6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
42 |
– |
#include <cmath> |
43 |
– |
#include "restraints/ThermoIntegrationForceManager.hpp" |
44 |
– |
#include "integrators/Integrator.hpp" |
45 |
– |
#include "math/SquareMatrix3.hpp" |
46 |
– |
#include "primitives/Molecule.hpp" |
47 |
– |
#include "utils/simError.h" |
48 |
– |
#include "utils/OOPSEConstant.hpp" |
49 |
– |
#include "utils/StringUtils.hpp" |
50 |
– |
|
43 |
|
#ifdef IS_MPI |
44 |
|
#include <mpi.h> |
45 |
< |
#define TAKE_THIS_TAG_REAL 2 |
54 |
< |
#endif //is_mpi |
45 |
> |
#endif |
46 |
|
|
47 |
< |
namespace oopse { |
47 |
> |
#include "restraints/ThermoIntegrationForceManager.hpp" |
48 |
> |
|
49 |
> |
namespace OpenMD { |
50 |
|
|
51 |
|
ThermoIntegrationForceManager::ThermoIntegrationForceManager(SimInfo* info): |
52 |
< |
ForceManager(info){ |
53 |
< |
currSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
54 |
< |
simParam = info_->getSimParams(); |
52 |
> |
RestraintForceManager(info){ |
53 |
> |
currSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
54 |
> |
simParam = info_->getSimParams(); |
55 |
|
|
56 |
< |
if (simParam->haveThermodynamicIntegrationLambda()){ |
57 |
< |
tIntLambda_ = simParam->getThermodynamicIntegrationLambda(); |
58 |
< |
} |
59 |
< |
else{ |
60 |
< |
tIntLambda_ = 1.0; |
61 |
< |
sprintf(painCave.errMsg, |
62 |
< |
"ThermoIntegration error: the transformation parameter\n" |
63 |
< |
"\t(lambda) was not specified. OOPSE will use a default\n" |
64 |
< |
"\tvalue of %f. To set lambda, use the \n" |
65 |
< |
"\tthermodynamicIntegrationLambda variable.\n", |
66 |
< |
tIntLambda_); |
67 |
< |
painCave.isFatal = 0; |
68 |
< |
simError(); |
69 |
< |
} |
56 |
> |
if (simParam->haveThermodynamicIntegrationLambda()){ |
57 |
> |
tIntLambda_ = simParam->getThermodynamicIntegrationLambda(); |
58 |
> |
} |
59 |
> |
else{ |
60 |
> |
tIntLambda_ = 1.0; |
61 |
> |
sprintf(painCave.errMsg, |
62 |
> |
"ThermoIntegration error: the transformation parameter\n" |
63 |
> |
"\t(lambda) was not specified. OpenMD will use a default\n" |
64 |
> |
"\tvalue of %f. To set lambda, use the \n" |
65 |
> |
"\tthermodynamicIntegrationLambda variable.\n", |
66 |
> |
tIntLambda_); |
67 |
> |
painCave.isFatal = 0; |
68 |
> |
simError(); |
69 |
> |
} |
70 |
|
|
71 |
< |
if (simParam->haveThermodynamicIntegrationK()){ |
72 |
< |
tIntK_ = simParam->getThermodynamicIntegrationK(); |
80 |
< |
} |
81 |
< |
else{ |
82 |
< |
tIntK_ = 1.0; |
83 |
< |
sprintf(painCave.errMsg, |
84 |
< |
"ThermoIntegration Warning: the tranformation parameter\n" |
85 |
< |
"\texponent (k) was not specified. OOPSE will use a default\n" |
86 |
< |
"\tvalue of %f. To set k, use the thermodynamicIntegrationK\n" |
87 |
< |
"\tvariable.\n", |
88 |
< |
tIntK_); |
89 |
< |
painCave.isFatal = 0; |
90 |
< |
simError(); |
91 |
< |
} |
92 |
< |
|
93 |
< |
if (simParam->getUseSolidThermInt()) { |
94 |
< |
// build a restraint object |
95 |
< |
restraint_ = new Restraints(info_, tIntLambda_, tIntK_); |
96 |
< |
|
97 |
< |
} |
98 |
< |
|
99 |
< |
// build the scaling factor used to modulate the forces and torques |
100 |
< |
factor_ = pow(tIntLambda_, tIntK_); |
101 |
< |
|
71 |
> |
if (simParam->haveThermodynamicIntegrationK()){ |
72 |
> |
tIntK_ = simParam->getThermodynamicIntegrationK(); |
73 |
|
} |
74 |
+ |
else{ |
75 |
+ |
tIntK_ = 1.0; |
76 |
+ |
sprintf(painCave.errMsg, |
77 |
+ |
"ThermoIntegration Warning: the tranformation parameter\n" |
78 |
+ |
"\texponent (k) was not specified. OpenMD will use a default\n" |
79 |
+ |
"\tvalue of %f. To set k, use the thermodynamicIntegrationK\n" |
80 |
+ |
"\tvariable.\n", |
81 |
+ |
tIntK_); |
82 |
+ |
painCave.isFatal = 0; |
83 |
+ |
simError(); |
84 |
+ |
} |
85 |
+ |
|
86 |
+ |
// build the scaling factor used to modulate the forces and torques |
87 |
+ |
factor_ = pow(tIntLambda_, tIntK_); |
88 |
+ |
} |
89 |
|
|
90 |
|
ThermoIntegrationForceManager::~ThermoIntegrationForceManager(){ |
91 |
|
} |
92 |
|
|
93 |
< |
void ThermoIntegrationForceManager::calcForces(bool needPotential, |
108 |
< |
bool needStress){ |
93 |
> |
void ThermoIntegrationForceManager::calcForces(){ |
94 |
|
Snapshot* curSnapshot; |
95 |
|
SimInfo::MoleculeIterator mi; |
96 |
|
Molecule* mol; |
97 |
|
Molecule::IntegrableObjectIterator ii; |
98 |
< |
StuntDouble* integrableObject; |
98 |
> |
StuntDouble* sd; |
99 |
|
Vector3d frc; |
100 |
|
Vector3d trq; |
101 |
|
Mat3x3d tempTau; |
102 |
|
|
103 |
|
// perform the standard calcForces first |
104 |
< |
ForceManager::calcForces(needPotential, needStress); |
104 |
> |
ForceManager::calcForces(); |
105 |
|
|
106 |
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
107 |
|
|
108 |
< |
// now scale forces and torques of all the integrableObjects |
108 |
> |
// now scale forces and torques of all the sds |
109 |
|
|
110 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
111 |
|
mol = info_->nextMolecule(mi)) { |
112 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); |
113 |
< |
integrableObject != NULL; |
114 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
115 |
< |
frc = integrableObject->getFrc(); |
112 |
> |
|
113 |
> |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
114 |
> |
sd = mol->nextIntegrableObject(ii)) { |
115 |
> |
|
116 |
> |
frc = sd->getFrc(); |
117 |
|
frc *= factor_; |
118 |
< |
integrableObject->setFrc(frc); |
118 |
> |
sd->setFrc(frc); |
119 |
|
|
120 |
< |
if (integrableObject->isDirectional()){ |
121 |
< |
trq = integrableObject->getTrq(); |
120 |
> |
if (sd->isDirectional()){ |
121 |
> |
trq = sd->getTrq(); |
122 |
|
trq *= factor_; |
123 |
< |
integrableObject->setTrq(trq); |
123 |
> |
sd->setTrq(trq); |
124 |
|
} |
125 |
|
} |
126 |
|
} |
141 |
– |
|
142 |
– |
// set vraw to be the unmodulated potential |
143 |
– |
lrPot_ = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
144 |
– |
curSnapshot->statData[Stats::VRAW] = lrPot_; |
127 |
|
|
128 |
+ |
// set rawPotential to be the unmodulated potential |
129 |
+ |
lrPot_ = curSnapshot->getLongRangePotential(); |
130 |
+ |
curSnapshot->setRawPotential(lrPot_); |
131 |
+ |
|
132 |
|
// modulate the potential and update the snapshot |
133 |
|
lrPot_ *= factor_; |
134 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
134 |
> |
curSnapshot->setLongRangePotential(lrPot_); |
135 |
|
|
136 |
|
// scale the pressure tensor |
137 |
< |
tempTau = curSnapshot->statData.getTau(); |
137 |
> |
tempTau = curSnapshot->getStressTensor(); |
138 |
|
tempTau *= factor_; |
139 |
< |
curSnapshot->statData.setTau(tempTau); |
140 |
< |
#ifndef IS_MPI |
141 |
< |
// do the single processor crystal restraint forces for |
142 |
< |
// thermodynamic integration |
143 |
< |
if (simParam->getUseSolidThermInt()) { |
144 |
< |
|
145 |
< |
lrPot_ += restraint_->Calc_Restraint_Forces(); |
146 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
147 |
< |
|
148 |
< |
vHarm_ = restraint_->getVharm(); |
163 |
< |
curSnapshot->statData[Stats::VHARM] = vHarm_; |
139 |
> |
curSnapshot->setStressTensor(tempTau); |
140 |
> |
|
141 |
> |
// now, on to the applied restraining potentials (if needed): |
142 |
> |
RealType restPot_local = 0.0; |
143 |
> |
RealType vHarm_local = 0.0; |
144 |
> |
|
145 |
> |
if (simParam->getUseRestraints()) { |
146 |
> |
// do restraints from RestraintForceManager: |
147 |
> |
restPot_local = doRestraints(1.0 - factor_); |
148 |
> |
vHarm_local = getUnscaledPotential(); |
149 |
|
} |
150 |
+ |
|
151 |
+ |
#ifdef IS_MPI |
152 |
+ |
RealType restPot; |
153 |
+ |
MPI_Allreduce(&restPot_local, &restPot, 1, |
154 |
+ |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
155 |
+ |
MPI_Allreduce(&vHarm_local, &vHarm_, 1, |
156 |
+ |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
157 |
+ |
lrPot_ += restPot; |
158 |
|
#else |
159 |
< |
double tempLRPot = 0.0; |
160 |
< |
double tempVHarm = 0.0; |
161 |
< |
MPI_Status ierr; |
169 |
< |
int nproc; |
170 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &nproc); |
171 |
< |
vHarm_ = 0.0; |
159 |
> |
lrPot_ += restPot_local; |
160 |
> |
vHarm_ = vHarm_local; |
161 |
> |
#endif |
162 |
|
|
163 |
< |
// do the MPI crystal restraint forces for each processor |
164 |
< |
if (simParam->getUseSolidThermInt()) { |
165 |
< |
tempLRPot = restraint_->Calc_Restraint_Forces(); |
166 |
< |
tempVHarm = restraint_->getVharm(); |
177 |
< |
} |
178 |
< |
|
179 |
< |
// master receives and accumulates the restraint info |
180 |
< |
if (worldRank == 0) { |
181 |
< |
for(int i = 0 ; i < nproc; ++i) { |
182 |
< |
if (i == worldRank) { |
183 |
< |
lrPot_ += tempLRPot; |
184 |
< |
vHarm_ += tempVHarm; |
185 |
< |
} else { |
186 |
< |
MPI_Recv(&tempLRPot, 1, MPI_REALTYPE, i, |
187 |
< |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD, &ierr); |
188 |
< |
MPI_Recv(&tempVHarm, 1, MPI_REALTYPE, i, |
189 |
< |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD, &ierr); |
190 |
< |
lrPot_ += tempLRPot; |
191 |
< |
vHarm_ += tempVHarm; |
192 |
< |
} |
193 |
< |
} |
194 |
< |
|
195 |
< |
// give the final values to stats |
196 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
197 |
< |
curSnapshot->statData[Stats::VHARM] = vHarm_; |
198 |
< |
|
199 |
< |
} else { |
200 |
< |
// pack up and send the appropriate info to the master node |
201 |
< |
for(int j = 1; j < nproc; ++j) { |
202 |
< |
if (worldRank == j) { |
203 |
< |
|
204 |
< |
MPI_Send(&tempLRPot, 1, MPI_REALTYPE, 0, |
205 |
< |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD); |
206 |
< |
MPI_Send(&tempVHarm, 1, MPI_REALTYPE, 0, |
207 |
< |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD); |
208 |
< |
} |
209 |
< |
} |
210 |
< |
} |
211 |
< |
#endif //is_mpi |
212 |
< |
} |
213 |
< |
|
163 |
> |
// give the final values to stats |
164 |
> |
curSnapshot->setLongRangePotential(lrPot_); |
165 |
> |
curSnapshot->setRestraintPotential(vHarm_); |
166 |
> |
} |
167 |
|
} |