod_.end())
128     rnemdMethod_ = i->second;
129     else {
130     sprintf(painCave.errMsg,
131     "RNEMD: The current method,\n"
132     "\t\t%s is not one of the recognized\n"
133     "\texchange methods: Swap, NIVS, or VSS\n",
134     methStr.c_str());
135     painCave.isFatal = 1;
136     painCave.severity = OPENMD_ERROR;
137     simError();
138     }
139    
140     map<string, RNEMDFluxType>::iterator j;
141     j = stringToFluxType_.find(fluxStr);
142     if (j != stringToFluxType_.end())
143     rnemdFluxType_ = j->second;
144     else {
145     sprintf(painCave.errMsg,
146     "RNEMD: The current fluxType,\n"
147     "\t\t%s\n"
148     "\tis not one of the recognized flux types.\n",
149     fluxStr.c_str());
150     painCave.isFatal = 1;
151     painCave.severity = OPENMD_ERROR;
152     simError();
153     }
154    
155     bool methodFluxMismatch = false;
156     bool hasCorrectFlux = false;
157     switch(rnemdMethod_) {
158     case rnemdSwap:
159     switch (rnemdFluxType_) {
160     case rnemdKE:
161     hasCorrectFlux = hasKineticFlux;
162     break;
163     case rnemdPx:
164     case rnemdPy:
165     case rnemdPz:
166     hasCorrectFlux = hasMomentumFlux;
167     break;
168     default :
169     methodFluxMismatch = true;
170     break;
171     }
172     break;
173     case rnemdNIVS:
174     switch (rnemdFluxType_) {
175     case rnemdKE:
176     case rnemdRotKE:
177     case rnemdFullKE:
178     hasCorrectFlux = hasKineticFlux;
179     break;
180     case rnemdPx:
181     case rnemdPy:
182     case rnemdPz:
183     hasCorrectFlux = hasMomentumFlux;
184     break;
185     case rnemdKePx:
186     case rnemdKePy:
187     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
188     break;
189     default:
190     methodFluxMismatch = true;
191     break;
192     }
193     break;
194     case rnemdVSS:
195     switch (rnemdFluxType_) {
196     case rnemdKE:
197     case rnemdRotKE:
198     case rnemdFullKE:
199     hasCorrectFlux = hasKineticFlux;
200     break;
201     case rnemdPx:
202     case rnemdPy:
203     case rnemdPz:
204     hasCorrectFlux = hasMomentumFlux;
205     break;
206     case rnemdPvector:
207     hasCorrectFlux = hasMomentumFluxVector;
208 gezelter 1777 break;
209 gezelter 1773 case rnemdKePx:
210     case rnemdKePy:
211     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
212     break;
213     case rnemdKePvector:
214     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
215     break;
216     default:
217     methodFluxMismatch = true;
218     break;
219     }
220     default:
221     break;
222     }
223    
224     if (methodFluxMismatch) {
225     sprintf(painCave.errMsg,
226     "RNEMD: The current method,\n"
227     "\t\t%s\n"
228     "\tcannot be used with the current flux type, %s\n",
229     methStr.c_str(), fluxStr.c_str());
230     painCave.isFatal = 1;
231     painCave.severity = OPENMD_ERROR;
232     simError();
233     }
234     if (!hasCorrectFlux) {
235     sprintf(painCave.errMsg,
236 gezelter 1777 "RNEMD: The current method, %s, and flux type, %s,\n"
237 gezelter 1773 "\tdid not have the correct flux value specified. Options\n"
238     "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
239     methStr.c_str(), fluxStr.c_str());
240     painCave.isFatal = 1;
241     painCave.severity = OPENMD_ERROR;
242     simError();
243     }
244    
245     if (hasKineticFlux) {
246 gezelter 1777 // convert the kcal / mol / Angstroms^2 / fs values in the md file
247     // into amu / fs^3:
248     kineticFlux_ = rnemdParams->getKineticFlux()
249     * PhysicalConstants::energyConvert;
250 gezelter 1773 } else {
251     kineticFlux_ = 0.0;
252     }
253     if (hasMomentumFluxVector) {
254     momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
255     } else {
256     momentumFluxVector_ = V3Zero;
257     if (hasMomentumFlux) {
258     RealType momentumFlux = rnemdParams->getMomentumFlux();
259     switch (rnemdFluxType_) {
260     case rnemdPx:
261     momentumFluxVector_.x() = momentumFlux;
262     break;
263     case rnemdPy:
264     momentumFluxVector_.y() = momentumFlux;
265     break;
266     case rnemdPz:
267     momentumFluxVector_.z() = momentumFlux;
268     break;
269     case rnemdKePx:
270     momentumFluxVector_.x() = momentumFlux;
271     break;
272     case rnemdKePy:
273     momentumFluxVector_.y() = momentumFlux;
274     break;
275     default:
276     break;
277     }
278     }
279     }
280    
281 skuang 1341 // do some sanity checking
282    
283     int selectionCount = seleMan_.getSelectionCount();
284     int nIntegrable = info->getNGlobalIntegrableObjects();
285    
286     if (selectionCount > nIntegrable) {
287     sprintf(painCave.errMsg,
288 gezelter 1773 "RNEMD: The current objectSelection,\n"
289 skuang 1341 "\t\t%s\n"
290     "\thas resulted in %d selected objects. However,\n"
291     "\tthe total number of integrable objects in the system\n"
292     "\tis only %d. This is almost certainly not what you want\n"
293     "\tto do. A likely cause of this is forgetting the _RB_0\n"
294     "\tselector in the selection script!\n",
295     rnemdObjectSelection_.c_str(),
296     selectionCount, nIntegrable);
297     painCave.isFatal = 0;
298 gezelter 1629 painCave.severity = OPENMD_WARNING;
299 skuang 1341 simError();
300     }
301 skuang 1330
302 gezelter 1774 areaAccumulator_ = new Accumulator();
303    
304 gezelter 1773 nBins_ = rnemdParams->getOutputBins();
305 skuang 1330
306 gezelter 1773 data_.resize(RNEMD::ENDINDEX);
307     OutputData z;
308     z.units = "Angstroms";
309     z.title = "Z";
310     z.dataType = "RealType";
311     z.accumulator.reserve(nBins_);
312 gezelter 1789 for (int i = 0; i < nBins_; i++)
313 gezelter 1773 z.accumulator.push_back( new Accumulator() );
314     data_[Z] = z;
315     outputMap_["Z"] = Z;
316 skuang 1368
317 gezelter 1773 OutputData temperature;
318     temperature.units = "K";
319     temperature.title = "Temperature";
320     temperature.dataType = "RealType";
321     temperature.accumulator.reserve(nBins_);
322 gezelter 1789 for (int i = 0; i < nBins_; i++)
323 gezelter 1773 temperature.accumulator.push_back( new Accumulator() );
324     data_[TEMPERATURE] = temperature;
325     outputMap_["TEMPERATURE"] = TEMPERATURE;
326 gezelter 1722
327 gezelter 1773 OutputData velocity;
328 gezelter 1777 velocity.units = "angstroms/fs";
329 gezelter 1773 velocity.title = "Velocity";
330     velocity.dataType = "Vector3d";
331     velocity.accumulator.reserve(nBins_);
332 gezelter 1789 for (int i = 0; i < nBins_; i++)
333 gezelter 1773 velocity.accumulator.push_back( new VectorAccumulator() );
334     data_[VELOCITY] = velocity;
335     outputMap_["VELOCITY"] = VELOCITY;
336 skuang 1368
337 gezelter 1773 OutputData density;
338     density.units = "g cm^-3";
339     density.title = "Density";
340     density.dataType = "RealType";
341     density.accumulator.reserve(nBins_);
342 gezelter 1789 for (int i = 0; i < nBins_; i++)
343 gezelter 1773 density.accumulator.push_back( new Accumulator() );
344     data_[DENSITY] = density;
345     outputMap_["DENSITY"] = DENSITY;
346 skuang 1368
347 gezelter 1773 if (hasOutputFields) {
348     parseOutputFileFormat(rnemdParams->getOutputFields());
349     } else {
350     outputMask_.set(Z);
351     switch (rnemdFluxType_) {
352     case rnemdKE:
353     case rnemdRotKE:
354     case rnemdFullKE:
355     outputMask_.set(TEMPERATURE);
356     break;
357     case rnemdPx:
358     case rnemdPy:
359     outputMask_.set(VELOCITY);
360     break;
361     case rnemdPz:
362     case rnemdPvector:
363     outputMask_.set(VELOCITY);
364     outputMask_.set(DENSITY);
365     break;
366     case rnemdKePx:
367     case rnemdKePy:
368     outputMask_.set(TEMPERATURE);
369     outputMask_.set(VELOCITY);
370     break;
371     case rnemdKePvector:
372     outputMask_.set(TEMPERATURE);
373     outputMask_.set(VELOCITY);
374     outputMask_.set(DENSITY);
375     break;
376     default:
377     break;
378 gezelter 1629 }
379     }
380 gezelter 1773
381     if (hasOutputFileName) {
382     rnemdFileName_ = rnemdParams->getOutputFileName();
383 skuang 1368 } else {
384 gezelter 1773 rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
385     }
386 gezelter 1722
387 gezelter 1773 exchangeTime_ = rnemdParams->getExchangeTime();
388 skuang 1338
389 gezelter 1773 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
390     Mat3x3d hmat = currentSnap_->getHmat();
391    
392     // Target exchange quantities (in each exchange) = 2 Lx Ly dt flux
393     // Lx, Ly = box dimensions in x & y
394     // dt = exchange time interval
395     // flux = target flux
396 skuang 1368
397 gezelter 1774 RealType area = currentSnap_->getXYarea();
398     kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
399     momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
400 gezelter 1773
401     // total exchange sums are zeroed out at the beginning:
402    
403     kineticExchange_ = 0.0;
404     momentumExchange_ = V3Zero;
405    
406     if (hasSlabWidth)
407     slabWidth_ = rnemdParams->getSlabWidth();
408     else
409     slabWidth_ = hmat(2,2) / 10.0;
410    
411     if (hasSlabACenter)
412     slabACenter_ = rnemdParams->getSlabACenter();
413     else
414     slabACenter_ = 0.0;
415    
416     if (hasSlabBCenter)
417     slabBCenter_ = rnemdParams->getSlabBCenter();
418     else
419     slabBCenter_ = hmat(2,2) / 2.0;
420    
421 gezelter 1329 }
422 gezelter 1773
423 gezelter 1329 RNEMD::~RNEMD() {
424 gezelter 1776 if (!doRNEMD_) return;
425 skuang 1368 #ifdef IS_MPI
426     if (worldRank == 0) {
427     #endif
428 gezelter 1722
429 gezelter 1773 writeOutputFile();
430    
431     rnemdFile_.close();
432 jmarr 1728
433 skuang 1368 #ifdef IS_MPI
434     }
435     #endif
436 gezelter 1329 }
437 gezelter 1773
438     bool RNEMD::inSlabA(Vector3d pos) {
439     return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
440     }
441     bool RNEMD::inSlabB(Vector3d pos) {
442     return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
443     }
444 skuang 1330
445 gezelter 1329 void RNEMD::doSwap() {
446 gezelter 1776 if (!doRNEMD_) return;
447 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
448     Mat3x3d hmat = currentSnap_->getHmat();
449    
450 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
451    
452 gezelter 1333 int selei;
453 gezelter 1331 StuntDouble* sd;
454 gezelter 1333 int idx;
455 gezelter 1331
456 skuang 1338 RealType min_val;
457     bool min_found = false;
458     StuntDouble* min_sd;
459    
460     RealType max_val;
461     bool max_found = false;
462     StuntDouble* max_sd;
463    
464 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
465     sd = seleMan_.nextSelected(selei)) {
466 gezelter 1332
467 gezelter 1333 idx = sd->getLocalIndex();
468    
469 gezelter 1331 Vector3d pos = sd->getPos();
470 gezelter 1332
471     // wrap the stuntdouble's position back into the box:
472    
473 gezelter 1331 if (usePeriodicBoundaryConditions_)
474 gezelter 1332 currentSnap_->wrapVector(pos);
475 gezelter 1773 bool inA = inSlabA(pos);
476     bool inB = inSlabB(pos);
477 gezelter 1332
478 gezelter 1773 if (inA || inB) {
479 gezelter 1332
480     RealType mass = sd->getMass();
481     Vector3d vel = sd->getVel();
482     RealType value;
483 gezelter 1773
484     switch(rnemdFluxType_) {
485     case rnemdKE :
486 gezelter 1332
487 gezelter 1722 value = mass * vel.lengthSquare();
488    
489     if (sd->isDirectional()) {
490 gezelter 1332 Vector3d angMom = sd->getJ();
491     Mat3x3d I = sd->getI();
492    
493     if (sd->isLinear()) {
494 gezelter 1722 int i = sd->linearAxis();
495     int j = (i + 1) % 3;
496     int k = (i + 2) % 3;
497     value += angMom[j] * angMom[j] / I(j, j) +
498     angMom[k] * angMom[k] / I(k, k);
499 gezelter 1332 } else {
500 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
501     + angMom[1]*angMom[1]/I(1, 1)
502     + angMom[2]*angMom[2]/I(2, 2);
503 gezelter 1332 }
504 gezelter 1722 } //angular momenta exchange enabled
505 skuang 1368 value *= 0.5;
506 gezelter 1332 break;
507     case rnemdPx :
508     value = mass * vel[0];
509     break;
510     case rnemdPy :
511     value = mass * vel[1];
512     break;
513     case rnemdPz :
514     value = mass * vel[2];
515     break;
516     default :
517     break;
518     }
519    
520 gezelter 1773 if (inA == 0) {
521 skuang 1338 if (!min_found) {
522     min_val = value;
523     min_sd = sd;
524     min_found = true;
525     } else {
526     if (min_val > value) {
527     min_val = value;
528     min_sd = sd;
529     }
530     }
531 gezelter 1773 } else {
532 skuang 1338 if (!max_found) {
533     max_val = value;
534     max_sd = sd;
535     max_found = true;
536     } else {
537     if (max_val < value) {
538     max_val = value;
539     max_sd = sd;
540     }
541     }
542     }
543 gezelter 1332 }
544 gezelter 1331 }
545 gezelter 1773
546 gezelter 1350 #ifdef IS_MPI
547     int nProc, worldRank;
548 gezelter 1773
549 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
550     worldRank = MPI::COMM_WORLD.Get_rank();
551    
552     bool my_min_found = min_found;
553     bool my_max_found = max_found;
554    
555     // Even if we didn't find a minimum, did someone else?
556 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
557 gezelter 1350 // Even if we didn't find a maximum, did someone else?
558 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
559 gezelter 1722 #endif
560    
561     if (max_found && min_found) {
562    
563     #ifdef IS_MPI
564     struct {
565     RealType val;
566     int rank;
567     } max_vals, min_vals;
568 jmarr 1728
569 gezelter 1722 if (my_min_found) {
570 gezelter 1350 min_vals.val = min_val;
571 gezelter 1722 } else {
572 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
573 gezelter 1722 }
574 gezelter 1350 min_vals.rank = worldRank;
575    
576     // Who had the minimum?
577     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
578     1, MPI::REALTYPE_INT, MPI::MINLOC);
579     min_val = min_vals.val;
580    
581 gezelter 1722 if (my_max_found) {
582 gezelter 1350 max_vals.val = max_val;
583 gezelter 1722 } else {
584 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
585 gezelter 1722 }
586 gezelter 1350 max_vals.rank = worldRank;
587    
588     // Who had the maximum?
589     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
590     1, MPI::REALTYPE_INT, MPI::MAXLOC);
591     max_val = max_vals.val;
592     #endif
593 gezelter 1722
594 gezelter 1629 if (min_val < max_val) {
595 gezelter 1722
596 gezelter 1350 #ifdef IS_MPI
597     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
598     // I have both maximum and minimum, so proceed like a single
599     // processor version:
600     #endif
601 gezelter 1722
602 gezelter 1350 Vector3d min_vel = min_sd->getVel();
603     Vector3d max_vel = max_sd->getVel();
604     RealType temp_vel;
605    
606 gezelter 1773 switch(rnemdFluxType_) {
607     case rnemdKE :
608 gezelter 1350 min_sd->setVel(max_vel);
609     max_sd->setVel(min_vel);
610 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
611 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
612     Vector3d max_angMom = max_sd->getJ();
613     min_sd->setJ(max_angMom);
614     max_sd->setJ(min_angMom);
615 gezelter 1722 }//angular momenta exchange enabled
616     //assumes same rigid body identity
617 gezelter 1350 break;
618     case rnemdPx :
619     temp_vel = min_vel.x();
620     min_vel.x() = max_vel.x();
621     max_vel.x() = temp_vel;
622     min_sd->setVel(min_vel);
623     max_sd->setVel(max_vel);
624     break;
625     case rnemdPy :
626     temp_vel = min_vel.y();
627     min_vel.y() = max_vel.y();
628     max_vel.y() = temp_vel;
629     min_sd->setVel(min_vel);
630     max_sd->setVel(max_vel);
631     break;
632     case rnemdPz :
633     temp_vel = min_vel.z();
634     min_vel.z() = max_vel.z();
635     max_vel.z() = temp_vel;
636     min_sd->setVel(min_vel);
637     max_sd->setVel(max_vel);
638     break;
639     default :
640     break;
641     }
642 gezelter 1722
643 gezelter 1350 #ifdef IS_MPI
644     // the rest of the cases only apply in parallel simulations:
645     } else if (max_vals.rank == worldRank) {
646     // I had the max, but not the minimum
647    
648     Vector3d min_vel;
649     Vector3d max_vel = max_sd->getVel();
650     MPI::Status status;
651 skuang 1341
652 gezelter 1350 // point-to-point swap of the velocity vector
653     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
654     min_vals.rank, 0,
655     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
656     min_vals.rank, 0, status);
657    
658 gezelter 1773 switch(rnemdFluxType_) {
659     case rnemdKE :
660 gezelter 1350 max_sd->setVel(min_vel);
661 gezelter 1722 //angular momenta exchange enabled
662 gezelter 1350 if (max_sd->isDirectional()) {
663     Vector3d min_angMom;
664     Vector3d max_angMom = max_sd->getJ();
665 gezelter 1629
666 gezelter 1350 // point-to-point swap of the angular momentum vector
667     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
668     MPI::REALTYPE, min_vals.rank, 1,
669     min_angMom.getArrayPointer(), 3,
670     MPI::REALTYPE, min_vals.rank, 1,
671     status);
672 gezelter 1629
673 gezelter 1350 max_sd->setJ(min_angMom);
674 gezelter 1722 }
675 gezelter 1350 break;
676     case rnemdPx :
677     max_vel.x() = min_vel.x();
678     max_sd->setVel(max_vel);
679     break;
680     case rnemdPy :
681     max_vel.y() = min_vel.y();
682     max_sd->setVel(max_vel);
683     break;
684     case rnemdPz :
685     max_vel.z() = min_vel.z();
686     max_sd->setVel(max_vel);
687     break;
688     default :
689     break;
690 skuang 1341 }
691 gezelter 1350 } else if (min_vals.rank == worldRank) {
692     // I had the minimum but not the maximum:
693    
694     Vector3d max_vel;
695     Vector3d min_vel = min_sd->getVel();
696     MPI::Status status;
697    
698     // point-to-point swap of the velocity vector
699     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
700     max_vals.rank, 0,
701     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
702     max_vals.rank, 0, status);
703    
704 gezelter 1773 switch(rnemdFluxType_) {
705     case rnemdKE :
706 gezelter 1350 min_sd->setVel(max_vel);
707 gezelter 1722 //angular momenta exchange enabled
708 gezelter 1350 if (min_sd->isDirectional()) {
709     Vector3d min_angMom = min_sd->getJ();
710     Vector3d max_angMom;
711 gezelter 1629
712 gezelter 1350 // point-to-point swap of the angular momentum vector
713     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
714     MPI::REALTYPE, max_vals.rank, 1,
715     max_angMom.getArrayPointer(), 3,
716     MPI::REALTYPE, max_vals.rank, 1,
717     status);
718 gezelter 1629
719 gezelter 1350 min_sd->setJ(max_angMom);
720     }
721     break;
722     case rnemdPx :
723     min_vel.x() = max_vel.x();
724     min_sd->setVel(min_vel);
725     break;
726     case rnemdPy :
727     min_vel.y() = max_vel.y();
728     min_sd->setVel(min_vel);
729     break;
730     case rnemdPz :
731     min_vel.z() = max_vel.z();
732     min_sd->setVel(min_vel);
733     break;
734     default :
735     break;
736     }
737     }
738     #endif
739 gezelter 1773
740     switch(rnemdFluxType_) {
741     case rnemdKE:
742     kineticExchange_ += max_val - min_val;
743     break;
744     case rnemdPx:
745     momentumExchange_.x() += max_val - min_val;
746     break;
747     case rnemdPy:
748     momentumExchange_.y() += max_val - min_val;
749     break;
750     case rnemdPz:
751     momentumExchange_.z() += max_val - min_val;
752     break;
753     default:
754     break;
755     }
756 gezelter 1629 } else {
757     sprintf(painCave.errMsg,
758 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
759 gezelter 1629 painCave.isFatal = 0;
760     painCave.severity = OPENMD_INFO;
761     simError();
762 skuang 1368 failTrialCount_++;
763 skuang 1338 }
764     } else {
765 gezelter 1629 sprintf(painCave.errMsg,
766 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
767     "\twas not present in at least one of the two slabs.\n");
768 gezelter 1629 painCave.isFatal = 0;
769     painCave.severity = OPENMD_INFO;
770     simError();
771 skuang 1368 failTrialCount_++;
772 gezelter 1773 }
773 skuang 1338 }
774 gezelter 1350
775 gezelter 1773 void RNEMD::doNIVS() {
776 gezelter 1776 if (!doRNEMD_) return;
777 skuang 1338 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
778     Mat3x3d hmat = currentSnap_->getHmat();
779    
780     seleMan_.setSelectionSet(evaluator_.evaluate());
781    
782     int selei;
783     StuntDouble* sd;
784     int idx;
785    
786 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
787 gezelter 1350
788 skuang 1368 RealType Phx = 0.0;
789     RealType Phy = 0.0;
790     RealType Phz = 0.0;
791     RealType Khx = 0.0;
792     RealType Khy = 0.0;
793     RealType Khz = 0.0;
794 gezelter 1722 RealType Khw = 0.0;
795 skuang 1368 RealType Pcx = 0.0;
796     RealType Pcy = 0.0;
797     RealType Pcz = 0.0;
798     RealType Kcx = 0.0;
799     RealType Kcy = 0.0;
800     RealType Kcz = 0.0;
801 gezelter 1722 RealType Kcw = 0.0;
802 skuang 1368
803 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
804     sd = seleMan_.nextSelected(selei)) {
805 skuang 1368
806     idx = sd->getLocalIndex();
807    
808     Vector3d pos = sd->getPos();
809    
810     // wrap the stuntdouble's position back into the box:
811    
812     if (usePeriodicBoundaryConditions_)
813     currentSnap_->wrapVector(pos);
814    
815     // which bin is this stuntdouble in?
816 gezelter 1773 bool inA = inSlabA(pos);
817     bool inB = inSlabB(pos);
818 skuang 1368
819 gezelter 1773 if (inA || inB) {
820    
821 skuang 1368 RealType mass = sd->getMass();
822     Vector3d vel = sd->getVel();
823    
824 gezelter 1773 if (inA) {
825 skuang 1368 hotBin.push_back(sd);
826     Phx += mass * vel.x();
827     Phy += mass * vel.y();
828     Phz += mass * vel.z();
829     Khx += mass * vel.x() * vel.x();
830     Khy += mass * vel.y() * vel.y();
831     Khz += mass * vel.z() * vel.z();
832 gezelter 1722 if (sd->isDirectional()) {
833     Vector3d angMom = sd->getJ();
834     Mat3x3d I = sd->getI();
835     if (sd->isLinear()) {
836     int i = sd->linearAxis();
837     int j = (i + 1) % 3;
838     int k = (i + 2) % 3;
839     Khw += angMom[j] * angMom[j] / I(j, j) +
840     angMom[k] * angMom[k] / I(k, k);
841     } else {
842     Khw += angMom[0]*angMom[0]/I(0, 0)
843     + angMom[1]*angMom[1]/I(1, 1)
844     + angMom[2]*angMom[2]/I(2, 2);
845     }
846     }
847 gezelter 1773 } else {
848 skuang 1368 coldBin.push_back(sd);
849     Pcx += mass * vel.x();
850     Pcy += mass * vel.y();
851     Pcz += mass * vel.z();
852     Kcx += mass * vel.x() * vel.x();
853     Kcy += mass * vel.y() * vel.y();
854     Kcz += mass * vel.z() * vel.z();
855 gezelter 1722 if (sd->isDirectional()) {
856     Vector3d angMom = sd->getJ();
857     Mat3x3d I = sd->getI();
858     if (sd->isLinear()) {
859     int i = sd->linearAxis();
860     int j = (i + 1) % 3;
861     int k = (i + 2) % 3;
862     Kcw += angMom[j] * angMom[j] / I(j, j) +
863     angMom[k] * angMom[k] / I(k, k);
864     } else {
865     Kcw += angMom[0]*angMom[0]/I(0, 0)
866     + angMom[1]*angMom[1]/I(1, 1)
867     + angMom[2]*angMom[2]/I(2, 2);
868     }
869     }
870 skuang 1368 }
871     }
872     }
873 gezelter 1722
874 skuang 1368 Khx *= 0.5;
875     Khy *= 0.5;
876     Khz *= 0.5;
877 gezelter 1722 Khw *= 0.5;
878 skuang 1368 Kcx *= 0.5;
879     Kcy *= 0.5;
880     Kcz *= 0.5;
881 gezelter 1722 Kcw *= 0.5;
882 skuang 1368
883     #ifdef IS_MPI
884     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
885     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
886     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
887     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
888     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
889     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
890    
891     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
892     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
893     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
894 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
895    
896 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
897     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
898     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
899 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
900 skuang 1368 #endif
901    
902 gezelter 1722 //solve coldBin coeff's first
903 skuang 1368 RealType px = Pcx / Phx;
904     RealType py = Pcy / Phy;
905     RealType pz = Pcz / Phz;
906 gezelter 1722 RealType c, x, y, z;
907     bool successfulScale = false;
908 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
909     (rnemdFluxType_ == rnemdRotKE)) {
910 gezelter 1722 //may need sanity check Khw & Kcw > 0
911 skuang 1368
912 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
913     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
914 gezelter 1722 } else {
915 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
916 gezelter 1722 }
917 skuang 1368
918 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
919     c = sqrt(c);
920 gezelter 1773 //std::cerr << "cold slab scaling coefficient: " << c << endl;
921 gezelter 1722 //now convert to hotBin coefficient
922     RealType w = 0.0;
923 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
924 gezelter 1722 x = 1.0 + px * (1.0 - c);
925     y = 1.0 + py * (1.0 - c);
926     z = 1.0 + pz * (1.0 - c);
927     /* more complicated way
928     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
929     + Khx * px * px + Khy * py * py + Khz * pz * pz)
930     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
931     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
932     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
933     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
934     */
935     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
936     (fabs(z - 1.0) < 0.1)) {
937 gezelter 1773 w = 1.0 + (kineticTarget_
938     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
939 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
940     }//no need to calculate w if x, y or z is out of range
941     } else {
942 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
943 gezelter 1722 }
944     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
945     //if w is in the right range, so should be x, y, z.
946     vector<StuntDouble*>::iterator sdi;
947     Vector3d vel;
948     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
949 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
950 gezelter 1722 vel = (*sdi)->getVel() * c;
951     (*sdi)->setVel(vel);
952     }
953     if ((*sdi)->isDirectional()) {
954     Vector3d angMom = (*sdi)->getJ() * c;
955     (*sdi)->setJ(angMom);
956     }
957     }
958     w = sqrt(w);
959 gezelter 1773 // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
960     // << "\twh= " << w << endl;
961 gezelter 1722 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
962 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
963 gezelter 1722 vel = (*sdi)->getVel();
964     vel.x() *= x;
965     vel.y() *= y;
966     vel.z() *= z;
967     (*sdi)->setVel(vel);
968     }
969     if ((*sdi)->isDirectional()) {
970     Vector3d angMom = (*sdi)->getJ() * w;
971     (*sdi)->setJ(angMom);
972     }
973     }
974     successfulScale = true;
975 gezelter 1773 kineticExchange_ += kineticTarget_;
976 gezelter 1722 }
977 skuang 1368 }
978 gezelter 1722 } else {
979     RealType a000, a110, c0, a001, a111, b01, b11, c1;
980 gezelter 1773 switch(rnemdFluxType_) {
981     case rnemdKE :
982 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
983     RealType px = Phx / Pcx;
984     RealType py = Phy / Pcy;
985     a110 = Khy;
986 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
987 gezelter 1722 a000 = Khx;
988     a111 = Kcy * py * py;
989     b11 = -2.0 * Kcy * py * (1.0 + py);
990 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
991 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
992     a001 = Kcx * px * px;
993     */
994     //scale all three dimensions, let c_x = c_y
995     a000 = Kcx + Kcy;
996     a110 = Kcz;
997 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
998 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
999     a111 = Khz * pz * pz;
1000     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1001     b11 = -2.0 * Khz * pz * (1.0 + pz);
1002     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1003 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
1004 gezelter 1722 break;
1005 gezelter 1773 case rnemdPx :
1006     c = 1 - momentumTarget_.x() / Pcx;
1007 gezelter 1722 a000 = Kcy;
1008     a110 = Kcz;
1009     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1010     a001 = py * py * Khy;
1011     a111 = pz * pz * Khz;
1012     b01 = -2.0 * Khy * py * (1.0 + py);
1013     b11 = -2.0 * Khz * pz * (1.0 + pz);
1014     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1015     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1016     break;
1017 gezelter 1773 case rnemdPy :
1018     c = 1 - momentumTarget_.y() / Pcy;
1019 gezelter 1722 a000 = Kcx;
1020     a110 = Kcz;
1021     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1022     a001 = px * px * Khx;
1023     a111 = pz * pz * Khz;
1024     b01 = -2.0 * Khx * px * (1.0 + px);
1025     b11 = -2.0 * Khz * pz * (1.0 + pz);
1026     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1027     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1028     break;
1029 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1030     c = 1 - momentumTarget_.z() / Pcz;
1031 gezelter 1722 a000 = Kcx;
1032     a110 = Kcy;
1033     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1034     a001 = px * px * Khx;
1035     a111 = py * py * Khy;
1036     b01 = -2.0 * Khx * px * (1.0 + px);
1037     b11 = -2.0 * Khy * py * (1.0 + py);
1038     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1039     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1040     break;
1041     default :
1042     break;
1043 skuang 1368 }
1044 gezelter 1722
1045     RealType v1 = a000 * a111 - a001 * a110;
1046     RealType v2 = a000 * b01;
1047     RealType v3 = a000 * b11;
1048     RealType v4 = a000 * c1 - a001 * c0;
1049     RealType v8 = a110 * b01;
1050     RealType v10 = - b01 * c0;
1051    
1052     RealType u0 = v2 * v10 - v4 * v4;
1053     RealType u1 = -2.0 * v3 * v4;
1054     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1055     RealType u3 = -2.0 * v1 * v3;
1056     RealType u4 = - v1 * v1;
1057     //rescale coefficients
1058     RealType maxAbs = fabs(u0);
1059     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1060     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1061     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1062     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1063     u0 /= maxAbs;
1064     u1 /= maxAbs;
1065     u2 /= maxAbs;
1066     u3 /= maxAbs;
1067     u4 /= maxAbs;
1068     //max_element(start, end) is also available.
1069     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1070     poly.setCoefficient(4, u4);
1071     poly.setCoefficient(3, u3);
1072     poly.setCoefficient(2, u2);
1073     poly.setCoefficient(1, u1);
1074     poly.setCoefficient(0, u0);
1075     vector<RealType> realRoots = poly.FindRealRoots();
1076    
1077     vector<RealType>::iterator ri;
1078     RealType r1, r2, alpha0;
1079     vector<pair<RealType,RealType> > rps;
1080     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1081     r2 = *ri;
1082     //check if FindRealRoots() give the right answer
1083     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1084     sprintf(painCave.errMsg,
1085     "RNEMD Warning: polynomial solve seems to have an error!");
1086     painCave.isFatal = 0;
1087     simError();
1088     failRootCount_++;
1089     }
1090     //might not be useful w/o rescaling coefficients
1091     alpha0 = -c0 - a110 * r2 * r2;
1092     if (alpha0 >= 0.0) {
1093     r1 = sqrt(alpha0 / a000);
1094     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1095     < 1e-6)
1096     { rps.push_back(make_pair(r1, r2)); }
1097     if (r1 > 1e-6) { //r1 non-negative
1098     r1 = -r1;
1099     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1100     < 1e-6)
1101     { rps.push_back(make_pair(r1, r2)); }
1102     }
1103     }
1104 skuang 1368 }
1105 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1106     // best solution part so that we don't need the pairs vector
1107     if (!rps.empty()) {
1108     RealType smallestDiff = HONKING_LARGE_VALUE;
1109     RealType diff;
1110     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1111     vector<pair<RealType,RealType> >::iterator rpi;
1112     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1113     r1 = (*rpi).first;
1114     r2 = (*rpi).second;
1115 gezelter 1773 switch(rnemdFluxType_) {
1116     case rnemdKE :
1117 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1119     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1120     break;
1121 gezelter 1773 case rnemdPx :
1122 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1123     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1124     break;
1125 gezelter 1773 case rnemdPy :
1126 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1127     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1128     break;
1129 gezelter 1773 case rnemdPz :
1130 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1131     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1132     default :
1133     break;
1134     }
1135     if (diff < smallestDiff) {
1136     smallestDiff = diff;
1137     bestPair = *rpi;
1138     }
1139     }
1140 skuang 1368 #ifdef IS_MPI
1141 gezelter 1722 if (worldRank == 0) {
1142 skuang 1368 #endif
1143 gezelter 1773 // sprintf(painCave.errMsg,
1144     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1145     // bestPair.first, bestPair.second);
1146     // painCave.isFatal = 0;
1147     // painCave.severity = OPENMD_INFO;
1148     // simError();
1149 skuang 1368 #ifdef IS_MPI
1150 gezelter 1722 }
1151 skuang 1368 #endif
1152 gezelter 1722
1153 gezelter 1773 switch(rnemdFluxType_) {
1154     case rnemdKE :
1155 gezelter 1722 x = bestPair.first;
1156     y = bestPair.first;
1157     z = bestPair.second;
1158     break;
1159 gezelter 1773 case rnemdPx :
1160 gezelter 1722 x = c;
1161     y = bestPair.first;
1162     z = bestPair.second;
1163     break;
1164 gezelter 1773 case rnemdPy :
1165 gezelter 1722 x = bestPair.first;
1166     y = c;
1167     z = bestPair.second;
1168     break;
1169 gezelter 1773 case rnemdPz :
1170 gezelter 1722 x = bestPair.first;
1171     y = bestPair.second;
1172     z = c;
1173     break;
1174     default :
1175     break;
1176     }
1177     vector<StuntDouble*>::iterator sdi;
1178     Vector3d vel;
1179     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1180     vel = (*sdi)->getVel();
1181     vel.x() *= x;
1182     vel.y() *= y;
1183     vel.z() *= z;
1184     (*sdi)->setVel(vel);
1185     }
1186     //convert to hotBin coefficient
1187     x = 1.0 + px * (1.0 - x);
1188     y = 1.0 + py * (1.0 - y);
1189     z = 1.0 + pz * (1.0 - z);
1190     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1191     vel = (*sdi)->getVel();
1192     vel.x() *= x;
1193     vel.y() *= y;
1194     vel.z() *= z;
1195     (*sdi)->setVel(vel);
1196     }
1197     successfulScale = true;
1198 gezelter 1773 switch(rnemdFluxType_) {
1199     case rnemdKE :
1200     kineticExchange_ += kineticTarget_;
1201     break;
1202     case rnemdPx :
1203     case rnemdPy :
1204     case rnemdPz :
1205     momentumExchange_ += momentumTarget_;
1206     break;
1207     default :
1208     break;
1209     }
1210 gezelter 1629 }
1211 gezelter 1722 }
1212     if (successfulScale != true) {
1213     sprintf(painCave.errMsg,
1214 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1215     "\tthe constraint equations may not exist or there may be\n"
1216     "\tno selected objects in one or both slabs.\n");
1217 gezelter 1722 painCave.isFatal = 0;
1218     painCave.severity = OPENMD_INFO;
1219     simError();
1220     failTrialCount_++;
1221     }
1222     }
1223    
1224 gezelter 1773 void RNEMD::doVSS() {
1225 gezelter 1776 if (!doRNEMD_) return;
1226 gezelter 1722 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1227 jmarr 1728 RealType time = currentSnap_->getTime();
1228 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1229    
1230     seleMan_.setSelectionSet(evaluator_.evaluate());
1231    
1232     int selei;
1233     StuntDouble* sd;
1234     int idx;
1235    
1236     vector<StuntDouble*> hotBin, coldBin;
1237    
1238     Vector3d Ph(V3Zero);
1239     RealType Mh = 0.0;
1240     RealType Kh = 0.0;
1241     Vector3d Pc(V3Zero);
1242     RealType Mc = 0.0;
1243     RealType Kc = 0.0;
1244 jmarr 1728
1245 gezelter 1722
1246     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1247     sd = seleMan_.nextSelected(selei)) {
1248    
1249     idx = sd->getLocalIndex();
1250    
1251     Vector3d pos = sd->getPos();
1252    
1253     // wrap the stuntdouble's position back into the box:
1254    
1255     if (usePeriodicBoundaryConditions_)
1256     currentSnap_->wrapVector(pos);
1257    
1258     // which bin is this stuntdouble in?
1259 gezelter 1773 bool inA = inSlabA(pos);
1260     bool inB = inSlabB(pos);
1261    
1262     if (inA || inB) {
1263 gezelter 1722
1264     RealType mass = sd->getMass();
1265     Vector3d vel = sd->getVel();
1266    
1267 gezelter 1773 if (inA) {
1268 gezelter 1722 hotBin.push_back(sd);
1269     //std::cerr << "before, velocity = " << vel << endl;
1270     Ph += mass * vel;
1271     //std::cerr << "after, velocity = " << vel << endl;
1272     Mh += mass;
1273     Kh += mass * vel.lengthSquare();
1274 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1275 gezelter 1722 if (sd->isDirectional()) {
1276     Vector3d angMom = sd->getJ();
1277     Mat3x3d I = sd->getI();
1278     if (sd->isLinear()) {
1279     int i = sd->linearAxis();
1280     int j = (i + 1) % 3;
1281     int k = (i + 2) % 3;
1282     Kh += angMom[j] * angMom[j] / I(j, j) +
1283     angMom[k] * angMom[k] / I(k, k);
1284     } else {
1285     Kh += angMom[0] * angMom[0] / I(0, 0) +
1286     angMom[1] * angMom[1] / I(1, 1) +
1287     angMom[2] * angMom[2] / I(2, 2);
1288     }
1289     }
1290     }
1291     } else { //midBin_
1292     coldBin.push_back(sd);
1293     Pc += mass * vel;
1294     Mc += mass;
1295     Kc += mass * vel.lengthSquare();
1296 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1297 gezelter 1722 if (sd->isDirectional()) {
1298     Vector3d angMom = sd->getJ();
1299     Mat3x3d I = sd->getI();
1300     if (sd->isLinear()) {
1301     int i = sd->linearAxis();
1302     int j = (i + 1) % 3;
1303     int k = (i + 2) % 3;
1304     Kc += angMom[j] * angMom[j] / I(j, j) +
1305     angMom[k] * angMom[k] / I(k, k);
1306     } else {
1307     Kc += angMom[0] * angMom[0] / I(0, 0) +
1308     angMom[1] * angMom[1] / I(1, 1) +
1309     angMom[2] * angMom[2] / I(2, 2);
1310     }
1311     }
1312     }
1313     }
1314 skuang 1368 }
1315 gezelter 1722 }
1316    
1317     Kh *= 0.5;
1318     Kc *= 0.5;
1319    
1320 jmarr 1728 // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1321     // << "\tKc= " << Kc << endl;
1322     // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1323    
1324 gezelter 1722 #ifdef IS_MPI
1325     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1326     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1327     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1328     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1329     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1330     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1331     #endif
1332    
1333     bool successfulExchange = false;
1334     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1335     Vector3d vc = Pc / Mc;
1336 gezelter 1773 Vector3d ac = -momentumTarget_ / Mc + vc;
1337     Vector3d acrec = -momentumTarget_ / Mc;
1338     RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1339 gezelter 1722 if (cNumerator > 0.0) {
1340     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1341     if (cDenominator > 0.0) {
1342     RealType c = sqrt(cNumerator / cDenominator);
1343     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1344     Vector3d vh = Ph / Mh;
1345 gezelter 1773 Vector3d ah = momentumTarget_ / Mh + vh;
1346     Vector3d ahrec = momentumTarget_ / Mh;
1347     RealType hNumerator = Kh + kineticTarget_
1348 gezelter 1722 - 0.5 * Mh * ah.lengthSquare();
1349     if (hNumerator > 0.0) {
1350     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1351     if (hDenominator > 0.0) {
1352     RealType h = sqrt(hNumerator / hDenominator);
1353     if ((h > 0.9) && (h < 1.1)) {
1354 jmarr 1728 // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1355     // std::cerr << "hot slab scaling coefficient: " << h << "\n";
1356 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1357     Vector3d vel;
1358     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1359     //vel = (*sdi)->getVel();
1360     vel = ((*sdi)->getVel() - vc) * c + ac;
1361     (*sdi)->setVel(vel);
1362 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1363 gezelter 1722 if ((*sdi)->isDirectional()) {
1364     Vector3d angMom = (*sdi)->getJ() * c;
1365     (*sdi)->setJ(angMom);
1366     }
1367     }
1368     }
1369     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1370     //vel = (*sdi)->getVel();
1371     vel = ((*sdi)->getVel() - vh) * h + ah;
1372     (*sdi)->setVel(vel);
1373 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1374 gezelter 1722 if ((*sdi)->isDirectional()) {
1375     Vector3d angMom = (*sdi)->getJ() * h;
1376     (*sdi)->setJ(angMom);
1377     }
1378     }
1379     }
1380     successfulExchange = true;
1381 gezelter 1773 kineticExchange_ += kineticTarget_;
1382     momentumExchange_ += momentumTarget_;
1383 gezelter 1722 }
1384     }
1385     }
1386     }
1387     }
1388 skuang 1368 }
1389 gezelter 1722 }
1390     if (successfulExchange != true) {
1391 gezelter 1773 sprintf(painCave.errMsg,
1392     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1393     "\tthe constraint equations may not exist or there may be\n"
1394     "\tno selected objects in one or both slabs.\n");
1395     painCave.isFatal = 0;
1396     painCave.severity = OPENMD_INFO;
1397     simError();
1398 skuang 1368 failTrialCount_++;
1399     }
1400     }
1401    
1402     void RNEMD::doRNEMD() {
1403 gezelter 1776 if (!doRNEMD_) return;
1404 gezelter 1773 trialCount_++;
1405     switch(rnemdMethod_) {
1406     case rnemdSwap:
1407 skuang 1368 doSwap();
1408     break;
1409 gezelter 1773 case rnemdNIVS:
1410     doNIVS();
1411 gezelter 1722 break;
1412 gezelter 1773 case rnemdVSS:
1413     doVSS();
1414     break;
1415     case rnemdUnkownMethod:
1416 skuang 1368 default :
1417     break;
1418     }
1419     }
1420    
1421     void RNEMD::collectData() {
1422 gezelter 1776 if (!doRNEMD_) return;
1423 skuang 1368 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1424     Mat3x3d hmat = currentSnap_->getHmat();
1425    
1426 gezelter 1774 areaAccumulator_->add(currentSnap_->getXYarea());
1427    
1428 skuang 1368 seleMan_.setSelectionSet(evaluator_.evaluate());
1429    
1430     int selei;
1431     StuntDouble* sd;
1432     int idx;
1433    
1434 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1435     vector<RealType> binPx(nBins_, 0.0);
1436     vector<RealType> binPy(nBins_, 0.0);
1437     vector<RealType> binPz(nBins_, 0.0);
1438     vector<RealType> binKE(nBins_, 0.0);
1439     vector<int> binDOF(nBins_, 0);
1440     vector<int> binCount(nBins_, 0);
1441 jmarr 1728
1442 gezelter 1629 // alternative approach, track all molecules instead of only those
1443     // selected for scaling/swapping:
1444     /*
1445     SimInfo::MoleculeIterator miter;
1446     vector<StuntDouble*>::iterator iiter;
1447     Molecule* mol;
1448 gezelter 1769 StuntDouble* sd;
1449 gezelter 1629 for (mol = info_->beginMolecule(miter); mol != NULL;
1450 jmarr 1728 mol = info_->nextMolecule(miter))
1451 gezelter 1769 sd is essentially sd
1452     for (sd = mol->beginIntegrableObject(iiter);
1453     sd != NULL;
1454     sd = mol->nextIntegrableObject(iiter))
1455 gezelter 1629 */
1456 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1457     sd = seleMan_.nextSelected(selei)) {
1458 skuang 1338
1459     idx = sd->getLocalIndex();
1460    
1461     Vector3d pos = sd->getPos();
1462    
1463     // wrap the stuntdouble's position back into the box:
1464    
1465     if (usePeriodicBoundaryConditions_)
1466     currentSnap_->wrapVector(pos);
1467 gezelter 1773
1468 gezelter 1774
1469 skuang 1338 // which bin is this stuntdouble in?
1470     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1471 gezelter 1773 // Shift molecules by half a box to have bins start at 0
1472     // The modulo operator is used to wrap the case when we are
1473     // beyond the end of the bins back to the beginning.
1474     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1475    
1476 skuang 1338 RealType mass = sd->getMass();
1477     Vector3d vel = sd->getVel();
1478    
1479 gezelter 1773 binCount[binNo]++;
1480     binMass[binNo] += mass;
1481     binPx[binNo] += mass*vel.x();
1482     binPy[binNo] += mass*vel.y();
1483     binPz[binNo] += mass*vel.z();
1484     binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1485     binDOF[binNo] += 3;
1486    
1487     if (sd->isDirectional()) {
1488     Vector3d angMom = sd->getJ();
1489     Mat3x3d I = sd->getI();
1490     if (sd->isLinear()) {
1491     int i = sd->linearAxis();
1492     int j = (i + 1) % 3;
1493     int k = (i + 2) % 3;
1494     binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1495     angMom[k] * angMom[k] / I(k, k));
1496     binDOF[binNo] += 2;
1497     } else {
1498     binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1499     angMom[1] * angMom[1] / I(1, 1) +
1500     angMom[2] * angMom[2] / I(2, 2));
1501     binDOF[binNo] += 3;
1502     }
1503 gezelter 1722 }
1504 gezelter 1773 }
1505    
1506 gezelter 1629
1507 gezelter 1773 #ifdef IS_MPI
1508     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1509     nBins_, MPI::INT, MPI::SUM);
1510     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1511     nBins_, MPI::REALTYPE, MPI::SUM);
1512     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1513     nBins_, MPI::REALTYPE, MPI::SUM);
1514     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1515     nBins_, MPI::REALTYPE, MPI::SUM);
1516     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1517     nBins_, MPI::REALTYPE, MPI::SUM);
1518     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1519     nBins_, MPI::REALTYPE, MPI::SUM);
1520     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1521     nBins_, MPI::INT, MPI::SUM);
1522     #endif
1523    
1524     Vector3d vel;
1525     RealType den;
1526     RealType temp;
1527     RealType z;
1528     for (int i = 0; i < nBins_; i++) {
1529     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1530     vel.x() = binPx[i] / binMass[i];
1531     vel.y() = binPy[i] / binMass[i];
1532     vel.z() = binPz[i] / binMass[i];
1533 gezelter 1777
1534     den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1535     / currentSnap_->getVolume() ;
1536    
1537 gezelter 1773 temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1538     PhysicalConstants::energyConvert);
1539    
1540     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1541     if(outputMask_[j]) {
1542     switch(j) {
1543     case Z:
1544     (data_[j].accumulator[i])->add(z);
1545     break;
1546     case TEMPERATURE:
1547     data_[j].accumulator[i]->add(temp);
1548     break;
1549     case VELOCITY:
1550     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1551     break;
1552     case DENSITY:
1553     data_[j].accumulator[i]->add(den);
1554     break;
1555     }
1556     }
1557 gezelter 1629 }
1558 skuang 1338 }
1559 skuang 1368 }
1560    
1561     void RNEMD::getStarted() {
1562 gezelter 1776 if (!doRNEMD_) return;
1563 gezelter 1629 collectData();
1564 gezelter 1773 writeOutputFile();
1565 skuang 1368 }
1566    
1567 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
1568 gezelter 1776 if (!doRNEMD_) return;
1569 gezelter 1773 StringTokenizer tokenizer(format, " ,;|\t\n\r");
1570    
1571     while(tokenizer.hasMoreTokens()) {
1572     std::string token(tokenizer.nextToken());
1573     toUpper(token);
1574     OutputMapType::iterator i = outputMap_.find(token);
1575     if (i != outputMap_.end()) {
1576     outputMask_.set(i->second);
1577     } else {
1578     sprintf( painCave.errMsg,
1579     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1580     "\toutputFileFormat keyword.\n", token.c_str() );
1581     painCave.isFatal = 0;
1582     painCave.severity = OPENMD_ERROR;
1583     simError();
1584     }
1585     }
1586     }
1587    
1588     void RNEMD::writeOutputFile() {
1589 gezelter 1776 if (!doRNEMD_) return;
1590 gezelter 1773
1591 gezelter 1350 #ifdef IS_MPI
1592     // If we're the root node, should we print out the results
1593     int worldRank = MPI::COMM_WORLD.Get_rank();
1594     if (worldRank == 0) {
1595     #endif
1596 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1597    
1598     if( !rnemdFile_ ){
1599     sprintf( painCave.errMsg,
1600     "Could not open \"%s\" for RNEMD output.\n",
1601     rnemdFileName_.c_str());
1602     painCave.isFatal = 1;
1603     simError();
1604     }
1605 gezelter 1722
1606 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1607    
1608     RealType time = currentSnap_->getTime();
1609 gezelter 1774 RealType avgArea;
1610     areaAccumulator_->getAverage(avgArea);
1611 gezelter 1777 RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1612     / PhysicalConstants::energyConvert;
1613 gezelter 1774 Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);
1614    
1615 gezelter 1773 rnemdFile_ << "#######################################################\n";
1616     rnemdFile_ << "# RNEMD {\n";
1617    
1618     map<string, RNEMDMethod>::iterator mi;
1619     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1620     if ( (*mi).second == rnemdMethod_)
1621 gezelter 1774 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
1622 skuang 1368 }
1623 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
1624     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1625     if ( (*fi).second == rnemdFluxType_)
1626 gezelter 1774 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
1627 gezelter 1722 }
1628 gezelter 1773
1629 gezelter 1775 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
1630 gezelter 1773
1631     rnemdFile_ << "# objectSelection = \""
1632 gezelter 1774 << rnemdObjectSelection_ << "\";\n";
1633     rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n";
1634     rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n";
1635     rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n";
1636 gezelter 1773 rnemdFile_ << "# }\n";
1637     rnemdFile_ << "#######################################################\n";
1638 gezelter 1774 rnemdFile_ << "# RNEMD report:\n";
1639     rnemdFile_ << "# running time = " << time << " fs\n";
1640     rnemdFile_ << "# target flux:\n";
1641 gezelter 1777 rnemdFile_ << "# kinetic = "
1642     << kineticFlux_ / PhysicalConstants::energyConvert
1643     << " (kcal/mol/A^2/fs)\n";
1644     rnemdFile_ << "# momentum = " << momentumFluxVector_
1645     << " (amu/A/fs^2)\n";
1646 gezelter 1774 rnemdFile_ << "# target one-time exchanges:\n";
1647 gezelter 1777 rnemdFile_ << "# kinetic = "
1648     << kineticTarget_ / PhysicalConstants::energyConvert
1649     << " (kcal/mol)\n";
1650     rnemdFile_ << "# momentum = " << momentumTarget_
1651     << " (amu*A/fs)\n";
1652 gezelter 1774 rnemdFile_ << "# actual exchange totals:\n";
1653 gezelter 1777 rnemdFile_ << "# kinetic = "
1654     << kineticExchange_ / PhysicalConstants::energyConvert
1655     << " (kcal/mol)\n";
1656     rnemdFile_ << "# momentum = " << momentumExchange_
1657     << " (amu*A/fs)\n";
1658 gezelter 1774 rnemdFile_ << "# actual flux:\n";
1659 gezelter 1777 rnemdFile_ << "# kinetic = " << Jz
1660     << " (kcal/mol/A^2/fs)\n";
1661     rnemdFile_ << "# momentum = " << JzP
1662     << " (amu/A/fs^2)\n";
1663 gezelter 1774 rnemdFile_ << "# exchange statistics:\n";
1664     rnemdFile_ << "# attempted = " << trialCount_ << "\n";
1665     rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
1666 gezelter 1773 if (rnemdMethod_ == rnemdNIVS) {
1667 gezelter 1774 rnemdFile_ << "# NIVS root-check errors = "
1668     << failRootCount_ << "\n";
1669 gezelter 1722 }
1670 gezelter 1773 rnemdFile_ << "#######################################################\n";
1671    
1672    
1673    
1674     //write title
1675     rnemdFile_ << "#";
1676     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1677     if (outputMask_[i]) {
1678     rnemdFile_ << "\t" << data_[i].title <<
1679     "(" << data_[i].units << ")";
1680 gezelter 1777 // add some extra tabs for column alignment
1681     if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1682 skuang 1368 }
1683 gezelter 1773 }
1684     rnemdFile_ << std::endl;
1685    
1686     rnemdFile_.precision(8);
1687    
1688 gezelter 1789 for (int j = 0; j < nBins_; j++) {
1689 gezelter 1773
1690     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1691     if (outputMask_[i]) {
1692     if (data_[i].dataType == "RealType")
1693     writeReal(i,j);
1694     else if (data_[i].dataType == "Vector3d")
1695     writeVector(i,j);
1696     else {
1697     sprintf( painCave.errMsg,
1698     "RNEMD found an unknown data type for: %s ",
1699     data_[i].title.c_str());
1700     painCave.isFatal = 1;
1701     simError();
1702     }
1703     }
1704 skuang 1368 }
1705 gezelter 1773 rnemdFile_ << std::endl;
1706    
1707     }
1708 gezelter 1774
1709     rnemdFile_ << "#######################################################\n";
1710     rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1711     rnemdFile_ << "#######################################################\n";
1712    
1713    
1714 gezelter 1789 for (int j = 0; j < nBins_; j++) {
1715 gezelter 1774 rnemdFile_ << "#";
1716     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1717     if (outputMask_[i]) {
1718     if (data_[i].dataType == "RealType")
1719     writeRealStdDev(i,j);
1720     else if (data_[i].dataType == "Vector3d")
1721     writeVectorStdDev(i,j);
1722     else {
1723     sprintf( painCave.errMsg,
1724     "RNEMD found an unknown data type for: %s ",
1725     data_[i].title.c_str());
1726     painCave.isFatal = 1;
1727     simError();
1728     }
1729     }
1730     }
1731     rnemdFile_ << std::endl;
1732    
1733     }
1734 gezelter 1773
1735     rnemdFile_.flush();
1736     rnemdFile_.close();
1737    
1738 gezelter 1350 #ifdef IS_MPI
1739 gezelter 1396 }
1740 gezelter 1350 #endif
1741 jmarr 1728
1742 gezelter 1334 }
1743 gezelter 1773
1744     void RNEMD::writeReal(int index, unsigned int bin) {
1745 gezelter 1776 if (!doRNEMD_) return;
1746 gezelter 1773 assert(index >=0 && index < ENDINDEX);
1747 gezelter 1774 assert(bin < nBins_);
1748 gezelter 1773 RealType s;
1749    
1750     data_[index].accumulator[bin]->getAverage(s);
1751    
1752     if (! isinf(s) && ! isnan(s)) {
1753     rnemdFile_ << "\t" << s;
1754     } else{
1755     sprintf( painCave.errMsg,
1756     "RNEMD detected a numerical error writing: %s for bin %d",
1757     data_[index].title.c_str(), bin);
1758     painCave.isFatal = 1;
1759     simError();
1760     }
1761     }
1762    
1763     void RNEMD::writeVector(int index, unsigned int bin) {
1764 gezelter 1776 if (!doRNEMD_) return;
1765 gezelter 1773 assert(index >=0 && index < ENDINDEX);
1766 gezelter 1774 assert(bin < nBins_);
1767 gezelter 1773 Vector3d s;
1768     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1769     if (isinf(s[0]) || isnan(s[0]) ||
1770     isinf(s[1]) || isnan(s[1]) ||
1771     isinf(s[2]) || isnan(s[2]) ) {
1772     sprintf( painCave.errMsg,
1773     "RNEMD detected a numerical error writing: %s for bin %d",
1774     data_[index].title.c_str(), bin);
1775     painCave.isFatal = 1;
1776     simError();
1777     } else {
1778     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1779     }
1780     }
1781 gezelter 1774
1782     void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1783 gezelter 1776 if (!doRNEMD_) return;
1784 gezelter 1774 assert(index >=0 && index < ENDINDEX);
1785     assert(bin < nBins_);
1786     RealType s;
1787    
1788     data_[index].accumulator[bin]->getStdDev(s);
1789    
1790     if (! isinf(s) && ! isnan(s)) {
1791     rnemdFile_ << "\t" << s;
1792     } else{
1793     sprintf( painCave.errMsg,
1794     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1795     data_[index].title.c_str(), bin);
1796     painCave.isFatal = 1;
1797     simError();
1798     }
1799     }
1800    
1801     void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1802 gezelter 1776 if (!doRNEMD_) return;
1803 gezelter 1774 assert(index >=0 && index < ENDINDEX);
1804     assert(bin < nBins_);
1805     Vector3d s;
1806     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1807     if (isinf(s[0]) || isnan(s[0]) ||
1808     isinf(s[1]) || isnan(s[1]) ||
1809     isinf(s[2]) || isnan(s[2]) ) {
1810     sprintf( painCave.errMsg,
1811     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1812     data_[index].title.c_str(), bin);
1813     painCave.isFatal = 1;
1814     simError();
1815     } else {
1816     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1817     }
1818     }
1819 skuang 1338 }
1820 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date