6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
+ |
#include "config.h" |
44 |
+ |
#include <cmath> |
45 |
+ |
|
46 |
|
#include "primitives/Torsion.hpp" |
47 |
|
|
48 |
< |
namespace oopse { |
48 |
> |
namespace OpenMD { |
49 |
|
|
50 |
|
Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, |
51 |
< |
TorsionType *tt) : |
52 |
< |
atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } |
51 |
> |
TorsionType *tt) : ShortRangeInteraction(), |
52 |
> |
torsionType_(tt) { |
53 |
> |
atoms_.resize(4); |
54 |
> |
atoms_[0] = atom1; |
55 |
> |
atoms_[1] = atom2; |
56 |
> |
atoms_[2] = atom3; |
57 |
> |
atoms_[3] = atom4; |
58 |
> |
} |
59 |
|
|
60 |
< |
void Torsion::calcForce(double& angle) { |
60 |
> |
void Torsion::calcForce(RealType& angle, bool doParticlePot) { |
61 |
|
|
62 |
< |
Vector3d pos1 = atom1_->getPos(); |
63 |
< |
Vector3d pos2 = atom2_->getPos(); |
64 |
< |
Vector3d pos3 = atom3_->getPos(); |
65 |
< |
Vector3d pos4 = atom4_->getPos(); |
62 |
> |
Vector3d pos1 = atoms_[0]->getPos(); |
63 |
> |
Vector3d pos2 = atoms_[1]->getPos(); |
64 |
> |
Vector3d pos3 = atoms_[2]->getPos(); |
65 |
> |
Vector3d pos4 = atoms_[3]->getPos(); |
66 |
|
|
67 |
|
Vector3d r21 = pos1 - pos2; |
68 |
|
Vector3d r32 = pos2 - pos3; |
70 |
|
|
71 |
|
// Calculate the cross products and distances |
72 |
|
Vector3d A = cross(r21, r32); |
73 |
< |
double rA = A.length(); |
73 |
> |
RealType rA = A.length(); |
74 |
|
Vector3d B = cross(r32, r43); |
75 |
< |
double rB = B.length(); |
66 |
< |
Vector3d C = cross(r32, A); |
67 |
< |
double rC = C.length(); |
75 |
> |
RealType rB = B.length(); |
76 |
|
|
77 |
+ |
/* |
78 |
+ |
If either of the two cross product vectors is tiny, that means |
79 |
+ |
the three atoms involved are colinear, and the torsion angle is |
80 |
+ |
going to be undefined. The easiest check for this problem is |
81 |
+ |
to use the product of the two lengths. |
82 |
+ |
*/ |
83 |
+ |
if (rA * rB < OpenMD::epsilon) return; |
84 |
+ |
|
85 |
|
A.normalize(); |
86 |
< |
B.normalize(); |
71 |
< |
C.normalize(); |
86 |
> |
B.normalize(); |
87 |
|
|
88 |
|
// Calculate the sin and cos |
89 |
< |
double cos_phi = dot(A, B) ; |
89 |
> |
RealType cos_phi = dot(A, B) ; |
90 |
|
if (cos_phi > 1.0) cos_phi = 1.0; |
91 |
|
if (cos_phi < -1.0) cos_phi = -1.0; |
92 |
< |
|
93 |
< |
double dVdcosPhi; |
92 |
> |
|
93 |
> |
RealType dVdcosPhi; |
94 |
|
torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
95 |
< |
Vector3d f1; |
96 |
< |
Vector3d f2; |
97 |
< |
Vector3d f3; |
98 |
< |
|
95 |
> |
Vector3d f1 ; |
96 |
> |
Vector3d f2 ; |
97 |
> |
Vector3d f3 ; |
98 |
> |
|
99 |
|
Vector3d dcosdA = (cos_phi * A - B) /rA; |
100 |
|
Vector3d dcosdB = (cos_phi * B - A) /rB; |
101 |
< |
|
101 |
> |
|
102 |
|
f1 = dVdcosPhi * cross(r32, dcosdA); |
103 |
|
f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
104 |
|
f3 = dVdcosPhi * cross(dcosdB, r32); |
105 |
|
|
106 |
< |
atom1_->addFrc(f1); |
107 |
< |
atom2_->addFrc(f2 - f1); |
108 |
< |
atom3_->addFrc(f3 - f2); |
109 |
< |
atom4_->addFrc(-f3); |
110 |
< |
angle = acos(cos_phi) /M_PI * 180.0; |
111 |
< |
} |
112 |
< |
|
106 |
> |
atoms_[0]->addFrc(f1); |
107 |
> |
atoms_[1]->addFrc(f2 - f1); |
108 |
> |
atoms_[2]->addFrc(f3 - f2); |
109 |
> |
atoms_[3]->addFrc(-f3); |
110 |
> |
|
111 |
> |
if (doParticlePot) { |
112 |
> |
atoms_[0]->addParticlePot(potential_); |
113 |
> |
atoms_[1]->addParticlePot(potential_); |
114 |
> |
atoms_[2]->addParticlePot(potential_); |
115 |
> |
atoms_[3]->addParticlePot(potential_); |
116 |
> |
} |
117 |
> |
|
118 |
> |
angle = acos(cos_phi) /M_PI * 180.0; |
119 |
> |
} |
120 |
|
} |