1 |
< |
// Thermodynamic integration is not multiprocessor friendly right now |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
|
|
3 |
– |
#include <iostream> |
42 |
|
#include <stdlib.h> |
5 |
– |
#include <cstdio> |
6 |
– |
#include <fstream> |
7 |
– |
#include <iomanip> |
8 |
– |
#include <string> |
9 |
– |
#include <cstring> |
43 |
|
#include <math.h> |
44 |
|
|
45 |
|
using namespace std; |
46 |
|
|
47 |
|
#include "restraints/Restraints.hpp" |
48 |
< |
#include "brains/SimInfo.hpp" |
48 |
> |
#include "primitives/Molecule.hpp" |
49 |
|
#include "utils/simError.h" |
17 |
– |
#include "io/basic_ifstrstream.hpp" |
50 |
|
|
19 |
– |
#ifdef IS_MPI |
20 |
– |
#include<mpi.h> |
21 |
– |
#include "brains/mpiSimulation.hpp" |
22 |
– |
#endif // is_mpi |
23 |
– |
|
51 |
|
#define PI 3.14159265359 |
52 |
|
#define TWO_PI 6.28318530718 |
53 |
|
|
54 |
< |
Restraints::Restraints(double lambdaVal, double lambdaExp){ |
55 |
< |
lambdaValue = lambdaVal; |
56 |
< |
lambdaK = lambdaExp; |
57 |
< |
vector<double> resConsts; |
58 |
< |
const char *jolt = " \t\n;,"; |
54 |
> |
namespace oopse { |
55 |
> |
|
56 |
> |
Restraints::Restraints(SimInfo* info, double lambdaVal, double lambdaExp){ |
57 |
> |
info_ = info; |
58 |
> |
Globals* simParam = info_->getSimParams(); |
59 |
|
|
60 |
< |
#ifdef IS_MPI |
61 |
< |
if(worldRank == 0 ){ |
35 |
< |
#endif // is_mpi |
36 |
< |
|
37 |
< |
strcpy(springName, "HarmSpringConsts.txt"); |
60 |
> |
lambdaValue = lambdaVal; |
61 |
> |
lambdaK = lambdaExp; |
62 |
|
|
63 |
< |
ifstream springs(springName); |
64 |
< |
|
65 |
< |
if (!springs) { |
42 |
< |
sprintf(painCave.errMsg, |
43 |
< |
"Unable to open HarmSpringConsts.txt for reading, so the\n" |
44 |
< |
"\tdefault spring constants will be loaded. If you want\n" |
45 |
< |
"\tto specify spring constants, include a three line\n" |
46 |
< |
"\tHarmSpringConsts.txt file in the execution directory.\n"); |
47 |
< |
painCave.severity = OOPSE_WARNING; |
48 |
< |
painCave.isFatal = 0; |
49 |
< |
simError(); |
50 |
< |
|
51 |
< |
// load default spring constants |
52 |
< |
kDist = 6; // spring constant in units of kcal/(mol*ang^2) |
53 |
< |
kTheta = 7.5; // in units of kcal/mol |
54 |
< |
kOmega = 13.5; // in units of kcal/mol |
55 |
< |
} else { |
56 |
< |
|
57 |
< |
springs.getline(inLine,999,'\n'); |
58 |
< |
// the file is blank! |
59 |
< |
if (springs.eof()){ |
60 |
< |
sprintf(painCave.errMsg, |
61 |
< |
"HarmSpringConsts.txt file is not valid.\n" |
62 |
< |
"\tThe file should contain four rows, the last three containing\n" |
63 |
< |
"\ta label and the spring constant value. They should be listed\n" |
64 |
< |
"\tin the following order: kDist (positional restrant), kTheta\n" |
65 |
< |
"\t(rot. restraint: deflection of z-axis), and kOmega (rot.\n" |
66 |
< |
"\trestraint: rotation about the z-axis).\n"); |
67 |
< |
painCave.severity = OOPSE_ERROR; |
68 |
< |
painCave.isFatal = 1; |
69 |
< |
simError(); |
63 |
> |
if (simParam->getUseSolidThermInt()) { |
64 |
> |
if (simParam->haveThermIntDistSpringConst()) { |
65 |
> |
kDist = simParam->getThermIntDistSpringConst(); |
66 |
|
} |
67 |
< |
// read in spring constants and check to make sure it is a valid file |
68 |
< |
springs.getline(inLine,999,'\n'); |
69 |
< |
while (!springs.eof()){ |
70 |
< |
if (NULL != inLine){ |
71 |
< |
token = strtok(inLine,jolt); |
72 |
< |
token = strtok(NULL,jolt); |
73 |
< |
if (NULL != token){ |
74 |
< |
strcpy(inValue,token); |
75 |
< |
resConsts.push_back(atof(inValue)); |
76 |
< |
} |
81 |
< |
} |
82 |
< |
springs.getline(inLine,999,'\n'); |
67 |
> |
else{ |
68 |
> |
kDist = simParam->getThermIntDistSpringConst(); |
69 |
> |
sprintf(painCave.errMsg, |
70 |
> |
"ThermoIntegration Warning: the spring constant for the\n" |
71 |
> |
"\ttranslational restraint was not specified. OOPSE will use\n" |
72 |
> |
"\ta default value of %f. To set it to something else, use\n" |
73 |
> |
"\tthe thermIntDistSpringConst variable.\n", |
74 |
> |
kDist); |
75 |
> |
painCave.isFatal = 0; |
76 |
> |
simError(); |
77 |
|
} |
78 |
< |
if (resConsts.size() == 3){ |
79 |
< |
kDist = resConsts[0]; |
86 |
< |
kTheta = resConsts[1]; |
87 |
< |
kOmega = resConsts[2]; |
78 |
> |
if (simParam->haveThermIntThetaSpringConst()) { |
79 |
> |
kTheta = simParam->getThermIntThetaSpringConst(); |
80 |
|
} |
81 |
< |
else { |
82 |
< |
sprintf(painCave.errMsg, |
83 |
< |
"HarmSpringConsts.txt file is not valid.\n" |
84 |
< |
"\tThe file should contain four rows, the last three containing\n" |
85 |
< |
"\ta label and the spring constant value. They should be listed\n" |
86 |
< |
"\tin the following order: kDist (positional restrant), kTheta\n" |
87 |
< |
"\t(rot. restraint: deflection of z-axis), and kOmega (rot.\n" |
88 |
< |
"\trestraint: rotation about the z-axis).\n"); |
89 |
< |
painCave.severity = OOPSE_ERROR; |
90 |
< |
painCave.isFatal = 1; |
99 |
< |
simError(); |
81 |
> |
else{ |
82 |
> |
kTheta = simParam->getThermIntThetaSpringConst(); |
83 |
> |
sprintf(painCave.errMsg, |
84 |
> |
"ThermoIntegration Warning: the spring constant for the\n" |
85 |
> |
"\tdeflection orientational restraint was not specified.\n" |
86 |
> |
"\tOOPSE will use a default value of %f. To set it to\n" |
87 |
> |
"\tsomething else, use the thermIntThetaSpringConst variable.\n", |
88 |
> |
kTheta); |
89 |
> |
painCave.isFatal = 0; |
90 |
> |
simError(); |
91 |
|
} |
92 |
+ |
if (simParam->haveThermIntOmegaSpringConst()) { |
93 |
+ |
kOmega = simParam->getThermIntOmegaSpringConst(); |
94 |
+ |
} |
95 |
+ |
else{ |
96 |
+ |
kOmega = simParam->getThermIntOmegaSpringConst(); |
97 |
+ |
sprintf(painCave.errMsg, |
98 |
+ |
"ThermoIntegration Warning: the spring constant for the\n" |
99 |
+ |
"\tspin orientational restraint was not specified. OOPSE\n" |
100 |
+ |
"\twill use a default value of %f. To set it to something\n" |
101 |
+ |
"\telse, use the thermIntOmegaSpringConst variable.\n", |
102 |
+ |
kOmega); |
103 |
+ |
painCave.isFatal = 0; |
104 |
+ |
simError(); |
105 |
+ |
} |
106 |
|
} |
107 |
< |
#ifdef IS_MPI |
107 |
> |
|
108 |
> |
// build a RestReader and read in important information |
109 |
> |
|
110 |
> |
restRead_ = new RestReader(info_); |
111 |
> |
restRead_->readIdealCrystal(); |
112 |
> |
restRead_->readZangle(); |
113 |
> |
|
114 |
> |
delete restRead_; |
115 |
> |
restRead_ = NULL; |
116 |
> |
|
117 |
|
} |
118 |
|
|
119 |
< |
MPI_Bcast(&kDist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
120 |
< |
MPI_Bcast(&kTheta, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
107 |
< |
MPI_Bcast(&kOmega, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
119 |
> |
Restraints::~Restraints(){ |
120 |
> |
} |
121 |
|
|
122 |
< |
sprintf( checkPointMsg, |
123 |
< |
"Sucessfully opened and read spring file.\n"); |
124 |
< |
MPIcheckPoint(); |
125 |
< |
|
126 |
< |
#endif // is_mpi |
122 |
> |
void Restraints::Calc_rVal(Vector3d &position, double refPosition[3]){ |
123 |
> |
delRx = position.x() - refPosition[0]; |
124 |
> |
delRy = position.y() - refPosition[1]; |
125 |
> |
delRz = position.z() - refPosition[2]; |
126 |
> |
|
127 |
> |
return; |
128 |
> |
} |
129 |
|
|
130 |
< |
sprintf(painCave.errMsg, |
131 |
< |
"The spring constants for thermodynamic integration are:\n" |
132 |
< |
"\tkDist = %lf\n" |
133 |
< |
"\tkTheta = %lf\n" |
134 |
< |
"\tkOmega = %lf\n", kDist, kTheta, kOmega); |
135 |
< |
painCave.severity = OOPSE_INFO; |
136 |
< |
painCave.isFatal = 0; |
137 |
< |
simError(); |
138 |
< |
} |
139 |
< |
|
140 |
< |
Restraints::~Restraints(){ |
141 |
< |
} |
142 |
< |
|
143 |
< |
void Restraints::Calc_rVal(double position[3], double refPosition[3]){ |
144 |
< |
delRx = position[0] - refPosition[0]; |
145 |
< |
delRy = position[1] - refPosition[1]; |
146 |
< |
delRz = position[2] - refPosition[2]; |
132 |
< |
|
133 |
< |
return; |
134 |
< |
} |
135 |
< |
|
136 |
< |
void Restraints::Calc_body_thetaVal(double matrix[3][3], double refUnit[3]){ |
137 |
< |
ub0x = matrix[0][0]*refUnit[0] + matrix[0][1]*refUnit[1] |
138 |
< |
+ matrix[0][2]*refUnit[2]; |
139 |
< |
ub0y = matrix[1][0]*refUnit[0] + matrix[1][1]*refUnit[1] |
140 |
< |
+ matrix[1][2]*refUnit[2]; |
141 |
< |
ub0z = matrix[2][0]*refUnit[0] + matrix[2][1]*refUnit[1] |
142 |
< |
+ matrix[2][2]*refUnit[2]; |
143 |
< |
|
144 |
< |
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
145 |
< |
ub0x = ub0x/normalize; |
146 |
< |
ub0y = ub0y/normalize; |
147 |
< |
ub0z = ub0z/normalize; |
148 |
< |
|
149 |
< |
// Theta is the dot product of the reference and new z-axes |
150 |
< |
theta = acos(ub0z); |
151 |
< |
|
152 |
< |
return; |
153 |
< |
} |
154 |
< |
|
155 |
< |
void Restraints::Calc_body_omegaVal(double matrix[3][3], double zAngle){ |
156 |
< |
double zRotator[3][3]; |
157 |
< |
double tempOmega; |
158 |
< |
double wholeTwoPis; |
159 |
< |
// Use the omega accumulated from the rotation propagation |
160 |
< |
omega = zAngle; |
161 |
< |
|
162 |
< |
// translate the omega into a range between -PI and PI |
163 |
< |
if (omega < -PI){ |
164 |
< |
tempOmega = omega / -TWO_PI; |
165 |
< |
wholeTwoPis = floor(tempOmega); |
166 |
< |
tempOmega = omega + TWO_PI*wholeTwoPis; |
167 |
< |
if (tempOmega < -PI) |
168 |
< |
omega = tempOmega + TWO_PI; |
169 |
< |
else |
170 |
< |
omega = tempOmega; |
130 |
> |
void Restraints::Calc_body_thetaVal(RotMat3x3d &matrix, double refUnit[3]){ |
131 |
> |
ub0x = matrix(0,0)*refUnit[0] + matrix(0,1)*refUnit[1] |
132 |
> |
+ matrix(0,2)*refUnit[2]; |
133 |
> |
ub0y = matrix(1,0)*refUnit[0] + matrix(1,1)*refUnit[1] |
134 |
> |
+ matrix(1,2)*refUnit[2]; |
135 |
> |
ub0z = matrix(2,0)*refUnit[0] + matrix(2,1)*refUnit[1] |
136 |
> |
+ matrix(2,2)*refUnit[2]; |
137 |
> |
|
138 |
> |
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
139 |
> |
ub0x = ub0x/normalize; |
140 |
> |
ub0y = ub0y/normalize; |
141 |
> |
ub0z = ub0z/normalize; |
142 |
> |
|
143 |
> |
// Theta is the dot product of the reference and new z-axes |
144 |
> |
theta = acos(ub0z); |
145 |
> |
|
146 |
> |
return; |
147 |
|
} |
148 |
< |
if (omega > PI){ |
149 |
< |
tempOmega = omega / TWO_PI; |
150 |
< |
wholeTwoPis = floor(tempOmega); |
151 |
< |
tempOmega = omega - TWO_PI*wholeTwoPis; |
152 |
< |
if (tempOmega > PI) |
153 |
< |
omega = tempOmega - TWO_PI; |
154 |
< |
else |
179 |
< |
omega = tempOmega; |
180 |
< |
} |
181 |
< |
|
182 |
< |
vb0x = sin(omega); |
183 |
< |
vb0y = cos(omega); |
184 |
< |
vb0z = 0.0; |
185 |
< |
|
186 |
< |
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
187 |
< |
vb0x = vb0x/normalize; |
188 |
< |
vb0y = vb0y/normalize; |
189 |
< |
vb0z = vb0z/normalize; |
190 |
< |
|
191 |
< |
return; |
192 |
< |
} |
193 |
< |
|
194 |
< |
double Restraints::Calc_Restraint_Forces(vector<StuntDouble*> vecParticles){ |
195 |
< |
double pos[3]; |
196 |
< |
double A[3][3]; |
197 |
< |
double refPos[3]; |
198 |
< |
double refVec[3]; |
199 |
< |
double tolerance; |
200 |
< |
double tempPotent; |
201 |
< |
double factor; |
202 |
< |
double spaceTrq[3]; |
203 |
< |
double omegaPass; |
204 |
< |
GenericData* data; |
205 |
< |
DoubleGenericData* doubleData; |
206 |
< |
|
207 |
< |
tolerance = 5.72957795131e-7; |
208 |
< |
|
209 |
< |
harmPotent = 0.0; // zero out the global harmonic potential variable |
210 |
< |
|
211 |
< |
factor = 1 - pow(lambdaValue, lambdaK); |
212 |
< |
|
213 |
< |
for (i=0; i<vecParticles.size(); i++){ |
214 |
< |
// obtain the current and reference positions |
215 |
< |
vecParticles[i]->getPos(pos); |
216 |
< |
|
217 |
< |
data = vecParticles[i]->getProperty("refPosX"); |
218 |
< |
if (data){ |
219 |
< |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
220 |
< |
if (!doubleData){ |
221 |
< |
cerr << "Can't obtain refPosX from StuntDouble\n"; |
222 |
< |
return 0.0; |
223 |
< |
} |
224 |
< |
else refPos[0] = doubleData->getData(); |
225 |
< |
} |
226 |
< |
data = vecParticles[i]->getProperty("refPosY"); |
227 |
< |
if (data){ |
228 |
< |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
229 |
< |
if (!doubleData){ |
230 |
< |
cerr << "Can't obtain refPosY from StuntDouble\n"; |
231 |
< |
return 0.0; |
232 |
< |
} |
233 |
< |
else refPos[1] = doubleData->getData(); |
234 |
< |
} |
235 |
< |
data = vecParticles[i]->getProperty("refPosZ"); |
236 |
< |
if (data){ |
237 |
< |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
238 |
< |
if (!doubleData){ |
239 |
< |
cerr << "Can't obtain refPosZ from StuntDouble\n"; |
240 |
< |
return 0.0; |
241 |
< |
} |
242 |
< |
else refPos[2] = doubleData->getData(); |
243 |
< |
} |
244 |
< |
|
245 |
< |
// calculate the displacement |
246 |
< |
Calc_rVal( pos, refPos ); |
247 |
< |
|
248 |
< |
// calculate the derivatives |
249 |
< |
dVdrx = -kDist*delRx; |
250 |
< |
dVdry = -kDist*delRy; |
251 |
< |
dVdrz = -kDist*delRz; |
148 |
> |
|
149 |
> |
void Restraints::Calc_body_omegaVal(double zAngle){ |
150 |
> |
double zRotator[3][3]; |
151 |
> |
double tempOmega; |
152 |
> |
double wholeTwoPis; |
153 |
> |
// Use the omega accumulated from the rotation propagation |
154 |
> |
omega = zAngle; |
155 |
|
|
156 |
< |
// next we calculate the restraint forces |
157 |
< |
restraintFrc[0] = dVdrx; |
158 |
< |
restraintFrc[1] = dVdry; |
159 |
< |
restraintFrc[2] = dVdrz; |
160 |
< |
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
161 |
< |
|
162 |
< |
// apply the lambda scaling factor to the forces |
163 |
< |
for (j = 0; j < 3; j++) restraintFrc[j] *= factor; |
164 |
< |
|
165 |
< |
// and add the temporary force to the total force |
166 |
< |
vecParticles[i]->addFrc(restraintFrc); |
167 |
< |
|
168 |
< |
// if the particle is directional, we accumulate the rot. restraints |
169 |
< |
if (vecParticles[i]->isDirectional()){ |
170 |
< |
|
171 |
< |
// get the current rotation matrix and reference vector |
172 |
< |
vecParticles[i]->getA(A); |
173 |
< |
|
174 |
< |
data = vecParticles[i]->getProperty("refVectorX"); |
175 |
< |
if (data){ |
176 |
< |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
177 |
< |
if (!doubleData){ |
178 |
< |
cerr << "Can't obtain refVectorX from StuntDouble\n"; |
179 |
< |
return 0.0; |
180 |
< |
} |
181 |
< |
else refVec[0] = doubleData->getData(); |
156 |
> |
// translate the omega into a range between -PI and PI |
157 |
> |
if (omega < -PI){ |
158 |
> |
tempOmega = omega / -TWO_PI; |
159 |
> |
wholeTwoPis = floor(tempOmega); |
160 |
> |
tempOmega = omega + TWO_PI*wholeTwoPis; |
161 |
> |
if (tempOmega < -PI) |
162 |
> |
omega = tempOmega + TWO_PI; |
163 |
> |
else |
164 |
> |
omega = tempOmega; |
165 |
> |
} |
166 |
> |
if (omega > PI){ |
167 |
> |
tempOmega = omega / TWO_PI; |
168 |
> |
wholeTwoPis = floor(tempOmega); |
169 |
> |
tempOmega = omega - TWO_PI*wholeTwoPis; |
170 |
> |
if (tempOmega > PI) |
171 |
> |
omega = tempOmega - TWO_PI; |
172 |
> |
else |
173 |
> |
omega = tempOmega; |
174 |
> |
} |
175 |
> |
|
176 |
> |
vb0x = sin(omega); |
177 |
> |
vb0y = cos(omega); |
178 |
> |
vb0z = 0.0; |
179 |
> |
|
180 |
> |
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
181 |
> |
vb0x = vb0x/normalize; |
182 |
> |
vb0y = vb0y/normalize; |
183 |
> |
vb0z = vb0z/normalize; |
184 |
> |
|
185 |
> |
return; |
186 |
> |
} |
187 |
> |
|
188 |
> |
double Restraints::Calc_Restraint_Forces(){ |
189 |
> |
SimInfo::MoleculeIterator mi; |
190 |
> |
Molecule* mol; |
191 |
> |
Molecule::IntegrableObjectIterator ii; |
192 |
> |
StuntDouble* integrableObject; |
193 |
> |
Vector3d pos; |
194 |
> |
RotMat3x3d A; |
195 |
> |
double refPos[3]; |
196 |
> |
double refVec[3]; |
197 |
> |
double tolerance; |
198 |
> |
double tempPotent; |
199 |
> |
double factor; |
200 |
> |
double spaceTrq[3]; |
201 |
> |
double omegaPass; |
202 |
> |
GenericData* data; |
203 |
> |
DoubleGenericData* doubleData; |
204 |
> |
|
205 |
> |
tolerance = 5.72957795131e-7; |
206 |
> |
|
207 |
> |
harmPotent = 0.0; // zero out the global harmonic potential variable |
208 |
> |
|
209 |
> |
factor = 1 - pow(lambdaValue, lambdaK); |
210 |
> |
|
211 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
212 |
> |
mol = info_->nextMolecule(mi)) { |
213 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
214 |
> |
integrableObject != NULL; |
215 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
216 |
> |
|
217 |
> |
// obtain the current and reference positions |
218 |
> |
pos = integrableObject->getPos(); |
219 |
> |
|
220 |
> |
data = integrableObject->getPropertyByName("refPosX"); |
221 |
> |
if (data){ |
222 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
223 |
> |
if (!doubleData){ |
224 |
> |
cerr << "Can't obtain refPosX from StuntDouble\n"; |
225 |
> |
return 0.0; |
226 |
> |
} |
227 |
> |
else refPos[0] = doubleData->getData(); |
228 |
> |
} |
229 |
> |
data = integrableObject->getPropertyByName("refPosY"); |
230 |
> |
if (data){ |
231 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
232 |
> |
if (!doubleData){ |
233 |
> |
cerr << "Can't obtain refPosY from StuntDouble\n"; |
234 |
> |
return 0.0; |
235 |
> |
} |
236 |
> |
else refPos[1] = doubleData->getData(); |
237 |
> |
} |
238 |
> |
data = integrableObject->getPropertyByName("refPosZ"); |
239 |
> |
if (data){ |
240 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
241 |
> |
if (!doubleData){ |
242 |
> |
cerr << "Can't obtain refPosZ from StuntDouble\n"; |
243 |
> |
return 0.0; |
244 |
> |
} |
245 |
> |
else refPos[2] = doubleData->getData(); |
246 |
> |
} |
247 |
> |
|
248 |
> |
// calculate the displacement |
249 |
> |
Calc_rVal( pos, refPos ); |
250 |
> |
|
251 |
> |
// calculate the derivatives |
252 |
> |
dVdrx = -kDist*delRx; |
253 |
> |
dVdry = -kDist*delRy; |
254 |
> |
dVdrz = -kDist*delRz; |
255 |
> |
|
256 |
> |
// next we calculate the restraint forces |
257 |
> |
restraintFrc[0] = dVdrx; |
258 |
> |
restraintFrc[1] = dVdry; |
259 |
> |
restraintFrc[2] = dVdrz; |
260 |
> |
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
261 |
> |
|
262 |
> |
// apply the lambda scaling factor to the forces |
263 |
> |
for (j = 0; j < 3; j++) restraintFrc[j] *= factor; |
264 |
> |
|
265 |
> |
// and add the temporary force to the total force |
266 |
> |
integrableObject->addFrc(restraintFrc); |
267 |
> |
|
268 |
> |
// if the particle is directional, we accumulate the rot. restraints |
269 |
> |
if (integrableObject->isDirectional()){ |
270 |
> |
|
271 |
> |
// get the current rotation matrix and reference vector |
272 |
> |
A = integrableObject->getA(); |
273 |
> |
|
274 |
> |
data = integrableObject->getPropertyByName("refVectorX"); |
275 |
> |
if (data){ |
276 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
277 |
> |
if (!doubleData){ |
278 |
> |
cerr << "Can't obtain refVectorX from StuntDouble\n"; |
279 |
> |
return 0.0; |
280 |
> |
} |
281 |
> |
else refVec[0] = doubleData->getData(); |
282 |
> |
} |
283 |
> |
data = integrableObject->getPropertyByName("refVectorY"); |
284 |
> |
if (data){ |
285 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
286 |
> |
if (!doubleData){ |
287 |
> |
cerr << "Can't obtain refVectorY from StuntDouble\n"; |
288 |
> |
return 0.0; |
289 |
> |
} |
290 |
> |
else refVec[1] = doubleData->getData(); |
291 |
> |
} |
292 |
> |
data = integrableObject->getPropertyByName("refVectorZ"); |
293 |
> |
if (data){ |
294 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
295 |
> |
if (!doubleData){ |
296 |
> |
cerr << "Can't obtain refVectorZ from StuntDouble\n"; |
297 |
> |
return 0.0; |
298 |
> |
} |
299 |
> |
else refVec[2] = doubleData->getData(); |
300 |
> |
} |
301 |
> |
|
302 |
> |
// calculate the theta and omega displacements |
303 |
> |
Calc_body_thetaVal( A, refVec ); |
304 |
> |
omegaPass = integrableObject->getZangle(); |
305 |
> |
Calc_body_omegaVal( omegaPass ); |
306 |
> |
|
307 |
> |
// uTx... and vTx... are the body-fixed z and y unit vectors |
308 |
> |
uTx = 0.0; |
309 |
> |
uTy = 0.0; |
310 |
> |
uTz = 1.0; |
311 |
> |
vTx = 0.0; |
312 |
> |
vTy = 1.0; |
313 |
> |
vTz = 0.0; |
314 |
> |
|
315 |
> |
dVdux = 0.0; |
316 |
> |
dVduy = 0.0; |
317 |
> |
dVduz = 0.0; |
318 |
> |
dVdvx = 0.0; |
319 |
> |
dVdvy = 0.0; |
320 |
> |
dVdvz = 0.0; |
321 |
> |
|
322 |
> |
if (fabs(theta) > tolerance) { |
323 |
> |
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
324 |
> |
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
325 |
> |
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
326 |
> |
} |
327 |
> |
|
328 |
> |
if (fabs(omega) > tolerance) { |
329 |
> |
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
330 |
> |
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
331 |
> |
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
332 |
> |
} |
333 |
> |
|
334 |
> |
// next we calculate the restraint torques |
335 |
> |
restraintTrq[0] = 0.0; |
336 |
> |
restraintTrq[1] = 0.0; |
337 |
> |
restraintTrq[2] = 0.0; |
338 |
> |
|
339 |
> |
if (fabs(omega) > tolerance) { |
340 |
> |
restraintTrq[0] += 0.0; |
341 |
> |
restraintTrq[1] += 0.0; |
342 |
> |
restraintTrq[2] += vTy*dVdvx; |
343 |
> |
tempPotent += 0.5*(kOmega*omega*omega); |
344 |
> |
} |
345 |
> |
if (fabs(theta) > tolerance) { |
346 |
> |
restraintTrq[0] += (uTz*dVduy); |
347 |
> |
restraintTrq[1] += -(uTz*dVdux); |
348 |
> |
restraintTrq[2] += 0.0; |
349 |
> |
tempPotent += 0.5*(kTheta*theta*theta); |
350 |
> |
} |
351 |
> |
|
352 |
> |
// apply the lambda scaling factor to these torques |
353 |
> |
for (j = 0; j < 3; j++) restraintTrq[j] *= factor; |
354 |
> |
|
355 |
> |
// now we need to convert from body-fixed to space-fixed torques |
356 |
> |
spaceTrq[0] = A(0,0)*restraintTrq[0] + A(1,0)*restraintTrq[1] |
357 |
> |
+ A(2,0)*restraintTrq[2]; |
358 |
> |
spaceTrq[1] = A(0,1)*restraintTrq[0] + A(1,1)*restraintTrq[1] |
359 |
> |
+ A(2,1)*restraintTrq[2]; |
360 |
> |
spaceTrq[2] = A(0,2)*restraintTrq[0] + A(1,2)*restraintTrq[1] |
361 |
> |
+ A(2,2)*restraintTrq[2]; |
362 |
> |
|
363 |
> |
// now pass this temporary torque vector to the total torque |
364 |
> |
integrableObject->addTrq(spaceTrq); |
365 |
> |
} |
366 |
> |
|
367 |
> |
// update the total harmonic potential with this object's contribution |
368 |
> |
harmPotent += tempPotent; |
369 |
|
} |
280 |
– |
data = vecParticles[i]->getProperty("refVectorY"); |
281 |
– |
if (data){ |
282 |
– |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
283 |
– |
if (!doubleData){ |
284 |
– |
cerr << "Can't obtain refVectorY from StuntDouble\n"; |
285 |
– |
return 0.0; |
286 |
– |
} |
287 |
– |
else refVec[1] = doubleData->getData(); |
288 |
– |
} |
289 |
– |
data = vecParticles[i]->getProperty("refVectorZ"); |
290 |
– |
if (data){ |
291 |
– |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
292 |
– |
if (!doubleData){ |
293 |
– |
cerr << "Can't obtain refVectorZ from StuntDouble\n"; |
294 |
– |
return 0.0; |
295 |
– |
} |
296 |
– |
else refVec[2] = doubleData->getData(); |
297 |
– |
} |
370 |
|
|
299 |
– |
// calculate the theta and omega displacements |
300 |
– |
Calc_body_thetaVal( A, refVec ); |
301 |
– |
omegaPass = vecParticles[i]->getZangle(); |
302 |
– |
Calc_body_omegaVal( A, omegaPass ); |
303 |
– |
|
304 |
– |
// uTx... and vTx... are the body-fixed z and y unit vectors |
305 |
– |
uTx = 0.0; |
306 |
– |
uTy = 0.0; |
307 |
– |
uTz = 1.0; |
308 |
– |
vTx = 0.0; |
309 |
– |
vTy = 1.0; |
310 |
– |
vTz = 0.0; |
311 |
– |
|
312 |
– |
dVdux = 0.0; |
313 |
– |
dVduy = 0.0; |
314 |
– |
dVduz = 0.0; |
315 |
– |
dVdvx = 0.0; |
316 |
– |
dVdvy = 0.0; |
317 |
– |
dVdvz = 0.0; |
318 |
– |
|
319 |
– |
if (fabs(theta) > tolerance) { |
320 |
– |
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
321 |
– |
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
322 |
– |
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
323 |
– |
} |
324 |
– |
|
325 |
– |
if (fabs(omega) > tolerance) { |
326 |
– |
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
327 |
– |
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
328 |
– |
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
329 |
– |
} |
330 |
– |
|
331 |
– |
// next we calculate the restraint torques |
332 |
– |
restraintTrq[0] = 0.0; |
333 |
– |
restraintTrq[1] = 0.0; |
334 |
– |
restraintTrq[2] = 0.0; |
335 |
– |
|
336 |
– |
if (fabs(omega) > tolerance) { |
337 |
– |
restraintTrq[0] += 0.0; |
338 |
– |
restraintTrq[1] += 0.0; |
339 |
– |
restraintTrq[2] += vTy*dVdvx; |
340 |
– |
tempPotent += 0.5*(kOmega*omega*omega); |
341 |
– |
} |
342 |
– |
if (fabs(theta) > tolerance) { |
343 |
– |
restraintTrq[0] += (uTz*dVduy); |
344 |
– |
restraintTrq[1] += -(uTz*dVdux); |
345 |
– |
restraintTrq[2] += 0.0; |
346 |
– |
tempPotent += 0.5*(kTheta*theta*theta); |
347 |
– |
} |
348 |
– |
|
349 |
– |
// apply the lambda scaling factor to these torques |
350 |
– |
for (j = 0; j < 3; j++) restraintTrq[j] *= factor; |
351 |
– |
|
352 |
– |
// now we need to convert from body-fixed torques to space-fixed torques |
353 |
– |
spaceTrq[0] = A[0][0]*restraintTrq[0] + A[1][0]*restraintTrq[1] |
354 |
– |
+ A[2][0]*restraintTrq[2]; |
355 |
– |
spaceTrq[1] = A[0][1]*restraintTrq[0] + A[1][1]*restraintTrq[1] |
356 |
– |
+ A[2][1]*restraintTrq[2]; |
357 |
– |
spaceTrq[2] = A[0][2]*restraintTrq[0] + A[1][2]*restraintTrq[1] |
358 |
– |
+ A[2][2]*restraintTrq[2]; |
359 |
– |
|
360 |
– |
// now pass this temporary torque vector to the total torque |
361 |
– |
vecParticles[i]->addTrq(spaceTrq); |
371 |
|
} |
372 |
< |
|
373 |
< |
// update the total harmonic potential with this object's contribution |
374 |
< |
harmPotent += tempPotent; |
372 |
> |
|
373 |
> |
// we can finish by returning the appropriately scaled potential energy |
374 |
> |
tempPotent = harmPotent * factor; |
375 |
> |
|
376 |
> |
return tempPotent; |
377 |
> |
|
378 |
|
} |
379 |
|
|
380 |
< |
// we can finish by returning the appropriately scaled potential energy |
369 |
< |
tempPotent = harmPotent * factor; |
370 |
< |
return tempPotent; |
371 |
< |
} |
372 |
< |
|
373 |
< |
void Restraints::Write_zAngle_File(vector<StuntDouble*> vecParticles, |
374 |
< |
int currTime, |
375 |
< |
int nIntObj){ |
376 |
< |
|
377 |
< |
char zOutName[200]; |
378 |
< |
|
379 |
< |
std::cerr << nIntObj << " is the number of integrable objects\n"; |
380 |
< |
|
381 |
< |
//#ifndef IS_MPI |
382 |
< |
|
383 |
< |
strcpy(zOutName,"zAngle.ang"); |
384 |
< |
|
385 |
< |
ofstream angleOut(zOutName); |
386 |
< |
angleOut << currTime << ": omega values at this time\n"; |
387 |
< |
for (i=0; i<vecParticles.size(); i++) { |
388 |
< |
angleOut << vecParticles[i]->getZangle() << "\n"; |
389 |
< |
} |
390 |
< |
|
391 |
< |
return; |
392 |
< |
} |
393 |
< |
|
394 |
< |
double Restraints::getVharm(){ |
395 |
< |
return harmPotent; |
396 |
< |
} |
397 |
< |
|
380 |
> |
}// end namespace oopse |