1 |
chrisfen |
43 |
// Thermodynamic integration is not multiprocessor friendly right now |
2 |
|
|
|
3 |
gezelter |
2 |
#include <iostream> |
4 |
|
|
#include <stdlib.h> |
5 |
|
|
#include <cstdio> |
6 |
|
|
#include <fstream> |
7 |
|
|
#include <iomanip> |
8 |
|
|
#include <string> |
9 |
|
|
#include <cstring> |
10 |
|
|
#include <math.h> |
11 |
|
|
|
12 |
|
|
using namespace std; |
13 |
|
|
|
14 |
gezelter |
46 |
#include "restraints/Restraints.hpp" |
15 |
|
|
#include "brains/SimInfo.hpp" |
16 |
|
|
#include "utils/simError.h" |
17 |
chrisfen |
215 |
#include "io/basic_ifstrstream.hpp" |
18 |
gezelter |
2 |
|
19 |
chrisfen |
221 |
#ifdef IS_MPI |
20 |
|
|
#include<mpi.h> |
21 |
|
|
#include "brains/mpiSimulation.hpp" |
22 |
|
|
#endif // is_mpi |
23 |
|
|
|
24 |
gezelter |
2 |
#define PI 3.14159265359 |
25 |
|
|
#define TWO_PI 6.28318530718 |
26 |
|
|
|
27 |
|
|
Restraints::Restraints(double lambdaVal, double lambdaExp){ |
28 |
|
|
lambdaValue = lambdaVal; |
29 |
|
|
lambdaK = lambdaExp; |
30 |
chrisfen |
43 |
vector<double> resConsts; |
31 |
gezelter |
2 |
const char *jolt = " \t\n;,"; |
32 |
|
|
|
33 |
|
|
#ifdef IS_MPI |
34 |
|
|
if(worldRank == 0 ){ |
35 |
|
|
#endif // is_mpi |
36 |
|
|
|
37 |
|
|
strcpy(springName, "HarmSpringConsts.txt"); |
38 |
|
|
|
39 |
|
|
ifstream springs(springName); |
40 |
|
|
|
41 |
|
|
if (!springs) { |
42 |
|
|
sprintf(painCave.errMsg, |
43 |
chrisfen |
43 |
"Unable to open HarmSpringConsts.txt for reading, so the\n" |
44 |
|
|
"\tdefault spring constants will be loaded. If you want\n" |
45 |
|
|
"\tto specify spring constants, include a three line\n" |
46 |
|
|
"\tHarmSpringConsts.txt file in the execution directory.\n"); |
47 |
gezelter |
2 |
painCave.severity = OOPSE_WARNING; |
48 |
|
|
painCave.isFatal = 0; |
49 |
|
|
simError(); |
50 |
|
|
|
51 |
|
|
// load default spring constants |
52 |
|
|
kDist = 6; // spring constant in units of kcal/(mol*ang^2) |
53 |
|
|
kTheta = 7.5; // in units of kcal/mol |
54 |
|
|
kOmega = 13.5; // in units of kcal/mol |
55 |
|
|
} else { |
56 |
|
|
|
57 |
|
|
springs.getline(inLine,999,'\n'); |
58 |
chrisfen |
43 |
// the file is blank! |
59 |
|
|
if (springs.eof()){ |
60 |
|
|
sprintf(painCave.errMsg, |
61 |
|
|
"HarmSpringConsts.txt file is not valid.\n" |
62 |
|
|
"\tThe file should contain four rows, the last three containing\n" |
63 |
|
|
"\ta label and the spring constant value. They should be listed\n" |
64 |
|
|
"\tin the following order: kDist (positional restrant), kTheta\n" |
65 |
|
|
"\t(rot. restraint: deflection of z-axis), and kOmega (rot.\n" |
66 |
|
|
"\trestraint: rotation about the z-axis).\n"); |
67 |
|
|
painCave.severity = OOPSE_ERROR; |
68 |
|
|
painCave.isFatal = 1; |
69 |
|
|
simError(); |
70 |
|
|
} |
71 |
|
|
// read in spring constants and check to make sure it is a valid file |
72 |
gezelter |
2 |
springs.getline(inLine,999,'\n'); |
73 |
chrisfen |
43 |
while (!springs.eof()){ |
74 |
|
|
if (NULL != inLine){ |
75 |
|
|
token = strtok(inLine,jolt); |
76 |
|
|
token = strtok(NULL,jolt); |
77 |
|
|
if (NULL != token){ |
78 |
|
|
strcpy(inValue,token); |
79 |
|
|
resConsts.push_back(atof(inValue)); |
80 |
|
|
} |
81 |
|
|
} |
82 |
|
|
springs.getline(inLine,999,'\n'); |
83 |
|
|
} |
84 |
|
|
if (resConsts.size() == 3){ |
85 |
|
|
kDist = resConsts[0]; |
86 |
|
|
kTheta = resConsts[1]; |
87 |
|
|
kOmega = resConsts[2]; |
88 |
|
|
} |
89 |
|
|
else { |
90 |
|
|
sprintf(painCave.errMsg, |
91 |
|
|
"HarmSpringConsts.txt file is not valid.\n" |
92 |
|
|
"\tThe file should contain four rows, the last three containing\n" |
93 |
|
|
"\ta label and the spring constant value. They should be listed\n" |
94 |
|
|
"\tin the following order: kDist (positional restrant), kTheta\n" |
95 |
|
|
"\t(rot. restraint: deflection of z-axis), and kOmega (rot.\n" |
96 |
|
|
"\trestraint: rotation about the z-axis).\n"); |
97 |
|
|
painCave.severity = OOPSE_ERROR; |
98 |
|
|
painCave.isFatal = 1; |
99 |
|
|
simError(); |
100 |
|
|
} |
101 |
gezelter |
2 |
} |
102 |
|
|
#ifdef IS_MPI |
103 |
|
|
} |
104 |
|
|
|
105 |
|
|
MPI_Bcast(&kDist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
106 |
|
|
MPI_Bcast(&kTheta, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
107 |
|
|
MPI_Bcast(&kOmega, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
108 |
|
|
|
109 |
|
|
sprintf( checkPointMsg, |
110 |
|
|
"Sucessfully opened and read spring file.\n"); |
111 |
|
|
MPIcheckPoint(); |
112 |
|
|
|
113 |
|
|
#endif // is_mpi |
114 |
|
|
|
115 |
|
|
sprintf(painCave.errMsg, |
116 |
|
|
"The spring constants for thermodynamic integration are:\n" |
117 |
|
|
"\tkDist = %lf\n" |
118 |
|
|
"\tkTheta = %lf\n" |
119 |
|
|
"\tkOmega = %lf\n", kDist, kTheta, kOmega); |
120 |
|
|
painCave.severity = OOPSE_INFO; |
121 |
|
|
painCave.isFatal = 0; |
122 |
|
|
simError(); |
123 |
|
|
} |
124 |
|
|
|
125 |
|
|
Restraints::~Restraints(){ |
126 |
|
|
} |
127 |
|
|
|
128 |
chrisfen |
221 |
void Restraints::Calc_rVal(double position[3], double refPosition[3]){ |
129 |
|
|
delRx = position[0] - refPosition[0]; |
130 |
|
|
delRy = position[1] - refPosition[1]; |
131 |
|
|
delRz = position[2] - refPosition[2]; |
132 |
gezelter |
2 |
|
133 |
|
|
return; |
134 |
|
|
} |
135 |
|
|
|
136 |
chrisfen |
221 |
void Restraints::Calc_body_thetaVal(double matrix[3][3], double refUnit[3]){ |
137 |
|
|
ub0x = matrix[0][0]*refUnit[0] + matrix[0][1]*refUnit[1] |
138 |
|
|
+ matrix[0][2]*refUnit[2]; |
139 |
|
|
ub0y = matrix[1][0]*refUnit[0] + matrix[1][1]*refUnit[1] |
140 |
|
|
+ matrix[1][2]*refUnit[2]; |
141 |
|
|
ub0z = matrix[2][0]*refUnit[0] + matrix[2][1]*refUnit[1] |
142 |
|
|
+ matrix[2][2]*refUnit[2]; |
143 |
gezelter |
2 |
|
144 |
|
|
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
145 |
|
|
ub0x = ub0x/normalize; |
146 |
|
|
ub0y = ub0y/normalize; |
147 |
|
|
ub0z = ub0z/normalize; |
148 |
|
|
|
149 |
|
|
// Theta is the dot product of the reference and new z-axes |
150 |
|
|
theta = acos(ub0z); |
151 |
|
|
|
152 |
|
|
return; |
153 |
|
|
} |
154 |
|
|
|
155 |
|
|
void Restraints::Calc_body_omegaVal(double matrix[3][3], double zAngle){ |
156 |
|
|
double zRotator[3][3]; |
157 |
|
|
double tempOmega; |
158 |
|
|
double wholeTwoPis; |
159 |
|
|
// Use the omega accumulated from the rotation propagation |
160 |
|
|
omega = zAngle; |
161 |
|
|
|
162 |
|
|
// translate the omega into a range between -PI and PI |
163 |
|
|
if (omega < -PI){ |
164 |
|
|
tempOmega = omega / -TWO_PI; |
165 |
|
|
wholeTwoPis = floor(tempOmega); |
166 |
|
|
tempOmega = omega + TWO_PI*wholeTwoPis; |
167 |
|
|
if (tempOmega < -PI) |
168 |
|
|
omega = tempOmega + TWO_PI; |
169 |
|
|
else |
170 |
|
|
omega = tempOmega; |
171 |
|
|
} |
172 |
|
|
if (omega > PI){ |
173 |
|
|
tempOmega = omega / TWO_PI; |
174 |
|
|
wholeTwoPis = floor(tempOmega); |
175 |
|
|
tempOmega = omega - TWO_PI*wholeTwoPis; |
176 |
|
|
if (tempOmega > PI) |
177 |
|
|
omega = tempOmega - TWO_PI; |
178 |
|
|
else |
179 |
|
|
omega = tempOmega; |
180 |
|
|
} |
181 |
|
|
|
182 |
|
|
vb0x = sin(omega); |
183 |
|
|
vb0y = cos(omega); |
184 |
|
|
vb0z = 0.0; |
185 |
|
|
|
186 |
|
|
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
187 |
|
|
vb0x = vb0x/normalize; |
188 |
|
|
vb0y = vb0y/normalize; |
189 |
|
|
vb0z = vb0z/normalize; |
190 |
|
|
|
191 |
|
|
return; |
192 |
|
|
} |
193 |
|
|
|
194 |
|
|
double Restraints::Calc_Restraint_Forces(vector<StuntDouble*> vecParticles){ |
195 |
|
|
double pos[3]; |
196 |
|
|
double A[3][3]; |
197 |
chrisfen |
221 |
double refPos[3]; |
198 |
|
|
double refVec[3]; |
199 |
gezelter |
2 |
double tolerance; |
200 |
|
|
double tempPotent; |
201 |
|
|
double factor; |
202 |
|
|
double spaceTrq[3]; |
203 |
|
|
double omegaPass; |
204 |
chrisfen |
221 |
GenericData* data; |
205 |
|
|
DoubleGenericData* doubleData; |
206 |
gezelter |
2 |
|
207 |
|
|
tolerance = 5.72957795131e-7; |
208 |
|
|
|
209 |
|
|
harmPotent = 0.0; // zero out the global harmonic potential variable |
210 |
|
|
|
211 |
|
|
factor = 1 - pow(lambdaValue, lambdaK); |
212 |
|
|
|
213 |
|
|
for (i=0; i<vecParticles.size(); i++){ |
214 |
chrisfen |
221 |
// obtain the current and reference positions |
215 |
|
|
vecParticles[i]->getPos(pos); |
216 |
|
|
|
217 |
|
|
data = vecParticles[i]->getProperty("refPosX"); |
218 |
|
|
if (data){ |
219 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
220 |
|
|
if (!doubleData){ |
221 |
|
|
cerr << "Can't obtain refPosX from StuntDouble\n"; |
222 |
|
|
return 0.0; |
223 |
|
|
} |
224 |
|
|
else refPos[0] = doubleData->getData(); |
225 |
|
|
} |
226 |
|
|
data = vecParticles[i]->getProperty("refPosY"); |
227 |
|
|
if (data){ |
228 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
229 |
|
|
if (!doubleData){ |
230 |
|
|
cerr << "Can't obtain refPosY from StuntDouble\n"; |
231 |
|
|
return 0.0; |
232 |
|
|
} |
233 |
|
|
else refPos[1] = doubleData->getData(); |
234 |
|
|
} |
235 |
|
|
data = vecParticles[i]->getProperty("refPosZ"); |
236 |
|
|
if (data){ |
237 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
238 |
|
|
if (!doubleData){ |
239 |
|
|
cerr << "Can't obtain refPosZ from StuntDouble\n"; |
240 |
|
|
return 0.0; |
241 |
|
|
} |
242 |
|
|
else refPos[2] = doubleData->getData(); |
243 |
|
|
} |
244 |
|
|
|
245 |
|
|
// calculate the displacement |
246 |
|
|
Calc_rVal( pos, refPos ); |
247 |
|
|
|
248 |
|
|
// calculate the derivatives |
249 |
|
|
dVdrx = -kDist*delRx; |
250 |
|
|
dVdry = -kDist*delRy; |
251 |
|
|
dVdrz = -kDist*delRz; |
252 |
|
|
|
253 |
|
|
// next we calculate the restraint forces |
254 |
|
|
restraintFrc[0] = dVdrx; |
255 |
|
|
restraintFrc[1] = dVdry; |
256 |
|
|
restraintFrc[2] = dVdrz; |
257 |
|
|
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
258 |
|
|
|
259 |
|
|
// apply the lambda scaling factor to the forces |
260 |
|
|
for (j = 0; j < 3; j++) restraintFrc[j] *= factor; |
261 |
|
|
|
262 |
|
|
// and add the temporary force to the total force |
263 |
|
|
vecParticles[i]->addFrc(restraintFrc); |
264 |
|
|
|
265 |
|
|
// if the particle is directional, we accumulate the rot. restraints |
266 |
gezelter |
2 |
if (vecParticles[i]->isDirectional()){ |
267 |
chrisfen |
221 |
|
268 |
|
|
// get the current rotation matrix and reference vector |
269 |
gezelter |
2 |
vecParticles[i]->getA(A); |
270 |
chrisfen |
221 |
|
271 |
|
|
data = vecParticles[i]->getProperty("refVectorX"); |
272 |
|
|
if (data){ |
273 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
274 |
|
|
if (!doubleData){ |
275 |
|
|
cerr << "Can't obtain refVectorX from StuntDouble\n"; |
276 |
|
|
return 0.0; |
277 |
|
|
} |
278 |
|
|
else refVec[0] = doubleData->getData(); |
279 |
|
|
} |
280 |
|
|
data = vecParticles[i]->getProperty("refVectorY"); |
281 |
|
|
if (data){ |
282 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
283 |
|
|
if (!doubleData){ |
284 |
|
|
cerr << "Can't obtain refVectorY from StuntDouble\n"; |
285 |
|
|
return 0.0; |
286 |
|
|
} |
287 |
|
|
else refVec[1] = doubleData->getData(); |
288 |
|
|
} |
289 |
|
|
data = vecParticles[i]->getProperty("refVectorZ"); |
290 |
|
|
if (data){ |
291 |
|
|
doubleData = dynamic_cast<DoubleGenericData*>(data); |
292 |
|
|
if (!doubleData){ |
293 |
|
|
cerr << "Can't obtain refVectorZ from StuntDouble\n"; |
294 |
|
|
return 0.0; |
295 |
|
|
} |
296 |
|
|
else refVec[2] = doubleData->getData(); |
297 |
|
|
} |
298 |
|
|
|
299 |
|
|
// calculate the theta and omega displacements |
300 |
|
|
Calc_body_thetaVal( A, refVec ); |
301 |
gezelter |
2 |
omegaPass = vecParticles[i]->getZangle(); |
302 |
|
|
Calc_body_omegaVal( A, omegaPass ); |
303 |
|
|
|
304 |
|
|
// uTx... and vTx... are the body-fixed z and y unit vectors |
305 |
|
|
uTx = 0.0; |
306 |
|
|
uTy = 0.0; |
307 |
|
|
uTz = 1.0; |
308 |
|
|
vTx = 0.0; |
309 |
|
|
vTy = 1.0; |
310 |
|
|
vTz = 0.0; |
311 |
|
|
|
312 |
chrisfen |
221 |
dVdux = 0.0; |
313 |
|
|
dVduy = 0.0; |
314 |
|
|
dVduz = 0.0; |
315 |
|
|
dVdvx = 0.0; |
316 |
|
|
dVdvy = 0.0; |
317 |
|
|
dVdvz = 0.0; |
318 |
gezelter |
2 |
|
319 |
|
|
if (fabs(theta) > tolerance) { |
320 |
|
|
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
321 |
|
|
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
322 |
|
|
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
323 |
|
|
} |
324 |
|
|
|
325 |
|
|
if (fabs(omega) > tolerance) { |
326 |
|
|
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
327 |
|
|
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
328 |
|
|
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
329 |
|
|
} |
330 |
|
|
|
331 |
chrisfen |
221 |
// next we calculate the restraint torques |
332 |
gezelter |
2 |
restraintTrq[0] = 0.0; |
333 |
|
|
restraintTrq[1] = 0.0; |
334 |
|
|
restraintTrq[2] = 0.0; |
335 |
|
|
|
336 |
|
|
if (fabs(omega) > tolerance) { |
337 |
|
|
restraintTrq[0] += 0.0; |
338 |
|
|
restraintTrq[1] += 0.0; |
339 |
|
|
restraintTrq[2] += vTy*dVdvx; |
340 |
|
|
tempPotent += 0.5*(kOmega*omega*omega); |
341 |
|
|
} |
342 |
|
|
if (fabs(theta) > tolerance) { |
343 |
|
|
restraintTrq[0] += (uTz*dVduy); |
344 |
|
|
restraintTrq[1] += -(uTz*dVdux); |
345 |
|
|
restraintTrq[2] += 0.0; |
346 |
|
|
tempPotent += 0.5*(kTheta*theta*theta); |
347 |
|
|
} |
348 |
|
|
|
349 |
chrisfen |
221 |
// apply the lambda scaling factor to these torques |
350 |
|
|
for (j = 0; j < 3; j++) restraintTrq[j] *= factor; |
351 |
gezelter |
2 |
|
352 |
|
|
// now we need to convert from body-fixed torques to space-fixed torques |
353 |
|
|
spaceTrq[0] = A[0][0]*restraintTrq[0] + A[1][0]*restraintTrq[1] |
354 |
|
|
+ A[2][0]*restraintTrq[2]; |
355 |
|
|
spaceTrq[1] = A[0][1]*restraintTrq[0] + A[1][1]*restraintTrq[1] |
356 |
|
|
+ A[2][1]*restraintTrq[2]; |
357 |
|
|
spaceTrq[2] = A[0][2]*restraintTrq[0] + A[1][2]*restraintTrq[1] |
358 |
|
|
+ A[2][2]*restraintTrq[2]; |
359 |
|
|
|
360 |
chrisfen |
221 |
// now pass this temporary torque vector to the total torque |
361 |
gezelter |
2 |
vecParticles[i]->addTrq(spaceTrq); |
362 |
|
|
} |
363 |
chrisfen |
221 |
|
364 |
|
|
// update the total harmonic potential with this object's contribution |
365 |
|
|
harmPotent += tempPotent; |
366 |
gezelter |
2 |
} |
367 |
chrisfen |
221 |
|
368 |
|
|
// we can finish by returning the appropriately scaled potential energy |
369 |
gezelter |
2 |
tempPotent = harmPotent * factor; |
370 |
|
|
return tempPotent; |
371 |
|
|
} |
372 |
|
|
|
373 |
chrisfen |
221 |
void Restraints::Write_zAngle_File(vector<StuntDouble*> vecParticles, |
374 |
|
|
int currTime, |
375 |
|
|
int nIntObj){ |
376 |
gezelter |
2 |
|
377 |
chrisfen |
221 |
char zOutName[200]; |
378 |
gezelter |
2 |
|
379 |
chrisfen |
221 |
std::cerr << nIntObj << " is the number of integrable objects\n"; |
380 |
gezelter |
2 |
|
381 |
chrisfen |
221 |
//#ifndef IS_MPI |
382 |
gezelter |
2 |
|
383 |
|
|
strcpy(zOutName,"zAngle.ang"); |
384 |
chrisfen |
221 |
|
385 |
gezelter |
2 |
ofstream angleOut(zOutName); |
386 |
chrisfen |
221 |
angleOut << currTime << ": omega values at this time\n"; |
387 |
gezelter |
2 |
for (i=0; i<vecParticles.size(); i++) { |
388 |
|
|
angleOut << vecParticles[i]->getZangle() << "\n"; |
389 |
|
|
} |
390 |
chrisfen |
221 |
|
391 |
gezelter |
2 |
return; |
392 |
|
|
} |
393 |
|
|
|
394 |
|
|
double Restraints::getVharm(){ |
395 |
|
|
return harmPotent; |
396 |
|
|
} |
397 |
|
|
|