--- trunk/src/primitives/Torsion.cpp 2005/04/15 22:04:00 507 +++ trunk/src/primitives/Torsion.cpp 2005/11/16 23:10:02 749 @@ -47,7 +47,8 @@ namespace oopse { TorsionType *tt) : atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } - void Torsion::calcForce() { + void Torsion::calcForce(double& angle) { + Vector3d pos1 = atom1_->getPos(); Vector3d pos2 = atom2_->getPos(); Vector3d pos3 = atom3_->getPos(); @@ -71,63 +72,27 @@ namespace oopse { // Calculate the sin and cos double cos_phi = dot(A, B) ; - double sin_phi = dot(C, B); + if (cos_phi > 1.0) cos_phi = 1.0; + if (cos_phi < -1.0) cos_phi = -1.0; - double dVdPhi; - torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); - + double dVdcosPhi; + torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); Vector3d f1; Vector3d f2; Vector3d f3; - // Next, we want to calculate the forces. In order - // to do that, we first need to figure out whether the - // sin or cos form will be more stable. For this, - // just look at the value of phi - //if (fabs(sin_phi) > 0.1) { - // use the sin version to avoid 1/cos terms - Vector3d dcosdA = (cos_phi * A - B) /rA; Vector3d dcosdB = (cos_phi * B - A) /rB; - double dVdcosPhi = -dVdPhi / sin_phi; - f1 = dVdcosPhi * cross(r32, dcosdA); f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); f3 = dVdcosPhi * cross(dcosdB, r32); - - /** @todo fix below block, must be something wrong with the sign somewhere */ - //} else { - // This angle is closer to 0 or 180 than it is to - // 90, so use the cos version to avoid 1/sin terms - - //double dVdsinPhi = dVdPhi /cos_phi; - //Vector3d dsindB = (sin_phi * B - C) /rB; - //Vector3d dsindC = (sin_phi * C - B) /rC; - - //f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); - - //f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); - - //f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); - - //f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() - //+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); - - //f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() - //+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); - - //f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() - //+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); - - //f3 = dVdsinPhi * cross(r32, dsindB); - - //} - + atom1_->addFrc(f1); atom2_->addFrc(f2 - f1); atom3_->addFrc(f3 - f2); atom4_->addFrc(-f3); + angle = acos(cos_phi) /M_PI * 180.0; } }