| 1 | 
gezelter | 
507 | 
/* | 
| 2 | 
chrisfen | 
417 | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
  | 
 * | 
| 4 | 
  | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
  | 
  | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
  | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
  | 
 * | 
| 9 | 
  | 
  | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
  | 
  | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
  | 
  | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
  | 
  | 
 *    the article in which the program was described (Matthew | 
| 13 | 
  | 
  | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
  | 
  | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
  | 
  | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
  | 
  | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
  | 
  | 
 * | 
| 18 | 
  | 
  | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
  | 
  | 
 * | 
| 21 | 
  | 
  | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
  | 
  | 
 *    documentation and/or other materials provided with the | 
| 24 | 
  | 
  | 
 *    distribution. | 
| 25 | 
  | 
  | 
 * | 
| 26 | 
  | 
  | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
  | 
  | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
  | 
  | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
  | 
  | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
  | 
  | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
  | 
  | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
  | 
  | 
 * using, modifying or distributing the software or its | 
| 33 | 
  | 
  | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
  | 
  | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
  | 
  | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
  | 
  | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
  | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
  | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
  | 
  | 
 * such damages. | 
| 40 | 
  | 
  | 
 */ | 
| 41 | 
chrisfen | 
43 | 
 | 
| 42 | 
gezelter | 
2 | 
#include <stdlib.h> | 
| 43 | 
  | 
  | 
#include <math.h> | 
| 44 | 
  | 
  | 
 | 
| 45 | 
  | 
  | 
using namespace std; | 
| 46 | 
  | 
  | 
 | 
| 47 | 
gezelter | 
46 | 
#include "restraints/Restraints.hpp" | 
| 48 | 
chrisfen | 
417 | 
#include "primitives/Molecule.hpp" | 
| 49 | 
gezelter | 
46 | 
#include "utils/simError.h" | 
| 50 | 
gezelter | 
2 | 
 | 
| 51 | 
  | 
  | 
#define PI 3.14159265359 | 
| 52 | 
  | 
  | 
#define TWO_PI 6.28318530718 | 
| 53 | 
  | 
  | 
 | 
| 54 | 
chrisfen | 
417 | 
namespace oopse { | 
| 55 | 
  | 
  | 
   | 
| 56 | 
tim | 
963 | 
  Restraints::Restraints(SimInfo* info, RealType lambdaVal, RealType lambdaExp){ | 
| 57 | 
chrisfen | 
417 | 
    info_ = info; | 
| 58 | 
  | 
  | 
    Globals* simParam = info_->getSimParams(); | 
| 59 | 
gezelter | 
2 | 
 | 
| 60 | 
chrisfen | 
417 | 
    lambdaValue = lambdaVal; | 
| 61 | 
  | 
  | 
    lambdaK = lambdaExp; | 
| 62 | 
gezelter | 
2 | 
     | 
| 63 | 
chrisfen | 
417 | 
    if (simParam->getUseSolidThermInt()) { | 
| 64 | 
tim | 
665 | 
      if (simParam->haveThermIntDistSpringConst()) { | 
| 65 | 
  | 
  | 
        kDist = simParam->getThermIntDistSpringConst(); | 
| 66 | 
chrisfen | 
43 | 
      } | 
| 67 | 
chrisfen | 
417 | 
      else{ | 
| 68 | 
chrisfen | 
666 | 
        kDist = simParam->getThermIntDistSpringConst(); | 
| 69 | 
chrisfen | 
417 | 
        sprintf(painCave.errMsg, | 
| 70 | 
  | 
  | 
                "ThermoIntegration Warning: the spring constant for the\n" | 
| 71 | 
  | 
  | 
                "\ttranslational restraint was not specified. OOPSE will use\n" | 
| 72 | 
  | 
  | 
                "\ta default value of %f. To set it to something else, use\n" | 
| 73 | 
  | 
  | 
                "\tthe thermIntDistSpringConst variable.\n", | 
| 74 | 
  | 
  | 
                kDist); | 
| 75 | 
  | 
  | 
        painCave.isFatal = 0; | 
| 76 | 
  | 
  | 
        simError();  | 
| 77 | 
chrisfen | 
43 | 
      } | 
| 78 | 
tim | 
665 | 
      if (simParam->haveThermIntThetaSpringConst()) { | 
| 79 | 
  | 
  | 
        kTheta = simParam->getThermIntThetaSpringConst(); | 
| 80 | 
chrisfen | 
43 | 
      } | 
| 81 | 
chrisfen | 
417 | 
      else{ | 
| 82 | 
chrisfen | 
666 | 
        kTheta = simParam->getThermIntThetaSpringConst(); | 
| 83 | 
chrisfen | 
417 | 
        sprintf(painCave.errMsg, | 
| 84 | 
  | 
  | 
                "ThermoIntegration Warning: the spring constant for the\n" | 
| 85 | 
  | 
  | 
                "\tdeflection orientational restraint was not specified.\n" | 
| 86 | 
  | 
  | 
                "\tOOPSE will use a default value of %f. To set it to\n" | 
| 87 | 
  | 
  | 
                "\tsomething else, use the thermIntThetaSpringConst variable.\n", | 
| 88 | 
  | 
  | 
                kTheta); | 
| 89 | 
  | 
  | 
        painCave.isFatal = 0; | 
| 90 | 
  | 
  | 
        simError();  | 
| 91 | 
chrisfen | 
43 | 
      } | 
| 92 | 
tim | 
665 | 
      if (simParam->haveThermIntOmegaSpringConst()) { | 
| 93 | 
  | 
  | 
        kOmega = simParam->getThermIntOmegaSpringConst(); | 
| 94 | 
chrisfen | 
417 | 
      } | 
| 95 | 
  | 
  | 
      else{ | 
| 96 | 
chrisfen | 
666 | 
        kOmega = simParam->getThermIntOmegaSpringConst(); | 
| 97 | 
chrisfen | 
417 | 
        sprintf(painCave.errMsg, | 
| 98 | 
  | 
  | 
                "ThermoIntegration Warning: the spring constant for the\n" | 
| 99 | 
  | 
  | 
                "\tspin orientational restraint was not specified. OOPSE\n" | 
| 100 | 
  | 
  | 
                "\twill use a default value of %f. To set it to something\n" | 
| 101 | 
  | 
  | 
                "\telse, use the thermIntOmegaSpringConst variable.\n", | 
| 102 | 
  | 
  | 
                kOmega); | 
| 103 | 
  | 
  | 
        painCave.isFatal = 0; | 
| 104 | 
  | 
  | 
        simError();  | 
| 105 | 
  | 
  | 
      } | 
| 106 | 
gezelter | 
2 | 
    } | 
| 107 | 
chrisfen | 
417 | 
     | 
| 108 | 
  | 
  | 
    // build a RestReader and read in important information | 
| 109 | 
chrisfen | 
431 | 
     | 
| 110 | 
chrisfen | 
417 | 
    restRead_ = new RestReader(info_); | 
| 111 | 
  | 
  | 
    restRead_->readIdealCrystal(); | 
| 112 | 
  | 
  | 
    restRead_->readZangle(); | 
| 113 | 
  | 
  | 
     | 
| 114 | 
  | 
  | 
    delete restRead_; | 
| 115 | 
  | 
  | 
    restRead_ = NULL; | 
| 116 | 
  | 
  | 
     | 
| 117 | 
gezelter | 
2 | 
  } | 
| 118 | 
  | 
  | 
   | 
| 119 | 
chrisfen | 
417 | 
  Restraints::~Restraints(){ | 
| 120 | 
  | 
  | 
  } | 
| 121 | 
gezelter | 
2 | 
   | 
| 122 | 
tim | 
963 | 
  void Restraints::Calc_rVal(Vector3d &position, RealType refPosition[3]){ | 
| 123 | 
chrisfen | 
417 | 
    delRx = position.x() - refPosition[0]; | 
| 124 | 
  | 
  | 
    delRy = position.y() - refPosition[1]; | 
| 125 | 
  | 
  | 
    delRz = position.z() - refPosition[2]; | 
| 126 | 
  | 
  | 
     | 
| 127 | 
  | 
  | 
    return; | 
| 128 | 
  | 
  | 
  } | 
| 129 | 
gezelter | 
2 | 
   | 
| 130 | 
tim | 
963 | 
  void Restraints::Calc_body_thetaVal(RotMat3x3d &matrix, RealType refUnit[3]){ | 
| 131 | 
chrisfen | 
417 | 
    ub0x = matrix(0,0)*refUnit[0] + matrix(0,1)*refUnit[1] | 
| 132 | 
gezelter | 
507 | 
      + matrix(0,2)*refUnit[2]; | 
| 133 | 
chrisfen | 
417 | 
    ub0y = matrix(1,0)*refUnit[0] + matrix(1,1)*refUnit[1] | 
| 134 | 
  | 
  | 
      + matrix(1,2)*refUnit[2]; | 
| 135 | 
  | 
  | 
    ub0z = matrix(2,0)*refUnit[0] + matrix(2,1)*refUnit[1] | 
| 136 | 
  | 
  | 
      + matrix(2,2)*refUnit[2]; | 
| 137 | 
  | 
  | 
     | 
| 138 | 
  | 
  | 
    normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); | 
| 139 | 
  | 
  | 
    ub0x = ub0x/normalize; | 
| 140 | 
  | 
  | 
    ub0y = ub0y/normalize; | 
| 141 | 
  | 
  | 
    ub0z = ub0z/normalize; | 
| 142 | 
  | 
  | 
     | 
| 143 | 
  | 
  | 
    // Theta is the dot product of the reference and new z-axes | 
| 144 | 
  | 
  | 
    theta = acos(ub0z); | 
| 145 | 
  | 
  | 
     | 
| 146 | 
  | 
  | 
    return; | 
| 147 | 
gezelter | 
2 | 
  } | 
| 148 | 
chrisfen | 
417 | 
   | 
| 149 | 
tim | 
963 | 
  void Restraints::Calc_body_omegaVal(RealType zAngle){ | 
| 150 | 
  | 
  | 
    RealType zRotator[3][3]; | 
| 151 | 
  | 
  | 
    RealType tempOmega; | 
| 152 | 
  | 
  | 
    RealType wholeTwoPis; | 
| 153 | 
chrisfen | 
417 | 
    // Use the omega accumulated from the rotation propagation | 
| 154 | 
  | 
  | 
    omega = zAngle; | 
| 155 | 
  | 
  | 
     | 
| 156 | 
  | 
  | 
    // translate the omega into a range between -PI and PI | 
| 157 | 
  | 
  | 
    if (omega < -PI){ | 
| 158 | 
  | 
  | 
      tempOmega = omega / -TWO_PI; | 
| 159 | 
  | 
  | 
      wholeTwoPis = floor(tempOmega); | 
| 160 | 
  | 
  | 
      tempOmega = omega + TWO_PI*wholeTwoPis; | 
| 161 | 
  | 
  | 
      if (tempOmega < -PI) | 
| 162 | 
  | 
  | 
        omega = tempOmega + TWO_PI; | 
| 163 | 
  | 
  | 
      else | 
| 164 | 
  | 
  | 
        omega = tempOmega; | 
| 165 | 
chrisfen | 
221 | 
    } | 
| 166 | 
chrisfen | 
417 | 
    if (omega > PI){ | 
| 167 | 
  | 
  | 
      tempOmega = omega / TWO_PI; | 
| 168 | 
  | 
  | 
      wholeTwoPis = floor(tempOmega); | 
| 169 | 
  | 
  | 
      tempOmega = omega - TWO_PI*wholeTwoPis; | 
| 170 | 
  | 
  | 
      if (tempOmega > PI) | 
| 171 | 
  | 
  | 
        omega = tempOmega - TWO_PI;    | 
| 172 | 
  | 
  | 
      else | 
| 173 | 
  | 
  | 
        omega = tempOmega; | 
| 174 | 
chrisfen | 
221 | 
    } | 
| 175 | 
  | 
  | 
     | 
| 176 | 
chrisfen | 
417 | 
    vb0x = sin(omega); | 
| 177 | 
  | 
  | 
    vb0y = cos(omega); | 
| 178 | 
  | 
  | 
    vb0z = 0.0; | 
| 179 | 
  | 
  | 
     | 
| 180 | 
  | 
  | 
    normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); | 
| 181 | 
  | 
  | 
    vb0x = vb0x/normalize; | 
| 182 | 
  | 
  | 
    vb0y = vb0y/normalize; | 
| 183 | 
  | 
  | 
    vb0z = vb0z/normalize; | 
| 184 | 
  | 
  | 
     | 
| 185 | 
  | 
  | 
    return; | 
| 186 | 
  | 
  | 
  } | 
| 187 | 
  | 
  | 
   | 
| 188 | 
tim | 
963 | 
  RealType Restraints::Calc_Restraint_Forces(){ | 
| 189 | 
chrisfen | 
417 | 
    SimInfo::MoleculeIterator mi; | 
| 190 | 
  | 
  | 
    Molecule* mol; | 
| 191 | 
  | 
  | 
    Molecule::IntegrableObjectIterator ii; | 
| 192 | 
  | 
  | 
    StuntDouble* integrableObject; | 
| 193 | 
  | 
  | 
    Vector3d pos; | 
| 194 | 
  | 
  | 
    RotMat3x3d A; | 
| 195 | 
tim | 
963 | 
    RealType refPos[3]; | 
| 196 | 
  | 
  | 
    RealType refVec[3]; | 
| 197 | 
  | 
  | 
    RealType tolerance; | 
| 198 | 
  | 
  | 
    RealType tempPotent; | 
| 199 | 
  | 
  | 
    RealType factor; | 
| 200 | 
  | 
  | 
    RealType spaceTrq[3]; | 
| 201 | 
  | 
  | 
    RealType omegaPass; | 
| 202 | 
chrisfen | 
417 | 
    GenericData* data; | 
| 203 | 
  | 
  | 
    DoubleGenericData* doubleData; | 
| 204 | 
  | 
  | 
     | 
| 205 | 
  | 
  | 
    tolerance = 5.72957795131e-7; | 
| 206 | 
  | 
  | 
     | 
| 207 | 
  | 
  | 
    harmPotent = 0.0;  // zero out the global harmonic potential variable | 
| 208 | 
  | 
  | 
     | 
| 209 | 
  | 
  | 
    factor = 1 - pow(lambdaValue, lambdaK); | 
| 210 | 
  | 
  | 
     | 
| 211 | 
  | 
  | 
    for (mol = info_->beginMolecule(mi); mol != NULL;  | 
| 212 | 
  | 
  | 
         mol = info_->nextMolecule(mi)) { | 
| 213 | 
  | 
  | 
      for (integrableObject = mol->beginIntegrableObject(ii);  | 
| 214 | 
  | 
  | 
           integrableObject != NULL;  | 
| 215 | 
  | 
  | 
           integrableObject = mol->nextIntegrableObject(ii)) { | 
| 216 | 
  | 
  | 
         | 
| 217 | 
  | 
  | 
        // obtain the current and reference positions | 
| 218 | 
  | 
  | 
        pos = integrableObject->getPos(); | 
| 219 | 
  | 
  | 
         | 
| 220 | 
  | 
  | 
        data = integrableObject->getPropertyByName("refPosX"); | 
| 221 | 
  | 
  | 
        if (data){ | 
| 222 | 
  | 
  | 
          doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 223 | 
  | 
  | 
          if (!doubleData){ | 
| 224 | 
  | 
  | 
            cerr << "Can't obtain refPosX from StuntDouble\n"; | 
| 225 | 
  | 
  | 
            return 0.0; | 
| 226 | 
  | 
  | 
          } | 
| 227 | 
  | 
  | 
          else refPos[0] = doubleData->getData(); | 
| 228 | 
  | 
  | 
        } | 
| 229 | 
  | 
  | 
        data = integrableObject->getPropertyByName("refPosY"); | 
| 230 | 
  | 
  | 
        if (data){ | 
| 231 | 
  | 
  | 
          doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 232 | 
  | 
  | 
          if (!doubleData){ | 
| 233 | 
  | 
  | 
            cerr << "Can't obtain refPosY from StuntDouble\n"; | 
| 234 | 
  | 
  | 
            return 0.0; | 
| 235 | 
  | 
  | 
          } | 
| 236 | 
  | 
  | 
          else refPos[1] = doubleData->getData(); | 
| 237 | 
  | 
  | 
        } | 
| 238 | 
  | 
  | 
        data = integrableObject->getPropertyByName("refPosZ"); | 
| 239 | 
  | 
  | 
        if (data){ | 
| 240 | 
  | 
  | 
          doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 241 | 
  | 
  | 
          if (!doubleData){ | 
| 242 | 
  | 
  | 
            cerr << "Can't obtain refPosZ from StuntDouble\n"; | 
| 243 | 
  | 
  | 
            return 0.0; | 
| 244 | 
  | 
  | 
          } | 
| 245 | 
  | 
  | 
          else refPos[2] = doubleData->getData(); | 
| 246 | 
  | 
  | 
        } | 
| 247 | 
  | 
  | 
         | 
| 248 | 
  | 
  | 
        // calculate the displacement | 
| 249 | 
  | 
  | 
        Calc_rVal( pos, refPos ); | 
| 250 | 
  | 
  | 
         | 
| 251 | 
  | 
  | 
        // calculate the derivatives | 
| 252 | 
  | 
  | 
        dVdrx = -kDist*delRx; | 
| 253 | 
  | 
  | 
        dVdry = -kDist*delRy; | 
| 254 | 
  | 
  | 
        dVdrz = -kDist*delRz; | 
| 255 | 
  | 
  | 
         | 
| 256 | 
  | 
  | 
        // next we calculate the restraint forces | 
| 257 | 
  | 
  | 
        restraintFrc[0] = dVdrx; | 
| 258 | 
  | 
  | 
        restraintFrc[1] = dVdry; | 
| 259 | 
  | 
  | 
        restraintFrc[2] = dVdrz; | 
| 260 | 
  | 
  | 
        tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); | 
| 261 | 
  | 
  | 
         | 
| 262 | 
  | 
  | 
        // apply the lambda scaling factor to the forces | 
| 263 | 
  | 
  | 
        for (j = 0; j < 3; j++) restraintFrc[j] *= factor; | 
| 264 | 
  | 
  | 
         | 
| 265 | 
  | 
  | 
        // and add the temporary force to the total force | 
| 266 | 
  | 
  | 
        integrableObject->addFrc(restraintFrc); | 
| 267 | 
  | 
  | 
         | 
| 268 | 
  | 
  | 
        // if the particle is directional, we accumulate the rot. restraints | 
| 269 | 
  | 
  | 
        if (integrableObject->isDirectional()){ | 
| 270 | 
  | 
  | 
           | 
| 271 | 
  | 
  | 
          // get the current rotation matrix and reference vector | 
| 272 | 
  | 
  | 
          A = integrableObject->getA(); | 
| 273 | 
  | 
  | 
           | 
| 274 | 
  | 
  | 
          data = integrableObject->getPropertyByName("refVectorX"); | 
| 275 | 
  | 
  | 
          if (data){ | 
| 276 | 
  | 
  | 
            doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 277 | 
  | 
  | 
            if (!doubleData){ | 
| 278 | 
  | 
  | 
              cerr << "Can't obtain refVectorX from StuntDouble\n"; | 
| 279 | 
  | 
  | 
              return 0.0; | 
| 280 | 
  | 
  | 
            } | 
| 281 | 
  | 
  | 
            else refVec[0] = doubleData->getData(); | 
| 282 | 
  | 
  | 
          } | 
| 283 | 
  | 
  | 
          data = integrableObject->getPropertyByName("refVectorY"); | 
| 284 | 
  | 
  | 
          if (data){ | 
| 285 | 
  | 
  | 
            doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 286 | 
  | 
  | 
            if (!doubleData){ | 
| 287 | 
  | 
  | 
              cerr << "Can't obtain refVectorY from StuntDouble\n"; | 
| 288 | 
  | 
  | 
              return 0.0; | 
| 289 | 
  | 
  | 
            } | 
| 290 | 
  | 
  | 
            else refVec[1] = doubleData->getData(); | 
| 291 | 
  | 
  | 
          } | 
| 292 | 
  | 
  | 
          data = integrableObject->getPropertyByName("refVectorZ"); | 
| 293 | 
  | 
  | 
          if (data){ | 
| 294 | 
  | 
  | 
            doubleData = dynamic_cast<DoubleGenericData*>(data); | 
| 295 | 
  | 
  | 
            if (!doubleData){ | 
| 296 | 
  | 
  | 
              cerr << "Can't obtain refVectorZ from StuntDouble\n"; | 
| 297 | 
  | 
  | 
              return 0.0; | 
| 298 | 
  | 
  | 
            } | 
| 299 | 
  | 
  | 
            else refVec[2] = doubleData->getData(); | 
| 300 | 
  | 
  | 
          } | 
| 301 | 
  | 
  | 
           | 
| 302 | 
  | 
  | 
          // calculate the theta and omega displacements | 
| 303 | 
  | 
  | 
          Calc_body_thetaVal( A, refVec ); | 
| 304 | 
  | 
  | 
          omegaPass = integrableObject->getZangle(); | 
| 305 | 
  | 
  | 
          Calc_body_omegaVal( omegaPass ); | 
| 306 | 
  | 
  | 
           | 
| 307 | 
  | 
  | 
          // uTx... and vTx... are the body-fixed z and y unit vectors | 
| 308 | 
  | 
  | 
          uTx = 0.0; | 
| 309 | 
  | 
  | 
          uTy = 0.0; | 
| 310 | 
  | 
  | 
          uTz = 1.0; | 
| 311 | 
  | 
  | 
          vTx = 0.0; | 
| 312 | 
  | 
  | 
          vTy = 1.0; | 
| 313 | 
  | 
  | 
          vTz = 0.0; | 
| 314 | 
  | 
  | 
           | 
| 315 | 
  | 
  | 
          dVdux = 0.0; | 
| 316 | 
  | 
  | 
          dVduy = 0.0; | 
| 317 | 
  | 
  | 
          dVduz = 0.0; | 
| 318 | 
  | 
  | 
          dVdvx = 0.0; | 
| 319 | 
  | 
  | 
          dVdvy = 0.0; | 
| 320 | 
  | 
  | 
          dVdvz = 0.0; | 
| 321 | 
  | 
  | 
           | 
| 322 | 
  | 
  | 
          if (fabs(theta) > tolerance) { | 
| 323 | 
  | 
  | 
            dVdux = -(kTheta*theta/sin(theta))*ub0x; | 
| 324 | 
  | 
  | 
            dVduy = -(kTheta*theta/sin(theta))*ub0y; | 
| 325 | 
  | 
  | 
            dVduz = -(kTheta*theta/sin(theta))*ub0z; | 
| 326 | 
  | 
  | 
          } | 
| 327 | 
  | 
  | 
           | 
| 328 | 
  | 
  | 
          if (fabs(omega) > tolerance) { | 
| 329 | 
  | 
  | 
            dVdvx = -(kOmega*omega/sin(omega))*vb0x; | 
| 330 | 
  | 
  | 
            dVdvy = -(kOmega*omega/sin(omega))*vb0y; | 
| 331 | 
  | 
  | 
            dVdvz = -(kOmega*omega/sin(omega))*vb0z; | 
| 332 | 
  | 
  | 
          } | 
| 333 | 
  | 
  | 
           | 
| 334 | 
  | 
  | 
          // next we calculate the restraint torques | 
| 335 | 
  | 
  | 
          restraintTrq[0] = 0.0; | 
| 336 | 
  | 
  | 
          restraintTrq[1] = 0.0; | 
| 337 | 
  | 
  | 
          restraintTrq[2] = 0.0; | 
| 338 | 
  | 
  | 
           | 
| 339 | 
  | 
  | 
          if (fabs(omega) > tolerance) { | 
| 340 | 
  | 
  | 
            restraintTrq[0] += 0.0; | 
| 341 | 
  | 
  | 
            restraintTrq[1] += 0.0; | 
| 342 | 
  | 
  | 
            restraintTrq[2] += vTy*dVdvx; | 
| 343 | 
  | 
  | 
            tempPotent += 0.5*(kOmega*omega*omega); | 
| 344 | 
  | 
  | 
          } | 
| 345 | 
  | 
  | 
          if (fabs(theta) > tolerance) { | 
| 346 | 
  | 
  | 
            restraintTrq[0] += (uTz*dVduy); | 
| 347 | 
  | 
  | 
            restraintTrq[1] += -(uTz*dVdux); | 
| 348 | 
  | 
  | 
            restraintTrq[2] += 0.0; | 
| 349 | 
  | 
  | 
            tempPotent += 0.5*(kTheta*theta*theta); | 
| 350 | 
  | 
  | 
          } | 
| 351 | 
  | 
  | 
           | 
| 352 | 
  | 
  | 
          // apply the lambda scaling factor to these torques | 
| 353 | 
  | 
  | 
          for (j = 0; j < 3; j++) restraintTrq[j] *= factor; | 
| 354 | 
  | 
  | 
           | 
| 355 | 
  | 
  | 
          // now we need to convert from body-fixed to space-fixed torques | 
| 356 | 
  | 
  | 
          spaceTrq[0] = A(0,0)*restraintTrq[0] + A(1,0)*restraintTrq[1]  | 
| 357 | 
  | 
  | 
            + A(2,0)*restraintTrq[2]; | 
| 358 | 
  | 
  | 
          spaceTrq[1] = A(0,1)*restraintTrq[0] + A(1,1)*restraintTrq[1]  | 
| 359 | 
  | 
  | 
            + A(2,1)*restraintTrq[2]; | 
| 360 | 
  | 
  | 
          spaceTrq[2] = A(0,2)*restraintTrq[0] + A(1,2)*restraintTrq[1]  | 
| 361 | 
  | 
  | 
            + A(2,2)*restraintTrq[2]; | 
| 362 | 
  | 
  | 
           | 
| 363 | 
  | 
  | 
          // now pass this temporary torque vector to the total torque | 
| 364 | 
  | 
  | 
          integrableObject->addTrq(spaceTrq); | 
| 365 | 
  | 
  | 
        } | 
| 366 | 
  | 
  | 
         | 
| 367 | 
  | 
  | 
        // update the total harmonic potential with this object's contribution | 
| 368 | 
  | 
  | 
        harmPotent += tempPotent; | 
| 369 | 
chrisfen | 
221 | 
      } | 
| 370 | 
  | 
  | 
       | 
| 371 | 
gezelter | 
2 | 
    } | 
| 372 | 
chrisfen | 
417 | 
     | 
| 373 | 
  | 
  | 
    // we can finish by returning the appropriately scaled potential energy | 
| 374 | 
  | 
  | 
    tempPotent = harmPotent * factor; | 
| 375 | 
  | 
  | 
     | 
| 376 | 
  | 
  | 
    return tempPotent; | 
| 377 | 
  | 
  | 
     | 
| 378 | 
gezelter | 
2 | 
  } | 
| 379 | 
chrisfen | 
221 | 
   | 
| 380 | 
chrisfen | 
417 | 
}// end namespace oopse |