47 |
|
TorsionType *tt) : |
48 |
|
atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), torsionType_(tt) { } |
49 |
|
|
50 |
< |
void Torsion::calcForce(double& angle) { |
50 |
> |
void Torsion::calcForce(RealType& angle) { |
51 |
|
|
52 |
|
Vector3d pos1 = atom1_->getPos(); |
53 |
|
Vector3d pos2 = atom2_->getPos(); |
60 |
|
|
61 |
|
// Calculate the cross products and distances |
62 |
|
Vector3d A = cross(r21, r32); |
63 |
< |
double rA = A.length(); |
63 |
> |
RealType rA = A.length(); |
64 |
|
Vector3d B = cross(r32, r43); |
65 |
< |
double rB = B.length(); |
65 |
> |
RealType rB = B.length(); |
66 |
|
Vector3d C = cross(r32, A); |
67 |
< |
double rC = C.length(); |
67 |
> |
RealType rC = C.length(); |
68 |
|
|
69 |
|
A.normalize(); |
70 |
|
B.normalize(); |
71 |
|
C.normalize(); |
72 |
|
|
73 |
|
// Calculate the sin and cos |
74 |
< |
double cos_phi = dot(A, B) ; |
74 |
> |
RealType cos_phi = dot(A, B) ; |
75 |
|
if (cos_phi > 1.0) cos_phi = 1.0; |
76 |
|
if (cos_phi < -1.0) cos_phi = -1.0; |
77 |
|
|
78 |
< |
double dVdcosPhi; |
78 |
> |
RealType dVdcosPhi; |
79 |
|
torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
80 |
< |
Vector3d f1; |
81 |
< |
Vector3d f2; |
82 |
< |
Vector3d f3; |
80 |
> |
Vector3d f1 ; |
81 |
> |
Vector3d f2 ; |
82 |
> |
Vector3d f3 ; |
83 |
|
|
84 |
|
Vector3d dcosdA = (cos_phi * A - B) /rA; |
85 |
|
Vector3d dcosdB = (cos_phi * B - A) /rB; |