--- trunk/src/primitives/Torsion.cpp 2005/01/12 22:41:40 246 +++ trunk/src/primitives/Torsion.cpp 2008/10/21 18:23:31 1309 @@ -1,4 +1,4 @@ - /* +/* * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. * * The University of Notre Dame grants you ("Licensee") a @@ -43,11 +43,12 @@ namespace oopse { namespace oopse { -Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, - TorsionType *tt) : + Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, + TorsionType *tt) : atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } -void Torsion::calcForce() { + void Torsion::calcForce(RealType& angle) { + Vector3d pos1 = atom1_->getPos(); Vector3d pos2 = atom2_->getPos(); Vector3d pos3 = atom3_->getPos(); @@ -59,75 +60,45 @@ void Torsion::calcForce() { // Calculate the cross products and distances Vector3d A = cross(r21, r32); - double rA = A.length(); + RealType rA = A.length(); Vector3d B = cross(r32, r43); - double rB = B.length(); + RealType rB = B.length(); Vector3d C = cross(r32, A); - double rC = C.length(); + RealType rC = C.length(); A.normalize(); B.normalize(); C.normalize(); // Calculate the sin and cos - double cos_phi = dot(A, B) ; - double sin_phi = dot(C, B); + RealType cos_phi = dot(A, B) ; + if (cos_phi > 1.0) cos_phi = 1.0; + if (cos_phi < -1.0) cos_phi = -1.0; - double dVdPhi; - torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); + RealType dVdcosPhi; + torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); + Vector3d f1 ; + Vector3d f2 ; + Vector3d f3 ; - Vector3d f1; - Vector3d f2; - Vector3d f3; + Vector3d dcosdA = (cos_phi * A - B) /rA; + Vector3d dcosdB = (cos_phi * B - A) /rB; - // Next, we want to calculate the forces. In order - // to do that, we first need to figure out whether the - // sin or cos form will be more stable. For this, - // just look at the value of phi - //if (fabs(sin_phi) > 0.1) { - // use the sin version to avoid 1/cos terms - - Vector3d dcosdA = (cos_phi * A - B) /rA; - Vector3d dcosdB = (cos_phi * B - A) /rB; - - double dVdcosPhi = -dVdPhi / sin_phi; - - f1 = dVdcosPhi * cross(r32, dcosdA); - f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); - f3 = dVdcosPhi * cross(dcosdB, r32); - - /** @todo fix below block, must be something wrong with the sign somewhere */ - //} else { - // This angle is closer to 0 or 180 than it is to - // 90, so use the cos version to avoid 1/sin terms - - //double dVdsinPhi = dVdPhi /cos_phi; - //Vector3d dsindB = (sin_phi * B - C) /rB; - //Vector3d dsindC = (sin_phi * C - B) /rC; - - //f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); - - //f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); - - //f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); - - //f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() - //+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); - - //f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() - //+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); - - //f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() - //+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); - - //f3 = dVdsinPhi * cross(r32, dsindB); - - //} - + f1 = dVdcosPhi * cross(r32, dcosdA); + f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); + f3 = dVdcosPhi * cross(dcosdB, r32); + atom1_->addFrc(f1); atom2_->addFrc(f2 - f1); atom3_->addFrc(f3 - f2); atom4_->addFrc(-f3); -} + atom1_->addParticlePot(potential_); + atom2_->addParticlePot(potential_); + atom3_->addParticlePot(potential_); + atom4_->addParticlePot(potential_); + + angle = acos(cos_phi) /M_PI * 180.0; + } + }