1 |
/* |
2 |
* Copyright (c) 2009 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include "restraints/MolecularRestraint.hpp" |
43 |
#include "math/SquareMatrix3.hpp" |
44 |
#include "math/SVD.hpp" |
45 |
#include <utility> |
46 |
|
47 |
//using namespace JAMA; |
48 |
|
49 |
namespace OpenMD { |
50 |
|
51 |
|
52 |
void MolecularRestraint::calcForce(std::vector<Vector3d> struc, |
53 |
Vector3d molCom){ |
54 |
|
55 |
assert(struc.size() == ref_.size()); |
56 |
|
57 |
std::vector<Vector3d>::iterator it; |
58 |
|
59 |
// clear out initial values: |
60 |
pot_ = 0.0; |
61 |
for(it = forces_.begin(); it != forces_.end(); ++it) |
62 |
(*it) = 0.0; |
63 |
|
64 |
|
65 |
if (restType_ & rtDisplacement) { |
66 |
Vector3d del = molCom - refCom_; |
67 |
|
68 |
RealType r = del.length(); |
69 |
RealType p = 0.5 * kDisp_ * r * r; |
70 |
|
71 |
pot_ += p; |
72 |
|
73 |
restInfo_[rtDisplacement] = std::make_pair(r, p); |
74 |
|
75 |
for(it = forces_.begin(); it != forces_.end(); ++it) |
76 |
(*it) = -kDisp_ * del * scaleFactor_; |
77 |
} |
78 |
|
79 |
for(it = struc.begin(); it != struc.end(); ++it) |
80 |
(*it) -= molCom; |
81 |
|
82 |
// rtDisplacement = 1, so anything higher than that requires orientations: |
83 |
if (restType_ > 1) { |
84 |
Vector3d tBody(0.0); |
85 |
|
86 |
Mat3x3d R(0.0); |
87 |
|
88 |
for (int n = 0; n < struc.size(); n++){ |
89 |
|
90 |
/* |
91 |
* correlation matrix R: |
92 |
* R(i,j) = sum(over n): y(n,i) * x(n,j) |
93 |
* where x(n) and y(n) are two vector sets |
94 |
*/ |
95 |
|
96 |
R += outProduct(struc[n], ref_[n]); |
97 |
} |
98 |
|
99 |
// SVD class uses dynamic matrices, so we must wrap the correlation |
100 |
// matrix before calling SVD and then unwrap the results into Mat3x3d |
101 |
// and Vector3d before we use them. |
102 |
|
103 |
DynamicRectMatrix<RealType> Rtmp(3, 3, 0.0); |
104 |
DynamicRectMatrix<RealType> vtmp(3, 3); |
105 |
DynamicVector<RealType> stmp(3); |
106 |
DynamicRectMatrix<RealType> wtmp(3, 3); |
107 |
|
108 |
Rtmp.setSubMatrix(0, 0, R); |
109 |
|
110 |
// Heavy lifting goes here: |
111 |
|
112 |
JAMA::SVD<RealType> svd(Rtmp); |
113 |
|
114 |
svd.getU(vtmp); |
115 |
svd.getSingularValues(stmp); |
116 |
svd.getV(wtmp); |
117 |
|
118 |
Mat3x3d v; |
119 |
Vector3d s; |
120 |
Mat3x3d w_tr; |
121 |
|
122 |
vtmp.getSubMatrix(0, 0, v); |
123 |
stmp.getSubVector(0, s); |
124 |
wtmp.getSubMatrix(0, 0, w_tr); |
125 |
|
126 |
bool is_reflection = (v.determinant() * w_tr.determinant()) < 0.0; |
127 |
|
128 |
if (is_reflection){ |
129 |
v(2, 0) = -v(2, 0); |
130 |
v(2, 1) = -v(2, 1); |
131 |
v(2, 2) = -v(2, 2); |
132 |
} |
133 |
|
134 |
RotMat3x3d Atrans = v * w_tr.transpose(); |
135 |
RotMat3x3d A = Atrans.transpose(); |
136 |
|
137 |
Vector3d eularAngles = A.toEulerAngles(); |
138 |
|
139 |
|
140 |
RealType twistAngle, swingAngle; |
141 |
Vector3d swingAxis; |
142 |
|
143 |
Quat4d quat = A.toQuaternion(); |
144 |
|
145 |
RealType tw, sx, sy, ttw, swingX, swingY; |
146 |
quat.toSwingTwist(swingX, swingY, twistAngle); |
147 |
|
148 |
RealType dVdtwist, dVdswing, dVdswingX, dVdswingY; |
149 |
RealType dTwist, dSwing, dSwingX, dSwingY; |
150 |
RealType p; |
151 |
|
152 |
if (restType_ & rtTwist){ |
153 |
dTwist = twistAngle - twist0_; |
154 |
dVdtwist = kTwist_ * sin(dTwist) ; |
155 |
p = kTwist_ * (1.0 - cos(dTwist) ) ; |
156 |
pot_ += p; |
157 |
tBody -= dVdtwist * V3Z; |
158 |
restInfo_[rtTwist] = std::make_pair(twistAngle, p); |
159 |
} |
160 |
|
161 |
// if (restType_ & rtSwing){ |
162 |
// dSwing = swingAngle - swing0_; |
163 |
// dVdswing = kSwing_ * 2.0 * sin(2.0 * dSwing); |
164 |
// p = kSwing_ * (1.0 - cos(2.0 * dSwing)); |
165 |
// pot_ += p; |
166 |
// tBody -= dVdswing * swingAxis; |
167 |
// restInfo_[rtSwing] = std::make_pair(swingAngle, p); |
168 |
// } |
169 |
|
170 |
if (restType_ & rtSwingX){ |
171 |
dSwingX = swingX - swingX0_; |
172 |
dVdswingX = kSwingX_ * 2.0 * sin(2.0 * dSwingX); |
173 |
p = kSwingX_ * (1.0 - cos(2.0 * dSwingX)); |
174 |
pot_ += p; |
175 |
tBody -= dVdswingX * V3X; |
176 |
restInfo_[rtSwingX] = std::make_pair(swingX, p); |
177 |
} |
178 |
if (restType_ & rtSwingY){ |
179 |
dSwingY = swingY - swingY0_; |
180 |
dVdswingY = kSwingY_ * 2.0 * sin(2.0 * dSwingY); |
181 |
p = kSwingY_ * (1.0 - cos(2.0 * dSwingY)); |
182 |
pot_ += p; |
183 |
tBody -= dVdswingY * V3Y; |
184 |
restInfo_[rtSwingY] = std::make_pair(swingY, p); |
185 |
} |
186 |
|
187 |
|
188 |
RealType t2 = dot(tBody, tBody); |
189 |
|
190 |
Vector3d rLab, rBody, txr, fBody, fLab; |
191 |
|
192 |
for (int i = 0; i < struc.size(); i++) { |
193 |
|
194 |
rLab = struc[i]; |
195 |
rBody = A * rLab; |
196 |
|
197 |
txr = cross(tBody, rBody); |
198 |
fBody = txr * t2; |
199 |
fLab = Atrans * fBody; |
200 |
fLab *= scaleFactor_; |
201 |
|
202 |
forces_[i] += fLab; |
203 |
} |
204 |
|
205 |
// test the force vectors and see if it is the right orientation |
206 |
// std::cout << struc.size() << std::endl << std::endl; |
207 |
// for (int i = 0; i != struc.size(); ++i){ |
208 |
// std::cout << "H\t" << struc[i].x() << "\t" << struc[i].y() << "\t" << struc[i].z() << "\t"; |
209 |
// std::cout << forces_[i].x() << "\t" << forces_[i].y() << "\t" << forces_[i].z() << std::endl; |
210 |
// } |
211 |
} |
212 |
} |
213 |
} |