6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
50 |
|
#ifndef PRIMITIVES_TORSION_HPP |
51 |
|
#define PRIMITIVES_TORSION_HPP |
52 |
|
|
53 |
+ |
#include "primitives/ShortRangeInteraction.hpp" |
54 |
|
#include "primitives/Atom.hpp" |
53 |
– |
|
55 |
|
#include "types/TorsionType.hpp" |
56 |
+ |
#include <limits> |
57 |
|
|
58 |
< |
namespace oopse { |
58 |
> |
namespace OpenMD { |
59 |
|
struct TorsionData { |
60 |
|
RealType angle; |
61 |
|
RealType potential; |
71 |
|
/** |
72 |
|
* @class Torsion Torsion.hpp "types/Torsion.hpp" |
73 |
|
*/ |
74 |
< |
class Torsion { |
74 |
> |
class Torsion : public ShortRangeInteraction { |
75 |
|
public: |
76 |
|
Torsion(Atom* atom1, Atom* atom2, Atom* atom3, Atom* atom4, TorsionType* tt); |
77 |
|
virtual ~Torsion() {} |
78 |
< |
virtual void calcForce(RealType& angle); |
79 |
< |
|
78 |
> |
virtual void calcForce(RealType& angle, bool doParticlePot); |
79 |
> |
|
80 |
> |
RealType getValue(int snapshotNo) { |
81 |
> |
Vector3d pos1 = atoms_[0]->getPos(snapshotNo); |
82 |
> |
Vector3d pos2 = atoms_[1]->getPos(snapshotNo); |
83 |
> |
Vector3d pos3 = atoms_[2]->getPos(snapshotNo); |
84 |
> |
Vector3d pos4 = atoms_[3]->getPos(snapshotNo); |
85 |
> |
|
86 |
> |
Vector3d r21 = pos1 - pos2; |
87 |
> |
Vector3d r32 = pos2 - pos3; |
88 |
> |
Vector3d r43 = pos3 - pos4; |
89 |
> |
|
90 |
> |
// Calculate the cross products and distances |
91 |
> |
Vector3d A = cross(r21, r32); |
92 |
> |
RealType rA = A.length(); |
93 |
> |
Vector3d B = cross(r32, r43); |
94 |
> |
RealType rB = B.length(); |
95 |
> |
|
96 |
> |
/* |
97 |
> |
If either of the two cross product vectors is tiny, that means |
98 |
> |
the three atoms involved are colinear, and the torsion angle is |
99 |
> |
going to be undefined. The easiest check for this problem is |
100 |
> |
to use the product of the two lengths. |
101 |
> |
*/ |
102 |
> |
if (rA * rB < OpenMD::epsilon) return numeric_limits<double>::quiet_NaN(); |
103 |
> |
|
104 |
> |
A.normalize(); |
105 |
> |
B.normalize(); |
106 |
> |
|
107 |
> |
// Calculate the sin and cos |
108 |
> |
RealType cos_phi = dot(A, B) ; |
109 |
> |
if (cos_phi > 1.0) cos_phi = 1.0; |
110 |
> |
if (cos_phi < -1.0) cos_phi = -1.0; |
111 |
> |
return acos(cos_phi); |
112 |
> |
} |
113 |
> |
|
114 |
> |
|
115 |
|
RealType getPotential() { |
116 |
|
return potential_; |
117 |
|
} |
118 |
|
|
119 |
|
Atom* getAtomA() { |
120 |
< |
return atom1_; |
120 |
> |
return atoms_[0]; |
121 |
|
} |
122 |
|
|
123 |
|
Atom* getAtomB() { |
124 |
< |
return atom2_; |
124 |
> |
return atoms_[1]; |
125 |
|
} |
126 |
|
|
127 |
|
Atom* getAtomC() { |
128 |
< |
return atom3_; |
128 |
> |
return atoms_[2]; |
129 |
|
} |
130 |
|
|
131 |
|
Atom* getAtomD() { |
132 |
< |
return atom4_; |
132 |
> |
return atoms_[3]; |
133 |
|
} |
134 |
|
|
135 |
|
TorsionType * getTorsionType() { |
136 |
|
return torsionType_; |
137 |
|
} |
138 |
|
|
139 |
< |
protected: |
139 |
> |
virtual std::string getName() { return name_;} |
140 |
> |
/** Sets the name of this torsion for selections */ |
141 |
> |
virtual void setName(const std::string& name) { name_ = name;} |
142 |
|
|
143 |
< |
Atom* atom1_; |
144 |
< |
Atom* atom2_; |
145 |
< |
Atom* atom3_; |
107 |
< |
Atom* atom4_; |
143 |
> |
void accept(BaseVisitor* v) { |
144 |
> |
v->visit(this); |
145 |
> |
} |
146 |
|
|
147 |
+ |
protected: |
148 |
+ |
|
149 |
|
TorsionType* torsionType_; |
150 |
+ |
std::string name_; |
151 |
|
|
152 |
|
RealType potential_; |
153 |
|
}; |