1 |
gezelter |
507 |
/* |
2 |
chrisfen |
417 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
chrisfen |
43 |
|
42 |
gezelter |
2 |
#include <stdlib.h> |
43 |
|
|
#include <math.h> |
44 |
|
|
|
45 |
|
|
using namespace std; |
46 |
|
|
|
47 |
gezelter |
46 |
#include "restraints/Restraints.hpp" |
48 |
chrisfen |
417 |
#include "primitives/Molecule.hpp" |
49 |
gezelter |
46 |
#include "utils/simError.h" |
50 |
gezelter |
2 |
|
51 |
|
|
#define PI 3.14159265359 |
52 |
|
|
#define TWO_PI 6.28318530718 |
53 |
|
|
|
54 |
chrisfen |
417 |
namespace oopse { |
55 |
|
|
|
56 |
tim |
963 |
Restraints::Restraints(SimInfo* info, RealType lambdaVal, RealType lambdaExp){ |
57 |
chrisfen |
417 |
info_ = info; |
58 |
|
|
Globals* simParam = info_->getSimParams(); |
59 |
gezelter |
2 |
|
60 |
chrisfen |
417 |
lambdaValue = lambdaVal; |
61 |
|
|
lambdaK = lambdaExp; |
62 |
gezelter |
2 |
|
63 |
chrisfen |
417 |
if (simParam->getUseSolidThermInt()) { |
64 |
tim |
665 |
if (simParam->haveThermIntDistSpringConst()) { |
65 |
|
|
kDist = simParam->getThermIntDistSpringConst(); |
66 |
chrisfen |
43 |
} |
67 |
chrisfen |
417 |
else{ |
68 |
chrisfen |
666 |
kDist = simParam->getThermIntDistSpringConst(); |
69 |
chrisfen |
417 |
sprintf(painCave.errMsg, |
70 |
|
|
"ThermoIntegration Warning: the spring constant for the\n" |
71 |
|
|
"\ttranslational restraint was not specified. OOPSE will use\n" |
72 |
|
|
"\ta default value of %f. To set it to something else, use\n" |
73 |
|
|
"\tthe thermIntDistSpringConst variable.\n", |
74 |
|
|
kDist); |
75 |
|
|
painCave.isFatal = 0; |
76 |
|
|
simError(); |
77 |
chrisfen |
43 |
} |
78 |
tim |
665 |
if (simParam->haveThermIntThetaSpringConst()) { |
79 |
|
|
kTheta = simParam->getThermIntThetaSpringConst(); |
80 |
chrisfen |
43 |
} |
81 |
chrisfen |
417 |
else{ |
82 |
chrisfen |
666 |
kTheta = simParam->getThermIntThetaSpringConst(); |
83 |
chrisfen |
417 |
sprintf(painCave.errMsg, |
84 |
|
|
"ThermoIntegration Warning: the spring constant for the\n" |
85 |
|
|
"\tdeflection orientational restraint was not specified.\n" |
86 |
|
|
"\tOOPSE will use a default value of %f. To set it to\n" |
87 |
|
|
"\tsomething else, use the thermIntThetaSpringConst variable.\n", |
88 |
|
|
kTheta); |
89 |
|
|
painCave.isFatal = 0; |
90 |
|
|
simError(); |
91 |
chrisfen |
43 |
} |
92 |
tim |
665 |
if (simParam->haveThermIntOmegaSpringConst()) { |
93 |
|
|
kOmega = simParam->getThermIntOmegaSpringConst(); |
94 |
chrisfen |
417 |
} |
95 |
|
|
else{ |
96 |
chrisfen |
666 |
kOmega = simParam->getThermIntOmegaSpringConst(); |
97 |
chrisfen |
417 |
sprintf(painCave.errMsg, |
98 |
|
|
"ThermoIntegration Warning: the spring constant for the\n" |
99 |
|
|
"\tspin orientational restraint was not specified. OOPSE\n" |
100 |
|
|
"\twill use a default value of %f. To set it to something\n" |
101 |
|
|
"\telse, use the thermIntOmegaSpringConst variable.\n", |
102 |
|
|
kOmega); |
103 |
|
|
painCave.isFatal = 0; |
104 |
|
|
simError(); |
105 |
|
|
} |
106 |
gezelter |
2 |
} |
107 |
chrisfen |
417 |
|
108 |
|
|
// build a RestReader and read in important information |
109 |
chrisfen |
431 |
|
110 |
chrisfen |
417 |
restRead_ = new RestReader(info_); |
111 |
|
|
restRead_->readIdealCrystal(); |
112 |
|
|
restRead_->readZangle(); |
113 |
|
|
|
114 |
|
|
delete restRead_; |
115 |
|
|
restRead_ = NULL; |
116 |
|
|
|
117 |
gezelter |
2 |
} |
118 |
|
|
|
119 |
chrisfen |
417 |
Restraints::~Restraints(){ |
120 |
|
|
} |
121 |
gezelter |
2 |
|
122 |
tim |
963 |
void Restraints::Calc_rVal(Vector3d &position, RealType refPosition[3]){ |
123 |
chrisfen |
417 |
delRx = position.x() - refPosition[0]; |
124 |
|
|
delRy = position.y() - refPosition[1]; |
125 |
|
|
delRz = position.z() - refPosition[2]; |
126 |
|
|
|
127 |
|
|
return; |
128 |
|
|
} |
129 |
gezelter |
2 |
|
130 |
tim |
963 |
void Restraints::Calc_body_thetaVal(RotMat3x3d &matrix, RealType refUnit[3]){ |
131 |
chrisfen |
417 |
ub0x = matrix(0,0)*refUnit[0] + matrix(0,1)*refUnit[1] |
132 |
gezelter |
507 |
+ matrix(0,2)*refUnit[2]; |
133 |
chrisfen |
417 |
ub0y = matrix(1,0)*refUnit[0] + matrix(1,1)*refUnit[1] |
134 |
|
|
+ matrix(1,2)*refUnit[2]; |
135 |
|
|
ub0z = matrix(2,0)*refUnit[0] + matrix(2,1)*refUnit[1] |
136 |
|
|
+ matrix(2,2)*refUnit[2]; |
137 |
|
|
|
138 |
|
|
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
139 |
|
|
ub0x = ub0x/normalize; |
140 |
|
|
ub0y = ub0y/normalize; |
141 |
|
|
ub0z = ub0z/normalize; |
142 |
|
|
|
143 |
|
|
// Theta is the dot product of the reference and new z-axes |
144 |
|
|
theta = acos(ub0z); |
145 |
|
|
|
146 |
|
|
return; |
147 |
gezelter |
2 |
} |
148 |
chrisfen |
417 |
|
149 |
tim |
963 |
void Restraints::Calc_body_omegaVal(RealType zAngle){ |
150 |
|
|
RealType zRotator[3][3]; |
151 |
|
|
RealType tempOmega; |
152 |
|
|
RealType wholeTwoPis; |
153 |
chrisfen |
417 |
// Use the omega accumulated from the rotation propagation |
154 |
|
|
omega = zAngle; |
155 |
|
|
|
156 |
|
|
// translate the omega into a range between -PI and PI |
157 |
|
|
if (omega < -PI){ |
158 |
|
|
tempOmega = omega / -TWO_PI; |
159 |
|
|
wholeTwoPis = floor(tempOmega); |
160 |
|
|
tempOmega = omega + TWO_PI*wholeTwoPis; |
161 |
|
|
if (tempOmega < -PI) |
162 |
|
|
omega = tempOmega + TWO_PI; |
163 |
|
|
else |
164 |
|
|
omega = tempOmega; |
165 |
chrisfen |
221 |
} |
166 |
chrisfen |
417 |
if (omega > PI){ |
167 |
|
|
tempOmega = omega / TWO_PI; |
168 |
|
|
wholeTwoPis = floor(tempOmega); |
169 |
|
|
tempOmega = omega - TWO_PI*wholeTwoPis; |
170 |
|
|
if (tempOmega > PI) |
171 |
|
|
omega = tempOmega - TWO_PI; |
172 |
|
|
else |
173 |
|
|
omega = tempOmega; |
174 |
chrisfen |
221 |
} |
175 |
|
|
|
176 |
chrisfen |
417 |
vb0x = sin(omega); |
177 |
|
|
vb0y = cos(omega); |
178 |
|
|
vb0z = 0.0; |
179 |
|
|
|
180 |
|
|
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
181 |
|
|
vb0x = vb0x/normalize; |
182 |
|
|
vb0y = vb0y/normalize; |
183 |
|
|
vb0z = vb0z/normalize; |
184 |
|
|
|
185 |
|
|
return; |
186 |
|
|
} |
187 |
|
|
|
188 |
tim |
963 |
RealType Restraints::Calc_Restraint_Forces(){ |
189 |
chrisfen |
417 |
SimInfo::MoleculeIterator mi; |
190 |
|
|
Molecule* mol; |
191 |
|
|
Molecule::IntegrableObjectIterator ii; |
192 |
|
|
StuntDouble* integrableObject; |
193 |
|
|
Vector3d pos; |
194 |
|
|
RotMat3x3d A; |
195 |
tim |
963 |
RealType refPos[3]; |
196 |
|
|
RealType refVec[3]; |
197 |
|
|
RealType tolerance; |
198 |
|
|
RealType tempPotent; |
199 |
|
|
RealType factor; |
200 |
|
|
RealType spaceTrq[3]; |
201 |
|
|
RealType omegaPass; |
202 |
chrisfen |
417 |
GenericData* data; |
203 |
|
|
DoubleGenericData* doubleData; |
204 |
|
|
|
205 |
|
|
tolerance = 5.72957795131e-7; |
206 |
|
|
|
207 |
|
|
harmPotent = 0.0; // zero out the global harmonic potential variable |
208 |
|
|
|
209 |
|
|
factor = 1 - pow(lambdaValue, lambdaK); |
210 |
|
|
|
211 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
212 |
|
|
mol = info_->nextMolecule(mi)) { |
213 |
|
|
for (integrableObject = mol->beginIntegrableObject(ii); |
214 |
|
|
integrableObject != NULL; |
215 |
|
|
integrableObject = mol->nextIntegrableObject(ii)) { |
216 |
|
|
|
217 |
|
|
// obtain the current and reference positions |
218 |
|
|
pos = integrableObject->getPos(); |
219 |
|
|
|
220 |
|
|
data = integrableObject->getPropertyByName("refPosX"); |
221 |
|
|
if (data){ |
222 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
223 |
|
|
if (!doubleData){ |
224 |
|
|
cerr << "Can't obtain refPosX from StuntDouble\n"; |
225 |
|
|
return 0.0; |
226 |
|
|
} |
227 |
|
|
else refPos[0] = doubleData->getData(); |
228 |
|
|
} |
229 |
|
|
data = integrableObject->getPropertyByName("refPosY"); |
230 |
|
|
if (data){ |
231 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
232 |
|
|
if (!doubleData){ |
233 |
|
|
cerr << "Can't obtain refPosY from StuntDouble\n"; |
234 |
|
|
return 0.0; |
235 |
|
|
} |
236 |
|
|
else refPos[1] = doubleData->getData(); |
237 |
|
|
} |
238 |
|
|
data = integrableObject->getPropertyByName("refPosZ"); |
239 |
|
|
if (data){ |
240 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
241 |
|
|
if (!doubleData){ |
242 |
|
|
cerr << "Can't obtain refPosZ from StuntDouble\n"; |
243 |
|
|
return 0.0; |
244 |
|
|
} |
245 |
|
|
else refPos[2] = doubleData->getData(); |
246 |
|
|
} |
247 |
|
|
|
248 |
|
|
// calculate the displacement |
249 |
|
|
Calc_rVal( pos, refPos ); |
250 |
|
|
|
251 |
|
|
// calculate the derivatives |
252 |
|
|
dVdrx = -kDist*delRx; |
253 |
|
|
dVdry = -kDist*delRy; |
254 |
|
|
dVdrz = -kDist*delRz; |
255 |
|
|
|
256 |
|
|
// next we calculate the restraint forces |
257 |
|
|
restraintFrc[0] = dVdrx; |
258 |
|
|
restraintFrc[1] = dVdry; |
259 |
|
|
restraintFrc[2] = dVdrz; |
260 |
|
|
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
261 |
|
|
|
262 |
|
|
// apply the lambda scaling factor to the forces |
263 |
|
|
for (j = 0; j < 3; j++) restraintFrc[j] *= factor; |
264 |
|
|
|
265 |
|
|
// and add the temporary force to the total force |
266 |
|
|
integrableObject->addFrc(restraintFrc); |
267 |
|
|
|
268 |
|
|
// if the particle is directional, we accumulate the rot. restraints |
269 |
|
|
if (integrableObject->isDirectional()){ |
270 |
|
|
|
271 |
|
|
// get the current rotation matrix and reference vector |
272 |
|
|
A = integrableObject->getA(); |
273 |
|
|
|
274 |
|
|
data = integrableObject->getPropertyByName("refVectorX"); |
275 |
|
|
if (data){ |
276 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
277 |
|
|
if (!doubleData){ |
278 |
|
|
cerr << "Can't obtain refVectorX from StuntDouble\n"; |
279 |
|
|
return 0.0; |
280 |
|
|
} |
281 |
|
|
else refVec[0] = doubleData->getData(); |
282 |
|
|
} |
283 |
|
|
data = integrableObject->getPropertyByName("refVectorY"); |
284 |
|
|
if (data){ |
285 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
286 |
|
|
if (!doubleData){ |
287 |
|
|
cerr << "Can't obtain refVectorY from StuntDouble\n"; |
288 |
|
|
return 0.0; |
289 |
|
|
} |
290 |
|
|
else refVec[1] = doubleData->getData(); |
291 |
|
|
} |
292 |
|
|
data = integrableObject->getPropertyByName("refVectorZ"); |
293 |
|
|
if (data){ |
294 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
295 |
|
|
if (!doubleData){ |
296 |
|
|
cerr << "Can't obtain refVectorZ from StuntDouble\n"; |
297 |
|
|
return 0.0; |
298 |
|
|
} |
299 |
|
|
else refVec[2] = doubleData->getData(); |
300 |
|
|
} |
301 |
|
|
|
302 |
|
|
// calculate the theta and omega displacements |
303 |
|
|
Calc_body_thetaVal( A, refVec ); |
304 |
|
|
omegaPass = integrableObject->getZangle(); |
305 |
|
|
Calc_body_omegaVal( omegaPass ); |
306 |
|
|
|
307 |
|
|
// uTx... and vTx... are the body-fixed z and y unit vectors |
308 |
|
|
uTx = 0.0; |
309 |
|
|
uTy = 0.0; |
310 |
|
|
uTz = 1.0; |
311 |
|
|
vTx = 0.0; |
312 |
|
|
vTy = 1.0; |
313 |
|
|
vTz = 0.0; |
314 |
|
|
|
315 |
|
|
dVdux = 0.0; |
316 |
|
|
dVduy = 0.0; |
317 |
|
|
dVduz = 0.0; |
318 |
|
|
dVdvx = 0.0; |
319 |
|
|
dVdvy = 0.0; |
320 |
|
|
dVdvz = 0.0; |
321 |
|
|
|
322 |
|
|
if (fabs(theta) > tolerance) { |
323 |
|
|
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
324 |
|
|
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
325 |
|
|
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
326 |
|
|
} |
327 |
|
|
|
328 |
|
|
if (fabs(omega) > tolerance) { |
329 |
|
|
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
330 |
|
|
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
331 |
|
|
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
332 |
|
|
} |
333 |
|
|
|
334 |
|
|
// next we calculate the restraint torques |
335 |
|
|
restraintTrq[0] = 0.0; |
336 |
|
|
restraintTrq[1] = 0.0; |
337 |
|
|
restraintTrq[2] = 0.0; |
338 |
|
|
|
339 |
|
|
if (fabs(omega) > tolerance) { |
340 |
|
|
restraintTrq[0] += 0.0; |
341 |
|
|
restraintTrq[1] += 0.0; |
342 |
|
|
restraintTrq[2] += vTy*dVdvx; |
343 |
|
|
tempPotent += 0.5*(kOmega*omega*omega); |
344 |
|
|
} |
345 |
|
|
if (fabs(theta) > tolerance) { |
346 |
|
|
restraintTrq[0] += (uTz*dVduy); |
347 |
|
|
restraintTrq[1] += -(uTz*dVdux); |
348 |
|
|
restraintTrq[2] += 0.0; |
349 |
|
|
tempPotent += 0.5*(kTheta*theta*theta); |
350 |
|
|
} |
351 |
|
|
|
352 |
|
|
// apply the lambda scaling factor to these torques |
353 |
|
|
for (j = 0; j < 3; j++) restraintTrq[j] *= factor; |
354 |
|
|
|
355 |
|
|
// now we need to convert from body-fixed to space-fixed torques |
356 |
|
|
spaceTrq[0] = A(0,0)*restraintTrq[0] + A(1,0)*restraintTrq[1] |
357 |
|
|
+ A(2,0)*restraintTrq[2]; |
358 |
|
|
spaceTrq[1] = A(0,1)*restraintTrq[0] + A(1,1)*restraintTrq[1] |
359 |
|
|
+ A(2,1)*restraintTrq[2]; |
360 |
|
|
spaceTrq[2] = A(0,2)*restraintTrq[0] + A(1,2)*restraintTrq[1] |
361 |
|
|
+ A(2,2)*restraintTrq[2]; |
362 |
|
|
|
363 |
|
|
// now pass this temporary torque vector to the total torque |
364 |
|
|
integrableObject->addTrq(spaceTrq); |
365 |
|
|
} |
366 |
|
|
|
367 |
|
|
// update the total harmonic potential with this object's contribution |
368 |
|
|
harmPotent += tempPotent; |
369 |
chrisfen |
221 |
} |
370 |
|
|
|
371 |
gezelter |
2 |
} |
372 |
chrisfen |
417 |
|
373 |
|
|
// we can finish by returning the appropriately scaled potential energy |
374 |
|
|
tempPotent = harmPotent * factor; |
375 |
|
|
|
376 |
|
|
return tempPotent; |
377 |
|
|
|
378 |
gezelter |
2 |
} |
379 |
chrisfen |
221 |
|
380 |
chrisfen |
417 |
}// end namespace oopse |