1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
43 |
|
|
44 |
|
namespace oopse { |
45 |
|
|
46 |
< |
Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, |
47 |
< |
TorsionType *tt) : |
46 |
> |
Torsion::Torsion(Atom *atom1, Atom *atom2, Atom *atom3, Atom *atom4, |
47 |
> |
TorsionType *tt) : |
48 |
|
atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } |
49 |
|
|
50 |
< |
void Torsion::calcForce() { |
50 |
> |
void Torsion::calcForce() { |
51 |
|
Vector3d pos1 = atom1_->getPos(); |
52 |
|
Vector3d pos2 = atom2_->getPos(); |
53 |
|
Vector3d pos3 = atom3_->getPos(); |
80 |
|
Vector3d f2; |
81 |
|
Vector3d f3; |
82 |
|
|
83 |
< |
// Next, we want to calculate the forces. In order |
84 |
< |
// to do that, we first need to figure out whether the |
85 |
< |
// sin or cos form will be more stable. For this, |
86 |
< |
// just look at the value of phi |
87 |
< |
//if (fabs(sin_phi) > 0.1) { |
88 |
< |
// use the sin version to avoid 1/cos terms |
83 |
> |
if (fabs(sin_phi) > 0.5) { |
84 |
> |
//use the sin version to prevent potential singularities |
85 |
|
|
86 |
< |
Vector3d dcosdA = (cos_phi * A - B) /rA; |
87 |
< |
Vector3d dcosdB = (cos_phi * B - A) /rB; |
86 |
> |
Vector3d dcosdA = (cos_phi * A - B) /rA; |
87 |
> |
Vector3d dcosdB = (cos_phi * B - A) /rB; |
88 |
|
|
89 |
< |
double dVdcosPhi = -dVdPhi / sin_phi; |
89 |
> |
double dVdcosPhi = -dVdPhi / sin_phi; |
90 |
|
|
91 |
< |
f1 = dVdcosPhi * cross(r32, dcosdA); |
92 |
< |
f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
93 |
< |
f3 = dVdcosPhi * cross(dcosdB, r32); |
91 |
> |
f1 = dVdcosPhi * cross(r32, dcosdA); |
92 |
> |
f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
93 |
> |
f3 = dVdcosPhi * cross(dcosdB, r32); |
94 |
|
|
95 |
< |
/** @todo fix below block, must be something wrong with the sign somewhere */ |
96 |
< |
//} else { |
101 |
< |
// This angle is closer to 0 or 180 than it is to |
102 |
< |
// 90, so use the cos version to avoid 1/sin terms |
95 |
> |
} else { |
96 |
> |
//use the cos version to prevent potential singularities |
97 |
|
|
98 |
< |
//double dVdsinPhi = dVdPhi /cos_phi; |
99 |
< |
//Vector3d dsindB = (sin_phi * B - C) /rB; |
100 |
< |
//Vector3d dsindC = (sin_phi * C - B) /rC; |
98 |
> |
double dVdsinPhi = dVdPhi /cos_phi; |
99 |
> |
Vector3d dsindB = (sin_phi * B - C) /rB; |
100 |
> |
Vector3d dsindC = (sin_phi * C - B) /rC; |
101 |
|
|
102 |
< |
//f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); |
102 |
> |
f1.x() = dVdsinPhi*((r32.y()*r32.y() + r32.z()*r32.z())*dsindC.x() - r32.x()*r32.y()*dsindC.y() - r32.x()*r32.z()*dsindC.z()); |
103 |
|
|
104 |
< |
//f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); |
104 |
> |
f1.y() = dVdsinPhi*((r32.z()*r32.z() + r32.x()*r32.x())*dsindC.y() - r32.y()*r32.z()*dsindC.z() - r32.y()*r32.x()*dsindC.x()); |
105 |
|
|
106 |
< |
//f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); |
106 |
> |
f1.z() = dVdsinPhi*((r32.x()*r32.x() + r32.y()*r32.y())*dsindC.z() - r32.z()*r32.x()*dsindC.x() - r32.z()*r32.y()*dsindC.y()); |
107 |
|
|
108 |
< |
//f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() |
109 |
< |
//+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); |
108 |
> |
f2.x() = dVdsinPhi*(-(r32.y()*r21.y() + r32.z()*r21.z())*dsindC.x() + (2.0*r32.x()*r21.y() - r21.x()*r32.y())*dsindC.y() |
109 |
> |
+ (2.0*r32.x()*r21.z() - r21.x()*r32.z())*dsindC.z() + dsindB.z()*r43.y() - dsindB.y()*r43.z()); |
110 |
|
|
111 |
< |
//f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() |
112 |
< |
//+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); |
111 |
> |
f2.y() = dVdsinPhi*(-(r32.z()*r21.z() + r32.x()*r21.x())*dsindC.y() + (2.0*r32.y()*r21.z() - r21.y()*r32.z())*dsindC.z() |
112 |
> |
+ (2.0*r32.y()*r21.x() - r21.y()*r32.x())*dsindC.x() + dsindB.x()*r43.z() - dsindB.z()*r43.x()); |
113 |
|
|
114 |
< |
//f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() |
115 |
< |
//+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); |
114 |
> |
f2.z() = dVdsinPhi*(-(r32.x()*r21.x() + r32.y()*r21.y())*dsindC.z() + (2.0*r32.z()*r21.x() - r21.z()*r32.x())*dsindC.x() |
115 |
> |
+(2.0*r32.z()*r21.y() - r21.z()*r32.y())*dsindC.y() + dsindB.y()*r43.x() - dsindB.x()*r43.y()); |
116 |
|
|
117 |
< |
//f3 = dVdsinPhi * cross(r32, dsindB); |
117 |
> |
f3 = dVdsinPhi * cross(dsindB, r32); |
118 |
> |
} |
119 |
|
|
125 |
– |
//} |
126 |
– |
|
120 |
|
atom1_->addFrc(f1); |
121 |
|
atom2_->addFrc(f2 - f1); |
122 |
|
atom3_->addFrc(f3 - f2); |
123 |
|
atom4_->addFrc(-f3); |
124 |
< |
} |
124 |
> |
} |
125 |
|
|
126 |
|
} |