1 |
< |
#include <iostream> |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
> |
|
42 |
|
#include <stdlib.h> |
3 |
– |
#include <cstdio> |
4 |
– |
#include <fstream> |
5 |
– |
#include <iomanip> |
6 |
– |
#include <string> |
7 |
– |
#include <cstring> |
43 |
|
#include <math.h> |
44 |
|
|
45 |
|
using namespace std; |
46 |
|
|
47 |
< |
#include "Restraints.hpp" |
48 |
< |
#include "SimInfo.hpp" |
49 |
< |
#include "simError.h" |
47 |
> |
#include "restraints/Restraints.hpp" |
48 |
> |
#include "primitives/Molecule.hpp" |
49 |
> |
#include "utils/simError.h" |
50 |
|
|
51 |
|
#define PI 3.14159265359 |
52 |
|
#define TWO_PI 6.28318530718 |
53 |
|
|
54 |
< |
Restraints::Restraints(double lambdaVal, double lambdaExp){ |
20 |
< |
lambdaValue = lambdaVal; |
21 |
< |
lambdaK = lambdaExp; |
22 |
< |
|
23 |
< |
const char *jolt = " \t\n;,"; |
24 |
< |
|
25 |
< |
#ifdef IS_MPI |
26 |
< |
if(worldRank == 0 ){ |
27 |
< |
#endif // is_mpi |
28 |
< |
|
29 |
< |
strcpy(springName, "HarmSpringConsts.txt"); |
30 |
< |
|
31 |
< |
ifstream springs(springName); |
32 |
< |
|
33 |
< |
if (!springs) { |
34 |
< |
sprintf(painCave.errMsg, |
35 |
< |
"In Restraints: Unable to open HarmSpringConsts.txt for reading.\n" |
36 |
< |
"\tDefault spring constants will be loaded. If you want to specify\n" |
37 |
< |
"\tspring constants, include a three line HarmSpringConsts.txt file\n" |
38 |
< |
"\tin the current directory.\n"); |
39 |
< |
painCave.severity = OOPSE_WARNING; |
40 |
< |
painCave.isFatal = 0; |
41 |
< |
simError(); |
42 |
< |
|
43 |
< |
// load default spring constants |
44 |
< |
kDist = 6; // spring constant in units of kcal/(mol*ang^2) |
45 |
< |
kTheta = 7.5; // in units of kcal/mol |
46 |
< |
kOmega = 13.5; // in units of kcal/mol |
47 |
< |
} else { |
48 |
< |
|
49 |
< |
springs.getline(inLine,999,'\n'); |
50 |
< |
springs.getline(inLine,999,'\n'); |
51 |
< |
token = strtok(inLine,jolt); |
52 |
< |
token = strtok(NULL,jolt); |
53 |
< |
strcpy(inValue,token); |
54 |
< |
kDist = (atof(inValue)); |
55 |
< |
springs.getline(inLine,999,'\n'); |
56 |
< |
token = strtok(inLine,jolt); |
57 |
< |
token = strtok(NULL,jolt); |
58 |
< |
strcpy(inValue,token); |
59 |
< |
kTheta = (atof(inValue)); |
60 |
< |
springs.getline(inLine,999,'\n'); |
61 |
< |
token = strtok(inLine,jolt); |
62 |
< |
token = strtok(NULL,jolt); |
63 |
< |
strcpy(inValue,token); |
64 |
< |
kOmega = (atof(inValue)); |
65 |
< |
springs.close(); |
66 |
< |
} |
67 |
< |
#ifdef IS_MPI |
68 |
< |
} |
54 |
> |
namespace oopse { |
55 |
|
|
56 |
< |
MPI_Bcast(&kDist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
57 |
< |
MPI_Bcast(&kTheta, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
58 |
< |
MPI_Bcast(&kOmega, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
73 |
< |
|
74 |
< |
sprintf( checkPointMsg, |
75 |
< |
"Sucessfully opened and read spring file.\n"); |
76 |
< |
MPIcheckPoint(); |
56 |
> |
Restraints::Restraints(SimInfo* info, double lambdaVal, double lambdaExp){ |
57 |
> |
info_ = info; |
58 |
> |
Globals* simParam = info_->getSimParams(); |
59 |
|
|
60 |
< |
#endif // is_mpi |
61 |
< |
|
62 |
< |
sprintf(painCave.errMsg, |
63 |
< |
"The spring constants for thermodynamic integration are:\n" |
64 |
< |
"\tkDist = %lf\n" |
65 |
< |
"\tkTheta = %lf\n" |
84 |
< |
"\tkOmega = %lf\n", kDist, kTheta, kOmega); |
85 |
< |
painCave.severity = OOPSE_INFO; |
86 |
< |
painCave.isFatal = 0; |
87 |
< |
simError(); |
88 |
< |
} |
89 |
< |
|
90 |
< |
Restraints::~Restraints(){ |
91 |
< |
} |
92 |
< |
|
93 |
< |
void Restraints::Calc_rVal(double position[3], int currentMol){ |
94 |
< |
delRx = position[0] - cofmPosX[currentMol]; |
95 |
< |
delRy = position[1] - cofmPosY[currentMol]; |
96 |
< |
delRz = position[2] - cofmPosZ[currentMol]; |
97 |
< |
|
98 |
< |
return; |
99 |
< |
} |
100 |
< |
|
101 |
< |
void Restraints::Calc_body_thetaVal(double matrix[3][3], int currentMol){ |
102 |
< |
ub0x = matrix[0][0]*uX0[currentMol] + matrix[0][1]*uY0[currentMol] |
103 |
< |
+ matrix[0][2]*uZ0[currentMol]; |
104 |
< |
ub0y = matrix[1][0]*uX0[currentMol] + matrix[1][1]*uY0[currentMol] |
105 |
< |
+ matrix[1][2]*uZ0[currentMol]; |
106 |
< |
ub0z = matrix[2][0]*uX0[currentMol] + matrix[2][1]*uY0[currentMol] |
107 |
< |
+ matrix[2][2]*uZ0[currentMol]; |
108 |
< |
|
109 |
< |
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
110 |
< |
ub0x = ub0x/normalize; |
111 |
< |
ub0y = ub0y/normalize; |
112 |
< |
ub0z = ub0z/normalize; |
113 |
< |
|
114 |
< |
// Theta is the dot product of the reference and new z-axes |
115 |
< |
theta = acos(ub0z); |
116 |
< |
|
117 |
< |
return; |
118 |
< |
} |
119 |
< |
|
120 |
< |
void Restraints::Calc_body_omegaVal(double matrix[3][3], double zAngle){ |
121 |
< |
double zRotator[3][3]; |
122 |
< |
double tempOmega; |
123 |
< |
double wholeTwoPis; |
124 |
< |
// Use the omega accumulated from the rotation propagation |
125 |
< |
omega = zAngle; |
126 |
< |
|
127 |
< |
// translate the omega into a range between -PI and PI |
128 |
< |
if (omega < -PI){ |
129 |
< |
tempOmega = omega / -TWO_PI; |
130 |
< |
wholeTwoPis = floor(tempOmega); |
131 |
< |
tempOmega = omega + TWO_PI*wholeTwoPis; |
132 |
< |
if (tempOmega < -PI) |
133 |
< |
omega = tempOmega + TWO_PI; |
134 |
< |
else |
135 |
< |
omega = tempOmega; |
136 |
< |
} |
137 |
< |
if (omega > PI){ |
138 |
< |
tempOmega = omega / TWO_PI; |
139 |
< |
wholeTwoPis = floor(tempOmega); |
140 |
< |
tempOmega = omega - TWO_PI*wholeTwoPis; |
141 |
< |
if (tempOmega > PI) |
142 |
< |
omega = tempOmega - TWO_PI; |
143 |
< |
else |
144 |
< |
omega = tempOmega; |
145 |
< |
} |
146 |
< |
|
147 |
< |
vb0x = sin(omega); |
148 |
< |
vb0y = cos(omega); |
149 |
< |
vb0z = 0.0; |
150 |
< |
|
151 |
< |
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
152 |
< |
vb0x = vb0x/normalize; |
153 |
< |
vb0y = vb0y/normalize; |
154 |
< |
vb0z = vb0z/normalize; |
155 |
< |
|
156 |
< |
return; |
157 |
< |
} |
158 |
< |
|
159 |
< |
double Restraints::Calc_Restraint_Forces(vector<StuntDouble*> vecParticles){ |
160 |
< |
double pos[3]; |
161 |
< |
double A[3][3]; |
162 |
< |
double tolerance; |
163 |
< |
double tempPotent; |
164 |
< |
double factor; |
165 |
< |
double spaceTrq[3]; |
166 |
< |
double omegaPass; |
167 |
< |
|
168 |
< |
tolerance = 5.72957795131e-7; |
169 |
< |
|
170 |
< |
harmPotent = 0.0; // zero out the global harmonic potential variable |
171 |
< |
|
172 |
< |
factor = 1 - pow(lambdaValue, lambdaK); |
173 |
< |
|
174 |
< |
for (i=0; i<vecParticles.size(); i++){ |
175 |
< |
if (vecParticles[i]->isDirectional()){ |
176 |
< |
vecParticles[i]->getPos(pos); |
177 |
< |
vecParticles[i]->getA(A); |
178 |
< |
Calc_rVal( pos, i ); |
179 |
< |
Calc_body_thetaVal( A, i ); |
180 |
< |
omegaPass = vecParticles[i]->getZangle(); |
181 |
< |
Calc_body_omegaVal( A, omegaPass ); |
182 |
< |
|
183 |
< |
if (omega > PI || omega < -PI) |
184 |
< |
cout << "oops... " << omega << "\n"; |
185 |
< |
|
186 |
< |
// first we calculate the derivatives |
187 |
< |
dVdrx = -kDist*delRx; |
188 |
< |
dVdry = -kDist*delRy; |
189 |
< |
dVdrz = -kDist*delRz; |
190 |
< |
|
191 |
< |
// uTx... and vTx... are the body-fixed z and y unit vectors |
192 |
< |
uTx = 0.0; |
193 |
< |
uTy = 0.0; |
194 |
< |
uTz = 1.0; |
195 |
< |
vTx = 0.0; |
196 |
< |
vTy = 1.0; |
197 |
< |
vTz = 0.0; |
198 |
< |
|
199 |
< |
dVdux = 0; |
200 |
< |
dVduy = 0; |
201 |
< |
dVduz = 0; |
202 |
< |
dVdvx = 0; |
203 |
< |
dVdvy = 0; |
204 |
< |
dVdvz = 0; |
205 |
< |
|
206 |
< |
if (fabs(theta) > tolerance) { |
207 |
< |
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
208 |
< |
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
209 |
< |
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
60 |
> |
lambdaValue = lambdaVal; |
61 |
> |
lambdaK = lambdaExp; |
62 |
> |
|
63 |
> |
if (simParam->getUseSolidThermInt()) { |
64 |
> |
if (simParam->haveThermIntDistSpringConst()) { |
65 |
> |
kDist = simParam->getThermIntDistSpringConst(); |
66 |
|
} |
67 |
< |
|
68 |
< |
if (fabs(omega) > tolerance) { |
69 |
< |
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
70 |
< |
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
71 |
< |
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
67 |
> |
else{ |
68 |
> |
kDist = 6.0; |
69 |
> |
sprintf(painCave.errMsg, |
70 |
> |
"ThermoIntegration Warning: the spring constant for the\n" |
71 |
> |
"\ttranslational restraint was not specified. OOPSE will use\n" |
72 |
> |
"\ta default value of %f. To set it to something else, use\n" |
73 |
> |
"\tthe thermIntDistSpringConst variable.\n", |
74 |
> |
kDist); |
75 |
> |
painCave.isFatal = 0; |
76 |
> |
simError(); |
77 |
|
} |
78 |
< |
|
79 |
< |
// next we calculate the restraint forces and torques |
219 |
< |
restraintFrc[0] = dVdrx; |
220 |
< |
restraintFrc[1] = dVdry; |
221 |
< |
restraintFrc[2] = dVdrz; |
222 |
< |
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
223 |
< |
|
224 |
< |
restraintTrq[0] = 0.0; |
225 |
< |
restraintTrq[1] = 0.0; |
226 |
< |
restraintTrq[2] = 0.0; |
227 |
< |
|
228 |
< |
if (fabs(omega) > tolerance) { |
229 |
< |
restraintTrq[0] += 0.0; |
230 |
< |
restraintTrq[1] += 0.0; |
231 |
< |
restraintTrq[2] += vTy*dVdvx; |
232 |
< |
tempPotent += 0.5*(kOmega*omega*omega); |
78 |
> |
if (simParam->haveThermIntThetaSpringConst()) { |
79 |
> |
kTheta = simParam->getThermIntThetaSpringConst(); |
80 |
|
} |
81 |
< |
if (fabs(theta) > tolerance) { |
82 |
< |
restraintTrq[0] += (uTz*dVduy); |
83 |
< |
restraintTrq[1] += -(uTz*dVdux); |
84 |
< |
restraintTrq[2] += 0.0; |
85 |
< |
tempPotent += 0.5*(kTheta*theta*theta); |
81 |
> |
else{ |
82 |
> |
kTheta = 7.5; |
83 |
> |
sprintf(painCave.errMsg, |
84 |
> |
"ThermoIntegration Warning: the spring constant for the\n" |
85 |
> |
"\tdeflection orientational restraint was not specified.\n" |
86 |
> |
"\tOOPSE will use a default value of %f. To set it to\n" |
87 |
> |
"\tsomething else, use the thermIntThetaSpringConst variable.\n", |
88 |
> |
kTheta); |
89 |
> |
painCave.isFatal = 0; |
90 |
> |
simError(); |
91 |
|
} |
92 |
< |
|
93 |
< |
for (j = 0; j < 3; j++) { |
242 |
< |
restraintFrc[j] *= factor; |
243 |
< |
restraintTrq[j] *= factor; |
92 |
> |
if (simParam->haveThermIntOmegaSpringConst()) { |
93 |
> |
kOmega = simParam->getThermIntOmegaSpringConst(); |
94 |
|
} |
95 |
< |
|
96 |
< |
harmPotent += tempPotent; |
97 |
< |
|
98 |
< |
// now we need to convert from body-fixed torques to space-fixed torques |
99 |
< |
spaceTrq[0] = A[0][0]*restraintTrq[0] + A[1][0]*restraintTrq[1] |
100 |
< |
+ A[2][0]*restraintTrq[2]; |
101 |
< |
spaceTrq[1] = A[0][1]*restraintTrq[0] + A[1][1]*restraintTrq[1] |
102 |
< |
+ A[2][1]*restraintTrq[2]; |
103 |
< |
spaceTrq[2] = A[0][2]*restraintTrq[0] + A[1][2]*restraintTrq[1] |
104 |
< |
+ A[2][2]*restraintTrq[2]; |
105 |
< |
|
256 |
< |
// now it's time to pass these temporary forces and torques |
257 |
< |
// to the total forces and torques |
258 |
< |
vecParticles[i]->addFrc(restraintFrc); |
259 |
< |
vecParticles[i]->addTrq(spaceTrq); |
95 |
> |
else{ |
96 |
> |
kOmega = 13.5; |
97 |
> |
sprintf(painCave.errMsg, |
98 |
> |
"ThermoIntegration Warning: the spring constant for the\n" |
99 |
> |
"\tspin orientational restraint was not specified. OOPSE\n" |
100 |
> |
"\twill use a default value of %f. To set it to something\n" |
101 |
> |
"\telse, use the thermIntOmegaSpringConst variable.\n", |
102 |
> |
kOmega); |
103 |
> |
painCave.isFatal = 0; |
104 |
> |
simError(); |
105 |
> |
} |
106 |
|
} |
107 |
+ |
|
108 |
+ |
// build a RestReader and read in important information |
109 |
+ |
|
110 |
+ |
restRead_ = new RestReader(info_); |
111 |
+ |
restRead_->readIdealCrystal(); |
112 |
+ |
restRead_->readZangle(); |
113 |
+ |
|
114 |
+ |
delete restRead_; |
115 |
+ |
restRead_ = NULL; |
116 |
+ |
|
117 |
|
} |
262 |
– |
|
263 |
– |
// and we can return the appropriately scaled potential energy |
264 |
– |
tempPotent = harmPotent * factor; |
265 |
– |
return tempPotent; |
266 |
– |
} |
267 |
– |
|
268 |
– |
void Restraints::Store_Init_Info(vector<StuntDouble*> vecParticles){ |
269 |
– |
double pos[3]; |
270 |
– |
double A[3][3]; |
271 |
– |
double RfromQ[3][3]; |
272 |
– |
double quat0, quat1, quat2, quat3; |
273 |
– |
double dot; |
274 |
– |
// char *token; |
275 |
– |
// char fileName[200]; |
276 |
– |
// char angleName[200]; |
277 |
– |
// char inLine[1000]; |
278 |
– |
// char inValue[200]; |
279 |
– |
const char *delimit = " \t\n;,"; |
280 |
– |
|
281 |
– |
//open the idealCrystal.in file and zAngle.ang file |
282 |
– |
strcpy(fileName, "idealCrystal.in"); |
283 |
– |
strcpy(angleName, "zAngle.ang"); |
118 |
|
|
119 |
< |
ifstream crystalIn(fileName); |
120 |
< |
ifstream angleIn(angleName); |
121 |
< |
|
122 |
< |
if (!crystalIn) { |
123 |
< |
sprintf(painCave.errMsg, |
124 |
< |
"Restraints Error: Unable to open idealCrystal.in for reading.\n" |
125 |
< |
"\tMake sure a reference crystal file is in the current directory.\n"); |
292 |
< |
painCave.isFatal = 1; |
293 |
< |
simError(); |
119 |
> |
Restraints::~Restraints(){ |
120 |
> |
} |
121 |
> |
|
122 |
> |
void Restraints::Calc_rVal(Vector3d &position, double refPosition[3]){ |
123 |
> |
delRx = position.x() - refPosition[0]; |
124 |
> |
delRy = position.y() - refPosition[1]; |
125 |
> |
delRz = position.z() - refPosition[2]; |
126 |
|
|
127 |
|
return; |
128 |
|
} |
129 |
< |
|
130 |
< |
if (!angleIn) { |
131 |
< |
sprintf(painCave.errMsg, |
132 |
< |
"Restraints Warning: The lack of a zAngle.ang file is mildly\n" |
133 |
< |
"\tunsettling... This means the simulation is starting from the\n" |
134 |
< |
"\tidealCrystal.in reference configuration, so the omega values\n" |
135 |
< |
"\twill all be set to zero. If this is not the case, you should\n" |
136 |
< |
"\tquestion your results.\n"); |
137 |
< |
painCave.isFatal = 0; |
138 |
< |
simError(); |
129 |
> |
|
130 |
> |
void Restraints::Calc_body_thetaVal(RotMat3x3d &matrix, double refUnit[3]){ |
131 |
> |
ub0x = matrix(0,0)*refUnit[0] + matrix(0,1)*refUnit[1] |
132 |
> |
+ matrix(0,2)*refUnit[2]; |
133 |
> |
ub0y = matrix(1,0)*refUnit[0] + matrix(1,1)*refUnit[1] |
134 |
> |
+ matrix(1,2)*refUnit[2]; |
135 |
> |
ub0z = matrix(2,0)*refUnit[0] + matrix(2,1)*refUnit[1] |
136 |
> |
+ matrix(2,2)*refUnit[2]; |
137 |
> |
|
138 |
> |
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
139 |
> |
ub0x = ub0x/normalize; |
140 |
> |
ub0y = ub0y/normalize; |
141 |
> |
ub0z = ub0z/normalize; |
142 |
> |
|
143 |
> |
// Theta is the dot product of the reference and new z-axes |
144 |
> |
theta = acos(ub0z); |
145 |
> |
|
146 |
> |
return; |
147 |
|
} |
308 |
– |
|
309 |
– |
// A rather specific reader for OOPSE .eor files... |
310 |
– |
// Let's read in the perfect crystal file |
311 |
– |
crystalIn.getline(inLine,999,'\n'); |
312 |
– |
crystalIn.getline(inLine,999,'\n'); |
148 |
|
|
149 |
< |
for (i=0; i<vecParticles.size(); i++) { |
150 |
< |
crystalIn.getline(inLine,999,'\n'); |
151 |
< |
token = strtok(inLine,delimit); |
152 |
< |
token = strtok(NULL,delimit); |
153 |
< |
strcpy(inValue,token); |
154 |
< |
cofmPosX.push_back(atof(inValue)); |
320 |
< |
token = strtok(NULL,delimit); |
321 |
< |
strcpy(inValue,token); |
322 |
< |
cofmPosY.push_back(atof(inValue)); |
323 |
< |
token = strtok(NULL,delimit); |
324 |
< |
strcpy(inValue,token); |
325 |
< |
cofmPosZ.push_back(atof(inValue)); |
326 |
< |
token = strtok(NULL,delimit); |
327 |
< |
token = strtok(NULL,delimit); |
328 |
< |
token = strtok(NULL,delimit); |
329 |
< |
token = strtok(NULL,delimit); |
330 |
< |
strcpy(inValue,token); |
331 |
< |
quat0 = atof(inValue); |
332 |
< |
token = strtok(NULL,delimit); |
333 |
< |
strcpy(inValue,token); |
334 |
< |
quat1 = atof(inValue); |
335 |
< |
token = strtok(NULL,delimit); |
336 |
< |
strcpy(inValue,token); |
337 |
< |
quat2 = atof(inValue); |
338 |
< |
token = strtok(NULL,delimit); |
339 |
< |
strcpy(inValue,token); |
340 |
< |
quat3 = atof(inValue); |
341 |
< |
|
342 |
< |
// now build the rotation matrix and find the unit vectors |
343 |
< |
RfromQ[0][0] = quat0*quat0 + quat1*quat1 - quat2*quat2 - quat3*quat3; |
344 |
< |
RfromQ[0][1] = 2*(quat1*quat2 + quat0*quat3); |
345 |
< |
RfromQ[0][2] = 2*(quat1*quat3 - quat0*quat2); |
346 |
< |
RfromQ[1][0] = 2*(quat1*quat2 - quat0*quat3); |
347 |
< |
RfromQ[1][1] = quat0*quat0 - quat1*quat1 + quat2*quat2 - quat3*quat3; |
348 |
< |
RfromQ[1][2] = 2*(quat2*quat3 + quat0*quat1); |
349 |
< |
RfromQ[2][0] = 2*(quat1*quat3 + quat0*quat2); |
350 |
< |
RfromQ[2][1] = 2*(quat2*quat3 - quat0*quat1); |
351 |
< |
RfromQ[2][2] = quat0*quat0 - quat1*quat1 - quat2*quat2 + quat3*quat3; |
149 |
> |
void Restraints::Calc_body_omegaVal(double zAngle){ |
150 |
> |
double zRotator[3][3]; |
151 |
> |
double tempOmega; |
152 |
> |
double wholeTwoPis; |
153 |
> |
// Use the omega accumulated from the rotation propagation |
154 |
> |
omega = zAngle; |
155 |
|
|
156 |
< |
normalize = sqrt(RfromQ[2][0]*RfromQ[2][0] + RfromQ[2][1]*RfromQ[2][1] |
157 |
< |
+ RfromQ[2][2]*RfromQ[2][2]); |
158 |
< |
uX0.push_back(RfromQ[2][0]/normalize); |
159 |
< |
uY0.push_back(RfromQ[2][1]/normalize); |
160 |
< |
uZ0.push_back(RfromQ[2][2]/normalize); |
161 |
< |
|
162 |
< |
normalize = sqrt(RfromQ[1][0]*RfromQ[1][0] + RfromQ[1][1]*RfromQ[1][1] |
163 |
< |
+ RfromQ[1][2]*RfromQ[1][2]); |
164 |
< |
vX0.push_back(RfromQ[1][0]/normalize); |
165 |
< |
vY0.push_back(RfromQ[1][1]/normalize); |
166 |
< |
vZ0.push_back(RfromQ[1][2]/normalize); |
156 |
> |
// translate the omega into a range between -PI and PI |
157 |
> |
if (omega < -PI){ |
158 |
> |
tempOmega = omega / -TWO_PI; |
159 |
> |
wholeTwoPis = floor(tempOmega); |
160 |
> |
tempOmega = omega + TWO_PI*wholeTwoPis; |
161 |
> |
if (tempOmega < -PI) |
162 |
> |
omega = tempOmega + TWO_PI; |
163 |
> |
else |
164 |
> |
omega = tempOmega; |
165 |
> |
} |
166 |
> |
if (omega > PI){ |
167 |
> |
tempOmega = omega / TWO_PI; |
168 |
> |
wholeTwoPis = floor(tempOmega); |
169 |
> |
tempOmega = omega - TWO_PI*wholeTwoPis; |
170 |
> |
if (tempOmega > PI) |
171 |
> |
omega = tempOmega - TWO_PI; |
172 |
> |
else |
173 |
> |
omega = tempOmega; |
174 |
> |
} |
175 |
> |
|
176 |
> |
vb0x = sin(omega); |
177 |
> |
vb0y = cos(omega); |
178 |
> |
vb0z = 0.0; |
179 |
> |
|
180 |
> |
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
181 |
> |
vb0x = vb0x/normalize; |
182 |
> |
vb0y = vb0y/normalize; |
183 |
> |
vb0z = vb0z/normalize; |
184 |
> |
|
185 |
> |
return; |
186 |
|
} |
187 |
< |
|
188 |
< |
// now we can read in the zAngle.ang file |
189 |
< |
if (angleIn){ |
190 |
< |
angleIn.getline(inLine,999,'\n'); |
191 |
< |
for (i=0; i<vecParticles.size(); i++) { |
192 |
< |
angleIn.getline(inLine,999,'\n'); |
193 |
< |
token = strtok(inLine,delimit); |
194 |
< |
strcpy(inValue,token); |
195 |
< |
vecParticles[i]->setZangle(atof(inValue)); |
187 |
> |
|
188 |
> |
double Restraints::Calc_Restraint_Forces(){ |
189 |
> |
SimInfo::MoleculeIterator mi; |
190 |
> |
Molecule* mol; |
191 |
> |
Molecule::IntegrableObjectIterator ii; |
192 |
> |
StuntDouble* integrableObject; |
193 |
> |
Vector3d pos; |
194 |
> |
RotMat3x3d A; |
195 |
> |
double refPos[3]; |
196 |
> |
double refVec[3]; |
197 |
> |
double tolerance; |
198 |
> |
double tempPotent; |
199 |
> |
double factor; |
200 |
> |
double spaceTrq[3]; |
201 |
> |
double omegaPass; |
202 |
> |
GenericData* data; |
203 |
> |
DoubleGenericData* doubleData; |
204 |
> |
|
205 |
> |
tolerance = 5.72957795131e-7; |
206 |
> |
|
207 |
> |
harmPotent = 0.0; // zero out the global harmonic potential variable |
208 |
> |
|
209 |
> |
factor = 1 - pow(lambdaValue, lambdaK); |
210 |
> |
|
211 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
212 |
> |
mol = info_->nextMolecule(mi)) { |
213 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
214 |
> |
integrableObject != NULL; |
215 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
216 |
> |
|
217 |
> |
// obtain the current and reference positions |
218 |
> |
pos = integrableObject->getPos(); |
219 |
> |
|
220 |
> |
data = integrableObject->getPropertyByName("refPosX"); |
221 |
> |
if (data){ |
222 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
223 |
> |
if (!doubleData){ |
224 |
> |
cerr << "Can't obtain refPosX from StuntDouble\n"; |
225 |
> |
return 0.0; |
226 |
> |
} |
227 |
> |
else refPos[0] = doubleData->getData(); |
228 |
> |
} |
229 |
> |
data = integrableObject->getPropertyByName("refPosY"); |
230 |
> |
if (data){ |
231 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
232 |
> |
if (!doubleData){ |
233 |
> |
cerr << "Can't obtain refPosY from StuntDouble\n"; |
234 |
> |
return 0.0; |
235 |
> |
} |
236 |
> |
else refPos[1] = doubleData->getData(); |
237 |
> |
} |
238 |
> |
data = integrableObject->getPropertyByName("refPosZ"); |
239 |
> |
if (data){ |
240 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
241 |
> |
if (!doubleData){ |
242 |
> |
cerr << "Can't obtain refPosZ from StuntDouble\n"; |
243 |
> |
return 0.0; |
244 |
> |
} |
245 |
> |
else refPos[2] = doubleData->getData(); |
246 |
> |
} |
247 |
> |
|
248 |
> |
// calculate the displacement |
249 |
> |
Calc_rVal( pos, refPos ); |
250 |
> |
|
251 |
> |
// calculate the derivatives |
252 |
> |
dVdrx = -kDist*delRx; |
253 |
> |
dVdry = -kDist*delRy; |
254 |
> |
dVdrz = -kDist*delRz; |
255 |
> |
|
256 |
> |
// next we calculate the restraint forces |
257 |
> |
restraintFrc[0] = dVdrx; |
258 |
> |
restraintFrc[1] = dVdry; |
259 |
> |
restraintFrc[2] = dVdrz; |
260 |
> |
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
261 |
> |
|
262 |
> |
// apply the lambda scaling factor to the forces |
263 |
> |
for (j = 0; j < 3; j++) restraintFrc[j] *= factor; |
264 |
> |
|
265 |
> |
// and add the temporary force to the total force |
266 |
> |
integrableObject->addFrc(restraintFrc); |
267 |
> |
|
268 |
> |
// if the particle is directional, we accumulate the rot. restraints |
269 |
> |
if (integrableObject->isDirectional()){ |
270 |
> |
|
271 |
> |
// get the current rotation matrix and reference vector |
272 |
> |
A = integrableObject->getA(); |
273 |
> |
|
274 |
> |
data = integrableObject->getPropertyByName("refVectorX"); |
275 |
> |
if (data){ |
276 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
277 |
> |
if (!doubleData){ |
278 |
> |
cerr << "Can't obtain refVectorX from StuntDouble\n"; |
279 |
> |
return 0.0; |
280 |
> |
} |
281 |
> |
else refVec[0] = doubleData->getData(); |
282 |
> |
} |
283 |
> |
data = integrableObject->getPropertyByName("refVectorY"); |
284 |
> |
if (data){ |
285 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
286 |
> |
if (!doubleData){ |
287 |
> |
cerr << "Can't obtain refVectorY from StuntDouble\n"; |
288 |
> |
return 0.0; |
289 |
> |
} |
290 |
> |
else refVec[1] = doubleData->getData(); |
291 |
> |
} |
292 |
> |
data = integrableObject->getPropertyByName("refVectorZ"); |
293 |
> |
if (data){ |
294 |
> |
doubleData = dynamic_cast<DoubleGenericData*>(data); |
295 |
> |
if (!doubleData){ |
296 |
> |
cerr << "Can't obtain refVectorZ from StuntDouble\n"; |
297 |
> |
return 0.0; |
298 |
> |
} |
299 |
> |
else refVec[2] = doubleData->getData(); |
300 |
> |
} |
301 |
> |
|
302 |
> |
// calculate the theta and omega displacements |
303 |
> |
Calc_body_thetaVal( A, refVec ); |
304 |
> |
omegaPass = integrableObject->getZangle(); |
305 |
> |
Calc_body_omegaVal( omegaPass ); |
306 |
> |
|
307 |
> |
// uTx... and vTx... are the body-fixed z and y unit vectors |
308 |
> |
uTx = 0.0; |
309 |
> |
uTy = 0.0; |
310 |
> |
uTz = 1.0; |
311 |
> |
vTx = 0.0; |
312 |
> |
vTy = 1.0; |
313 |
> |
vTz = 0.0; |
314 |
> |
|
315 |
> |
dVdux = 0.0; |
316 |
> |
dVduy = 0.0; |
317 |
> |
dVduz = 0.0; |
318 |
> |
dVdvx = 0.0; |
319 |
> |
dVdvy = 0.0; |
320 |
> |
dVdvz = 0.0; |
321 |
> |
|
322 |
> |
if (fabs(theta) > tolerance) { |
323 |
> |
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
324 |
> |
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
325 |
> |
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
326 |
> |
} |
327 |
> |
|
328 |
> |
if (fabs(omega) > tolerance) { |
329 |
> |
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
330 |
> |
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
331 |
> |
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
332 |
> |
} |
333 |
> |
|
334 |
> |
// next we calculate the restraint torques |
335 |
> |
restraintTrq[0] = 0.0; |
336 |
> |
restraintTrq[1] = 0.0; |
337 |
> |
restraintTrq[2] = 0.0; |
338 |
> |
|
339 |
> |
if (fabs(omega) > tolerance) { |
340 |
> |
restraintTrq[0] += 0.0; |
341 |
> |
restraintTrq[1] += 0.0; |
342 |
> |
restraintTrq[2] += vTy*dVdvx; |
343 |
> |
tempPotent += 0.5*(kOmega*omega*omega); |
344 |
> |
} |
345 |
> |
if (fabs(theta) > tolerance) { |
346 |
> |
restraintTrq[0] += (uTz*dVduy); |
347 |
> |
restraintTrq[1] += -(uTz*dVdux); |
348 |
> |
restraintTrq[2] += 0.0; |
349 |
> |
tempPotent += 0.5*(kTheta*theta*theta); |
350 |
> |
} |
351 |
> |
|
352 |
> |
// apply the lambda scaling factor to these torques |
353 |
> |
for (j = 0; j < 3; j++) restraintTrq[j] *= factor; |
354 |
> |
|
355 |
> |
// now we need to convert from body-fixed to space-fixed torques |
356 |
> |
spaceTrq[0] = A(0,0)*restraintTrq[0] + A(1,0)*restraintTrq[1] |
357 |
> |
+ A(2,0)*restraintTrq[2]; |
358 |
> |
spaceTrq[1] = A(0,1)*restraintTrq[0] + A(1,1)*restraintTrq[1] |
359 |
> |
+ A(2,1)*restraintTrq[2]; |
360 |
> |
spaceTrq[2] = A(0,2)*restraintTrq[0] + A(1,2)*restraintTrq[1] |
361 |
> |
+ A(2,2)*restraintTrq[2]; |
362 |
> |
|
363 |
> |
// now pass this temporary torque vector to the total torque |
364 |
> |
integrableObject->addTrq(spaceTrq); |
365 |
> |
} |
366 |
> |
|
367 |
> |
// update the total harmonic potential with this object's contribution |
368 |
> |
harmPotent += tempPotent; |
369 |
> |
} |
370 |
> |
|
371 |
|
} |
372 |
+ |
|
373 |
+ |
// we can finish by returning the appropriately scaled potential energy |
374 |
+ |
tempPotent = harmPotent * factor; |
375 |
+ |
|
376 |
+ |
return tempPotent; |
377 |
+ |
|
378 |
|
} |
379 |
< |
|
380 |
< |
return; |
378 |
< |
} |
379 |
< |
|
380 |
< |
void Restraints::Write_zAngle_File(vector<StuntDouble*> vecParticles){ |
381 |
< |
|
382 |
< |
char zOutName[200]; |
383 |
< |
|
384 |
< |
strcpy(zOutName,"zAngle.ang"); |
385 |
< |
|
386 |
< |
ofstream angleOut(zOutName); |
387 |
< |
angleOut << "This file contains the omega values for the .eor file\n"; |
388 |
< |
for (i=0; i<vecParticles.size(); i++) { |
389 |
< |
angleOut << vecParticles[i]->getZangle() << "\n"; |
390 |
< |
} |
391 |
< |
return; |
392 |
< |
} |
393 |
< |
|
394 |
< |
double Restraints::getVharm(){ |
395 |
< |
return harmPotent; |
396 |
< |
} |
397 |
< |
|
379 |
> |
|
380 |
> |
}// end namespace oopse |