6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
|
47 |
|
#include <mpi.h> |
48 |
|
#endif |
49 |
|
|
50 |
< |
namespace oopse { |
50 |
> |
namespace OpenMD { |
51 |
|
|
52 |
|
ThermoIntegrationForceManager::ThermoIntegrationForceManager(SimInfo* info): |
53 |
|
RestraintForceManager(info){ |
61 |
|
tIntLambda_ = 1.0; |
62 |
|
sprintf(painCave.errMsg, |
63 |
|
"ThermoIntegration error: the transformation parameter\n" |
64 |
< |
"\t(lambda) was not specified. OOPSE will use a default\n" |
64 |
> |
"\t(lambda) was not specified. OpenMD will use a default\n" |
65 |
|
"\tvalue of %f. To set lambda, use the \n" |
66 |
|
"\tthermodynamicIntegrationLambda variable.\n", |
67 |
|
tIntLambda_); |
76 |
|
tIntK_ = 1.0; |
77 |
|
sprintf(painCave.errMsg, |
78 |
|
"ThermoIntegration Warning: the tranformation parameter\n" |
79 |
< |
"\texponent (k) was not specified. OOPSE will use a default\n" |
79 |
> |
"\texponent (k) was not specified. OpenMD will use a default\n" |
80 |
|
"\tvalue of %f. To set k, use the thermodynamicIntegrationK\n" |
81 |
|
"\tvariable.\n", |
82 |
|
tIntK_); |
91 |
|
ThermoIntegrationForceManager::~ThermoIntegrationForceManager(){ |
92 |
|
} |
93 |
|
|
94 |
< |
void ThermoIntegrationForceManager::calcForces(bool needPotential, |
94 |
< |
bool needStress){ |
94 |
> |
void ThermoIntegrationForceManager::calcForces(){ |
95 |
|
Snapshot* curSnapshot; |
96 |
|
SimInfo::MoleculeIterator mi; |
97 |
|
Molecule* mol; |
98 |
|
Molecule::IntegrableObjectIterator ii; |
99 |
< |
StuntDouble* integrableObject; |
99 |
> |
StuntDouble* sd; |
100 |
|
Vector3d frc; |
101 |
|
Vector3d trq; |
102 |
|
Mat3x3d tempTau; |
103 |
|
|
104 |
|
// perform the standard calcForces first |
105 |
< |
ForceManager::calcForces(needPotential, needStress); |
105 |
> |
ForceManager::calcForces(); |
106 |
|
|
107 |
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
108 |
|
|
109 |
< |
// now scale forces and torques of all the integrableObjects |
109 |
> |
// now scale forces and torques of all the sds |
110 |
|
|
111 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
112 |
|
mol = info_->nextMolecule(mi)) { |
113 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
114 |
< |
integrableObject != NULL; |
115 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
116 |
< |
frc = integrableObject->getFrc(); |
113 |
> |
|
114 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
115 |
> |
sd = mol->nextIntegrableObject(ii)) { |
116 |
> |
|
117 |
> |
frc = sd->getFrc(); |
118 |
|
frc *= factor_; |
119 |
< |
integrableObject->setFrc(frc); |
119 |
> |
sd->setFrc(frc); |
120 |
|
|
121 |
< |
if (integrableObject->isDirectional()){ |
122 |
< |
trq = integrableObject->getTrq(); |
121 |
> |
if (sd->isDirectional()){ |
122 |
> |
trq = sd->getTrq(); |
123 |
|
trq *= factor_; |
124 |
< |
integrableObject->setTrq(trq); |
124 |
> |
sd->setTrq(trq); |
125 |
|
} |
126 |
|
} |
127 |
|
} |
128 |
|
|
129 |
< |
// set vraw to be the unmodulated potential |
130 |
< |
lrPot_ = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
131 |
< |
curSnapshot->statData[Stats::VRAW] = lrPot_; |
129 |
> |
// set rawPotential to be the unmodulated potential |
130 |
> |
lrPot_ = curSnapshot->getLongRangePotential(); |
131 |
> |
curSnapshot->setRawPotential(lrPot_); |
132 |
|
|
133 |
|
// modulate the potential and update the snapshot |
134 |
|
lrPot_ *= factor_; |
135 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
135 |
> |
curSnapshot->setLongRangePotential(lrPot_); |
136 |
|
|
137 |
|
// scale the pressure tensor |
138 |
< |
tempTau = curSnapshot->statData.getTau(); |
138 |
> |
tempTau = curSnapshot->getStressTensor(); |
139 |
|
tempTau *= factor_; |
140 |
< |
curSnapshot->statData.setTau(tempTau); |
140 |
> |
curSnapshot->setStressTensor(tempTau); |
141 |
|
|
142 |
|
// now, on to the applied restraining potentials (if needed): |
143 |
|
RealType restPot_local = 0.0; |
145 |
|
|
146 |
|
if (simParam->getUseRestraints()) { |
147 |
|
// do restraints from RestraintForceManager: |
147 |
– |
//restPot_local = doRestraints(1.0 - factor_); |
148 |
|
restPot_local = doRestraints(1.0 - factor_); |
149 |
|
vHarm_local = getUnscaledPotential(); |
150 |
|
} |
162 |
|
#endif |
163 |
|
|
164 |
|
// give the final values to stats |
165 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
166 |
< |
curSnapshot->statData[Stats::VHARM] = vHarm_; |
165 |
> |
curSnapshot->setLongRangePotential(lrPot_); |
166 |
> |
curSnapshot->setRestraintPotential(vHarm_); |
167 |
|
} |
168 |
|
} |