--- trunk/src/primitives/Torsion.cpp 2009/11/25 20:02:06 1390 +++ trunk/src/primitives/Torsion.cpp 2013/12/05 18:19:26 1953 @@ -35,24 +35,34 @@ * * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). - * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). - * [4] Vardeman & Gezelter, in progress (2009). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). + * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). + * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). */ +#include "config.h" +#include + #include "primitives/Torsion.hpp" namespace OpenMD { Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, - TorsionType *tt) : - atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } + TorsionType *tt) : ShortRangeInteraction(), + torsionType_(tt) { + atoms_.resize(4); + atoms_[0] = atom1; + atoms_[1] = atom2; + atoms_[2] = atom3; + atoms_[3] = atom4; + } - void Torsion::calcForce(RealType& angle) { + void Torsion::calcForce(RealType& angle, bool doParticlePot) { - Vector3d pos1 = atom1_->getPos(); - Vector3d pos2 = atom2_->getPos(); - Vector3d pos3 = atom3_->getPos(); - Vector3d pos4 = atom4_->getPos(); + Vector3d pos1 = atoms_[0]->getPos(); + Vector3d pos2 = atoms_[1]->getPos(); + Vector3d pos3 = atoms_[2]->getPos(); + Vector3d pos4 = atoms_[3]->getPos(); Vector3d r21 = pos1 - pos2; Vector3d r32 = pos2 - pos3; @@ -63,42 +73,48 @@ namespace OpenMD { RealType rA = A.length(); Vector3d B = cross(r32, r43); RealType rB = B.length(); - Vector3d C = cross(r32, A); - RealType rC = C.length(); + /* + If either of the two cross product vectors is tiny, that means + the three atoms involved are colinear, and the torsion angle is + going to be undefined. The easiest check for this problem is + to use the product of the two lengths. + */ + if (rA * rB < OpenMD::epsilon) return; + A.normalize(); - B.normalize(); - C.normalize(); + B.normalize(); // Calculate the sin and cos RealType cos_phi = dot(A, B) ; if (cos_phi > 1.0) cos_phi = 1.0; if (cos_phi < -1.0) cos_phi = -1.0; - + RealType dVdcosPhi; torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); Vector3d f1 ; Vector3d f2 ; Vector3d f3 ; - + Vector3d dcosdA = (cos_phi * A - B) /rA; Vector3d dcosdB = (cos_phi * B - A) /rB; - + f1 = dVdcosPhi * cross(r32, dcosdA); f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); f3 = dVdcosPhi * cross(dcosdB, r32); - atom1_->addFrc(f1); - atom2_->addFrc(f2 - f1); - atom3_->addFrc(f3 - f2); - atom4_->addFrc(-f3); - - atom1_->addParticlePot(potential_); - atom2_->addParticlePot(potential_); - atom3_->addParticlePot(potential_); - atom4_->addParticlePot(potential_); - - angle = acos(cos_phi) /M_PI * 180.0; - } - + atoms_[0]->addFrc(f1); + atoms_[1]->addFrc(f2 - f1); + atoms_[2]->addFrc(f3 - f2); + atoms_[3]->addFrc(-f3); + + if (doParticlePot) { + atoms_[0]->addParticlePot(potential_); + atoms_[1]->addParticlePot(potential_); + atoms_[2]->addParticlePot(potential_); + atoms_[3]->addParticlePot(potential_); + } + + angle = acos(cos_phi) /M_PI * 180.0; + } }