1 |
< |
#include "primitives/SRI.hpp" |
2 |
< |
#include "primitives/Atom.hpp" |
3 |
< |
#include <math.h> |
4 |
< |
#include <iostream> |
5 |
< |
#include <stdlib.h> |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
> |
|
42 |
> |
#include "primitives/Torsion.hpp" |
43 |
|
|
44 |
< |
void Torsion::set_atoms( Atom &a, Atom &b, Atom &c, Atom &d){ |
8 |
< |
c_p_a = &a; |
9 |
< |
c_p_b = &b; |
10 |
< |
c_p_c = &c; |
11 |
< |
c_p_d = &d; |
12 |
< |
} |
44 |
> |
namespace oopse { |
45 |
|
|
46 |
+ |
Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, |
47 |
+ |
TorsionType *tt) : |
48 |
+ |
atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } |
49 |
|
|
50 |
< |
void Torsion::calc_forces(){ |
16 |
< |
|
17 |
< |
/********************************************************************** |
18 |
< |
* |
19 |
< |
* initialize vectors |
20 |
< |
* |
21 |
< |
***********************************************************************/ |
22 |
< |
|
23 |
< |
vect r_ab; /* the vector whose origin is a and end is b */ |
24 |
< |
vect r_cb; /* the vector whose origin is c and end is b */ |
25 |
< |
vect r_cd; /* the vector whose origin is c and end is b */ |
26 |
< |
vect r_cr1; /* the cross product of r_ab and r_cb */ |
27 |
< |
vect r_cr2; /* the cross product of r_cb and r_cd */ |
50 |
> |
void Torsion::calcForce(RealType& angle) { |
51 |
|
|
52 |
< |
double r_cr1_x2; /* the components of r_cr1 squared */ |
53 |
< |
double r_cr1_y2; |
54 |
< |
double r_cr1_z2; |
55 |
< |
|
33 |
< |
double r_cr2_x2; /* the components of r_cr2 squared */ |
34 |
< |
double r_cr2_y2; |
35 |
< |
double r_cr2_z2; |
52 |
> |
Vector3d pos1 = atom1_->getPos(); |
53 |
> |
Vector3d pos2 = atom2_->getPos(); |
54 |
> |
Vector3d pos3 = atom3_->getPos(); |
55 |
> |
Vector3d pos4 = atom4_->getPos(); |
56 |
|
|
57 |
< |
double r_cr1_sqr; /* the length of r_cr1 squared */ |
58 |
< |
double r_cr2_sqr; /* the length of r_cr2 squared */ |
59 |
< |
|
40 |
< |
double r_cr1_r_cr2; /* the length of r_cr1 * length of r_cr2 */ |
41 |
< |
|
42 |
< |
double aR[3], bR[3], cR[3], dR[3]; |
43 |
< |
double aF[3], bF[3], cF[3], dF[3]; |
57 |
> |
Vector3d r21 = pos1 - pos2; |
58 |
> |
Vector3d r32 = pos2 - pos3; |
59 |
> |
Vector3d r43 = pos3 - pos4; |
60 |
|
|
61 |
< |
c_p_a->getPos( aR ); |
62 |
< |
c_p_b->getPos( bR ); |
63 |
< |
c_p_c->getPos( cR ); |
64 |
< |
c_p_d->getPos( dR ); |
61 |
> |
// Calculate the cross products and distances |
62 |
> |
Vector3d A = cross(r21, r32); |
63 |
> |
RealType rA = A.length(); |
64 |
> |
Vector3d B = cross(r32, r43); |
65 |
> |
RealType rB = B.length(); |
66 |
> |
Vector3d C = cross(r32, A); |
67 |
> |
RealType rC = C.length(); |
68 |
|
|
69 |
< |
r_ab.x = bR[0] - aR[0]; |
70 |
< |
r_ab.y = bR[1] - aR[1]; |
71 |
< |
r_ab.z = bR[2] - aR[2]; |
72 |
< |
r_ab.length = sqrt((r_ab.x * r_ab.x + r_ab.y * r_ab.y + r_ab.z * r_ab.z)); |
69 |
> |
A.normalize(); |
70 |
> |
B.normalize(); |
71 |
> |
C.normalize(); |
72 |
> |
|
73 |
> |
// Calculate the sin and cos |
74 |
> |
RealType cos_phi = dot(A, B) ; |
75 |
> |
if (cos_phi > 1.0) cos_phi = 1.0; |
76 |
> |
if (cos_phi < -1.0) cos_phi = -1.0; |
77 |
|
|
78 |
< |
r_cb.x = bR[0] - cR[0]; |
79 |
< |
r_cb.y = bR[1] - cR[1]; |
80 |
< |
r_cb.z = bR[2] - cR[2]; |
81 |
< |
r_cb.length = sqrt((r_cb.x * r_cb.x + r_cb.y * r_cb.y + r_cb.z * r_cb.z)); |
78 |
> |
RealType dVdcosPhi; |
79 |
> |
torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
80 |
> |
Vector3d f1; |
81 |
> |
Vector3d f2; |
82 |
> |
Vector3d f3; |
83 |
|
|
84 |
< |
r_cd.x = dR[0] - cR[0]; |
85 |
< |
r_cd.y = dR[1] - cR[1]; |
62 |
< |
r_cd.z = dR[2] - cR[2]; |
63 |
< |
r_cd.length = sqrt((r_cd.x * r_cd.x + r_cd.y * r_cd.y + r_cd.z * r_cd.z)); |
84 |
> |
Vector3d dcosdA = (cos_phi * A - B) /rA; |
85 |
> |
Vector3d dcosdB = (cos_phi * B - A) /rB; |
86 |
|
|
87 |
< |
r_cr1.x = r_ab.y * r_cb.z - r_cb.y * r_ab.z; |
88 |
< |
r_cr1.y = r_ab.z * r_cb.x - r_cb.z * r_ab.x; |
89 |
< |
r_cr1.z = r_ab.x * r_cb.y - r_cb.x * r_ab.y; |
90 |
< |
r_cr1_x2 = r_cr1.x * r_cr1.x; |
91 |
< |
r_cr1_y2 = r_cr1.y * r_cr1.y; |
92 |
< |
r_cr1_z2 = r_cr1.z * r_cr1.z; |
93 |
< |
r_cr1_sqr = r_cr1_x2 + r_cr1_y2 + r_cr1_z2; |
94 |
< |
r_cr1.length = sqrt(r_cr1_sqr); |
87 |
> |
f1 = dVdcosPhi * cross(r32, dcosdA); |
88 |
> |
f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
89 |
> |
f3 = dVdcosPhi * cross(dcosdB, r32); |
90 |
> |
|
91 |
> |
atom1_->addFrc(f1); |
92 |
> |
atom2_->addFrc(f2 - f1); |
93 |
> |
atom3_->addFrc(f3 - f2); |
94 |
> |
atom4_->addFrc(-f3); |
95 |
> |
angle = acos(cos_phi) /M_PI * 180.0; |
96 |
> |
} |
97 |
|
|
74 |
– |
r_cr2.x = r_cb.y * r_cd.z - r_cd.y * r_cb.z; |
75 |
– |
r_cr2.y = r_cb.z * r_cd.x - r_cd.z * r_cb.x; |
76 |
– |
r_cr2.z = r_cb.x * r_cd.y - r_cd.x * r_cb.y; |
77 |
– |
r_cr2_x2 = r_cr2.x * r_cr2.x; |
78 |
– |
r_cr2_y2 = r_cr2.y * r_cr2.y; |
79 |
– |
r_cr2_z2 = r_cr2.z * r_cr2.z; |
80 |
– |
r_cr2_sqr = r_cr2_x2 + r_cr2_y2 + r_cr2_z2; |
81 |
– |
r_cr2.length = sqrt(r_cr2_sqr); |
82 |
– |
|
83 |
– |
r_cr1_r_cr2 = r_cr1.length * r_cr2.length; |
84 |
– |
|
85 |
– |
/********************************************************************** |
86 |
– |
* |
87 |
– |
* dot product and angle calculations |
88 |
– |
* |
89 |
– |
***********************************************************************/ |
90 |
– |
|
91 |
– |
double cr1_dot_cr2; /* the dot product of the cr1 and cr2 vectors */ |
92 |
– |
double cos_phi; /* the cosine of the torsion angle */ |
93 |
– |
|
94 |
– |
cr1_dot_cr2 = r_cr1.x * r_cr2.x + r_cr1.y * r_cr2.y + r_cr1.z * r_cr2.z; |
95 |
– |
|
96 |
– |
cos_phi = cr1_dot_cr2 / r_cr1_r_cr2; |
97 |
– |
|
98 |
– |
/* adjust for the granularity of the numbers for angles near 0 or pi */ |
99 |
– |
|
100 |
– |
if(cos_phi > 1.0) cos_phi = 1.0; |
101 |
– |
if(cos_phi < -1.0) cos_phi = -1.0; |
102 |
– |
|
103 |
– |
|
104 |
– |
/******************************************************************** |
105 |
– |
* |
106 |
– |
* This next section calculates derivatives needed for the force |
107 |
– |
* calculation |
108 |
– |
* |
109 |
– |
********************************************************************/ |
110 |
– |
|
111 |
– |
|
112 |
– |
/* the derivatives of cos phi with respect to the x, y, |
113 |
– |
and z components of vectors cr1 and cr2. */ |
114 |
– |
double d_cos_dx_cr1; |
115 |
– |
double d_cos_dy_cr1; |
116 |
– |
double d_cos_dz_cr1; |
117 |
– |
double d_cos_dx_cr2; |
118 |
– |
double d_cos_dy_cr2; |
119 |
– |
double d_cos_dz_cr2; |
120 |
– |
|
121 |
– |
d_cos_dx_cr1 = r_cr2.x / r_cr1_r_cr2 - (cos_phi * r_cr1.x) / r_cr1_sqr; |
122 |
– |
d_cos_dy_cr1 = r_cr2.y / r_cr1_r_cr2 - (cos_phi * r_cr1.y) / r_cr1_sqr; |
123 |
– |
d_cos_dz_cr1 = r_cr2.z / r_cr1_r_cr2 - (cos_phi * r_cr1.z) / r_cr1_sqr; |
124 |
– |
|
125 |
– |
d_cos_dx_cr2 = r_cr1.x / r_cr1_r_cr2 - (cos_phi * r_cr2.x) / r_cr2_sqr; |
126 |
– |
d_cos_dy_cr2 = r_cr1.y / r_cr1_r_cr2 - (cos_phi * r_cr2.y) / r_cr2_sqr; |
127 |
– |
d_cos_dz_cr2 = r_cr1.z / r_cr1_r_cr2 - (cos_phi * r_cr2.z) / r_cr2_sqr; |
128 |
– |
|
129 |
– |
/*********************************************************************** |
130 |
– |
* |
131 |
– |
* Calculate the actual forces and place them in the atoms. |
132 |
– |
* |
133 |
– |
***********************************************************************/ |
134 |
– |
|
135 |
– |
double force; /*the force scaling factor */ |
136 |
– |
|
137 |
– |
force = torsion_force(cos_phi); |
138 |
– |
|
139 |
– |
aF[0] = force * (d_cos_dy_cr1 * r_cb.z - d_cos_dz_cr1 * r_cb.y); |
140 |
– |
aF[1] = force * (d_cos_dz_cr1 * r_cb.x - d_cos_dx_cr1 * r_cb.z); |
141 |
– |
aF[2] = force * (d_cos_dx_cr1 * r_cb.y - d_cos_dy_cr1 * r_cb.x); |
142 |
– |
|
143 |
– |
bF[0] = force * ( d_cos_dy_cr1 * (r_ab.z - r_cb.z) |
144 |
– |
- d_cos_dy_cr2 * r_cd.z |
145 |
– |
+ d_cos_dz_cr1 * (r_cb.y - r_ab.y) |
146 |
– |
+ d_cos_dz_cr2 * r_cd.y); |
147 |
– |
bF[1] = force * ( d_cos_dx_cr1 * (r_cb.z - r_ab.z) |
148 |
– |
+ d_cos_dx_cr2 * r_cd.z |
149 |
– |
+ d_cos_dz_cr1 * (r_ab.x - r_cb.x) |
150 |
– |
- d_cos_dz_cr2 * r_cd.x); |
151 |
– |
bF[2] = force * ( d_cos_dx_cr1 * (r_ab.y - r_cb.y) |
152 |
– |
- d_cos_dx_cr2 * r_cd.y |
153 |
– |
+ d_cos_dy_cr1 * (r_cb.x - r_ab.x) |
154 |
– |
+ d_cos_dy_cr2 * r_cd.x); |
155 |
– |
|
156 |
– |
cF[0] = force * (- d_cos_dy_cr1 * r_ab.z |
157 |
– |
- d_cos_dy_cr2 * (r_cb.z - r_cd.z) |
158 |
– |
+ d_cos_dz_cr1 * r_ab.y |
159 |
– |
- d_cos_dz_cr2 * (r_cd.y - r_cb.y)); |
160 |
– |
cF[1] = force * ( d_cos_dx_cr1 * r_ab.z |
161 |
– |
- d_cos_dx_cr2 * (r_cd.z - r_cb.z) |
162 |
– |
- d_cos_dz_cr1 * r_ab.x |
163 |
– |
- d_cos_dz_cr2 * (r_cb.x - r_cd.x)); |
164 |
– |
cF[2] = force * (- d_cos_dx_cr1 * r_ab.y |
165 |
– |
- d_cos_dx_cr2 * (r_cb.y - r_cd.y) |
166 |
– |
+ d_cos_dy_cr1 * r_ab.x |
167 |
– |
- d_cos_dy_cr2 * (r_cd.x - r_cb.x)); |
168 |
– |
|
169 |
– |
dF[0] = force * (d_cos_dy_cr2 * r_cb.z - d_cos_dz_cr2 * r_cb.y); |
170 |
– |
dF[1] = force * (d_cos_dz_cr2 * r_cb.x - d_cos_dx_cr2 * r_cb.z); |
171 |
– |
dF[2] = force * (d_cos_dx_cr2 * r_cb.y - d_cos_dy_cr2 * r_cb.x); |
172 |
– |
|
173 |
– |
|
174 |
– |
c_p_a->addFrc(aF); |
175 |
– |
c_p_b->addFrc(bF); |
176 |
– |
c_p_c->addFrc(cF); |
177 |
– |
c_p_d->addFrc(dF); |
98 |
|
} |