ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/primitives/RigidBody.cpp
(Generate patch)

Comparing trunk/src/primitives/RigidBody.cpp (file contents):
Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
Revision 1797 by gezelter, Mon Sep 10 20:58:00 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include <algorithm>
43   #include <math.h>
44   #include "primitives/RigidBody.hpp"
45   #include "utils/simError.h"
46 < namespace oopse {
47 <
48 < RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){
49 <
50 < }
51 <
52 < void RigidBody::setPrevA(const RotMat3x3d& a) {
46 > #include "utils/NumericConstant.hpp"
47 > namespace OpenMD {
48 >  
49 >  RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData),
50 >                           inertiaTensor_(0.0){    
51 >  }
52 >  
53 >  void RigidBody::setPrevA(const RotMat3x3d& a) {
54      ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
55 <    //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
56 <
57 <    for (int i =0 ; i < atoms_.size(); ++i){
58 <        if (atoms_[i]->isDirectional()) {
59 <            atoms_[i]->setPrevA(a * refOrients_[i]);
58 <        }
55 >    
56 >    for (unsigned int i = 0 ; i < atoms_.size(); ++i){
57 >      if (atoms_[i]->isDirectional()) {
58 >        atoms_[i]->setPrevA(refOrients_[i].transpose() * a);
59 >      }
60      }
61 <
62 < }
63 <
64 <      
65 < void RigidBody::setA(const RotMat3x3d& a) {
61 >    
62 >  }
63 >  
64 >  
65 >  void RigidBody::setA(const RotMat3x3d& a) {
66      ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
66    //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
67  
68 <    for (int i =0 ; i < atoms_.size(); ++i){
69 <        if (atoms_[i]->isDirectional()) {
70 <            atoms_[i]->setA(a * refOrients_[i]);
71 <        }
68 >    for (unsigned int i = 0 ; i < atoms_.size(); ++i){
69 >      if (atoms_[i]->isDirectional()) {
70 >        atoms_[i]->setA(refOrients_[i].transpose() * a);
71 >      }
72      }
73 < }    
74 <    
75 < void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) {
73 >  }    
74 >  
75 >  void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) {
76      ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
77 +    
78      //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;    
79 <
80 <    for (int i =0 ; i < atoms_.size(); ++i){
81 <        if (atoms_[i]->isDirectional()) {
82 <            atoms_[i]->setA(a * refOrients_[i], snapshotNo);
83 <        }
79 >    
80 >    for (unsigned int i = 0 ; i < atoms_.size(); ++i){
81 >      if (atoms_[i]->isDirectional()) {
82 >        atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo);
83 >      }
84      }
85 <
86 < }  
87 <
88 < Mat3x3d RigidBody::getI() {
85 >    
86 >  }  
87 >  
88 >  Mat3x3d RigidBody::getI() {
89      return inertiaTensor_;
90 < }    
91 <
92 < std::vector<double> RigidBody::getGrad() {
93 <     std::vector<double> grad(6, 0.0);
90 >  }    
91 >  
92 >  std::vector<RealType> RigidBody::getGrad() {
93 >    std::vector<RealType> grad(6, 0.0);
94      Vector3d force;
95      Vector3d torque;
96      Vector3d myEuler;
97 <    double phi, theta, psi;
98 <    double cphi, sphi, ctheta, stheta;
97 >    RealType phi, theta;
98 >    // RealType psi;
99 >    RealType cphi, sphi, ctheta, stheta;
100      Vector3d ephi;
101      Vector3d etheta;
102      Vector3d epsi;
103 <
103 >    
104      force = getFrc();
105      torque =getTrq();
106      myEuler = getA().toEulerAngles();
107 <
107 >    
108      phi = myEuler[0];
109      theta = myEuler[1];
110 <    psi = myEuler[2];
111 <
110 >    // psi = myEuler[2];
111 >    
112      cphi = cos(phi);
113      sphi = sin(phi);
114      ctheta = cos(theta);
115      stheta = sin(theta);
116 <
116 >    
117      // get unit vectors along the phi, theta and psi rotation axes
118 <
118 >    
119      ephi[0] = 0.0;
120      ephi[1] = 0.0;
121      ephi[2] = 1.0;
122 <
122 >    
123 >    //etheta[0] = -sphi;
124 >    //etheta[1] =  cphi;
125 >    //etheta[2] =  0.0;
126 >    
127      etheta[0] = cphi;
128      etheta[1] = sphi;
129 <    etheta[2] = 0.0;
130 <
129 >    etheta[2] =  0.0;
130 >    
131      epsi[0] = stheta * cphi;
132      epsi[1] = stheta * sphi;
133      epsi[2] = ctheta;
134 <
134 >    
135      //gradient is equal to -force
136      for (int j = 0 ; j<3; j++)
137 <        grad[j] = -force[j];
138 <
137 >      grad[j] = -force[j];
138 >    
139      for (int j = 0; j < 3; j++ ) {
140 <
141 <        grad[3] += torque[j]*ephi[j];
142 <        grad[4] += torque[j]*etheta[j];
143 <        grad[5] += torque[j]*epsi[j];
144 <
140 >      
141 >      grad[3] += torque[j]*ephi[j];
142 >      grad[4] += torque[j]*etheta[j];
143 >      grad[5] += torque[j]*epsi[j];
144 >      
145      }
146      
147      return grad;
148 < }    
149 <
150 < void RigidBody::accept(BaseVisitor* v) {
148 >  }    
149 >  
150 >  void RigidBody::accept(BaseVisitor* v) {
151      v->visit(this);
152 < }    
152 >  }    
153  
154 < /**@todo need modification */
155 < void  RigidBody::calcRefCoords() {
156 <    double mtmp;
154 >  /**@todo need modification */
155 >  void  RigidBody::calcRefCoords() {
156 >    RealType mtmp;
157      Vector3d refCOM(0.0);
158      mass_ = 0.0;
159      for (std::size_t i = 0; i < atoms_.size(); ++i) {
160 <        mtmp = atoms_[i]->getMass();
161 <        mass_ += mtmp;
162 <        refCOM += refCoords_[i]*mtmp;
160 >      mtmp = atoms_[i]->getMass();
161 >      mass_ += mtmp;
162 >      refCOM += refCoords_[i]*mtmp;
163      }
164      refCOM /= mass_;
165 <
165 >    
166      // Next, move the origin of the reference coordinate system to the COM:
167      for (std::size_t i = 0; i < atoms_.size(); ++i) {
168 <        refCoords_[i] -= refCOM;
168 >      refCoords_[i] -= refCOM;
169      }
170  
171 < // Moment of Inertia calculation
172 <    Mat3x3d Itmp(0.0);
167 <  
171 >    // Moment of Inertia calculation
172 >    Mat3x3d Itmp(0.0);    
173      for (std::size_t i = 0; i < atoms_.size(); i++) {
174 <        mtmp = atoms_[i]->getMass();
175 <        Itmp -= outProduct(refCoords_[i], refCoords_[i]) * mtmp;
176 <        double r2 = refCoords_[i].lengthSquare();
177 <        Itmp(0, 0) += mtmp * r2;
178 <        Itmp(1, 1) += mtmp * r2;
179 <        Itmp(2, 2) += mtmp * r2;
174 >      Mat3x3d IAtom(0.0);  
175 >      mtmp = atoms_[i]->getMass();
176 >      IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp;
177 >      RealType r2 = refCoords_[i].lengthSquare();
178 >      IAtom(0, 0) += mtmp * r2;
179 >      IAtom(1, 1) += mtmp * r2;
180 >      IAtom(2, 2) += mtmp * r2;
181 >      Itmp += IAtom;
182 >      
183 >      //project the inertial moment of directional atoms into this rigid body
184 >      if (atoms_[i]->isDirectional()) {
185 >        Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i];
186 >      }
187      }
188  
189 <    //project the inertial moment of directional atoms into this rigid body
178 <    for (std::size_t i = 0; i < atoms_.size(); i++) {
179 <        if (atoms_[i]->isDirectional()) {
180 <            RectMatrix<double, 3, 3> Iproject = refOrients_[i].transpose() * atoms_[i]->getI();
181 <            Itmp(0, 0) += Iproject(0, 0);
182 <            Itmp(1, 1) += Iproject(1, 1);
183 <            Itmp(2, 2) += Iproject(2, 2);
184 <        }
185 <    }
189 >    //    std::cout << Itmp << std::endl;
190  
191      //diagonalize
192      Vector3d evals;
# Line 195 | Line 199 | void  RigidBody::calcRefCoords() {
199          
200      int nLinearAxis = 0;
201      for (int i = 0; i < 3; i++) {    
202 <        if (fabs(evals[i]) < oopse::epsilon) {
203 <            linear_ = true;
204 <            linearAxis_ = i;
205 <            ++ nLinearAxis;
206 <        }
202 >      if (fabs(evals[i]) < OpenMD::epsilon) {
203 >        linear_ = true;
204 >        linearAxis_ = i;
205 >        ++ nLinearAxis;
206 >      }
207      }
208  
209      if (nLinearAxis > 1) {
210 <        sprintf( painCave.errMsg,
211 <            "RigidBody error.\n"
212 <            "\tOOPSE found more than one axis in this rigid body with a vanishing \n"
213 <            "\tmoment of inertia.  This can happen in one of three ways:\n"
214 <            "\t 1) Only one atom was specified, or \n"
215 <            "\t 2) All atoms were specified at the same location, or\n"
216 <            "\t 3) The programmers did something stupid.\n"
217 <            "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
218 <            );
219 <        painCave.isFatal = 1;
220 <        simError();
210 >      sprintf( painCave.errMsg,
211 >               "RigidBody error.\n"
212 >               "\tOpenMD found more than one axis in this rigid body with a vanishing \n"
213 >               "\tmoment of inertia.  This can happen in one of three ways:\n"
214 >               "\t 1) Only one atom was specified, or \n"
215 >               "\t 2) All atoms were specified at the same location, or\n"
216 >               "\t 3) The programmers did something stupid.\n"
217 >               "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
218 >               );
219 >      painCave.isFatal = 1;
220 >      simError();
221      }
222    
223 < }
223 >  }
224  
225 < void  RigidBody::calcForcesAndTorques() {
225 >  void  RigidBody::calcForcesAndTorques() {
226      Vector3d afrc;
227      Vector3d atrq;
228      Vector3d apos;
229      Vector3d rpos;
230      Vector3d frc(0.0);
231 <    Vector3d trq(0.0);
231 >    Vector3d trq(0.0);    
232      Vector3d pos = this->getPos();
233 <    for (int i = 0; i < atoms_.size(); i++) {
233 >    for (unsigned int i = 0; i < atoms_.size(); i++) {
234  
235 <        afrc = atoms_[i]->getFrc();
236 <        apos = atoms_[i]->getPos();
237 <        rpos = apos - pos;
235 >      afrc = atoms_[i]->getFrc();
236 >      apos = atoms_[i]->getPos();
237 >      rpos = apos - pos;
238          
239 <        frc += afrc;
239 >      frc += afrc;
240  
241 <        trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
242 <        trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
243 <        trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
241 >      trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
242 >      trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
243 >      trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
244  
245 <        // If the atom has a torque associated with it, then we also need to
246 <        // migrate the torques onto the center of mass:
245 >      // If the atom has a torque associated with it, then we also need to
246 >      // migrate the torques onto the center of mass:
247  
248 <        if (atoms_[i]->isDirectional()) {
249 <            atrq = atoms_[i]->getTrq();
250 <            trq += atrq;
251 <        }
248 >      if (atoms_[i]->isDirectional()) {
249 >        atrq = atoms_[i]->getTrq();
250 >        trq += atrq;
251 >      }      
252 >    }        
253 >    addFrc(frc);
254 >    addTrq(trq);    
255 >  }
256 >
257 >  Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() {
258 >    Vector3d afrc;
259 >    Vector3d atrq;
260 >    Vector3d apos;
261 >    Vector3d rpos;
262 >    Vector3d dfrc;
263 >    Vector3d frc(0.0);
264 >    Vector3d trq(0.0);    
265 >    Vector3d pos = this->getPos();
266 >    Mat3x3d tau_(0.0);
267 >
268 >    for (unsigned int i = 0; i < atoms_.size(); i++) {
269 >      
270 >      afrc = atoms_[i]->getFrc();
271 >      apos = atoms_[i]->getPos();
272 >      rpos = apos - pos;
273          
274 +      frc += afrc;
275 +
276 +      trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
277 +      trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
278 +      trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
279 +
280 +      // If the atom has a torque associated with it, then we also need to
281 +      // migrate the torques onto the center of mass:
282 +
283 +      if (atoms_[i]->isDirectional()) {
284 +        atrq = atoms_[i]->getTrq();
285 +        trq += atrq;
286 +      }
287 +      
288 +      tau_(0,0) -= rpos[0]*afrc[0];
289 +      tau_(0,1) -= rpos[0]*afrc[1];
290 +      tau_(0,2) -= rpos[0]*afrc[2];
291 +      tau_(1,0) -= rpos[1]*afrc[0];
292 +      tau_(1,1) -= rpos[1]*afrc[1];
293 +      tau_(1,2) -= rpos[1]*afrc[2];
294 +      tau_(2,0) -= rpos[2]*afrc[0];
295 +      tau_(2,1) -= rpos[2]*afrc[1];
296 +      tau_(2,2) -= rpos[2]*afrc[2];
297 +
298      }
299 <    
300 <    setFrc(frc);
301 <    setTrq(trq);
302 <    
254 < }
299 >    addFrc(frc);
300 >    addTrq(trq);
301 >    return tau_;
302 >  }
303  
304 < void  RigidBody::updateAtoms() {
304 >  void  RigidBody::updateAtoms() {
305      unsigned int i;
306      Vector3d ref;
307      Vector3d apos;
# Line 263 | Line 311 | void  RigidBody::updateAtoms() {
311      
312      for (i = 0; i < atoms_.size(); i++) {
313      
314 <        ref = body2Lab(refCoords_[i]);
314 >      ref = body2Lab(refCoords_[i]);
315  
316 <        apos = pos + ref;
316 >      apos = pos + ref;
317  
318 <        atoms_[i]->setPos(apos);
318 >      atoms_[i]->setPos(apos);
319  
320 <        if (atoms_[i]->isDirectional()) {
320 >      if (atoms_[i]->isDirectional()) {
321            
322 <          dAtom = (DirectionalAtom *) atoms_[i];
323 <          dAtom->setA(a * refOrients_[i]);
324 <          //dAtom->rotateBy( A );      
277 <        }
322 >        dAtom = (DirectionalAtom *) atoms_[i];
323 >        dAtom->setA(refOrients_[i].transpose() * a);
324 >      }
325  
326      }
327    
328 < }
328 >  }
329  
330  
331 < void  RigidBody::updateAtoms(int frame) {
331 >  void  RigidBody::updateAtoms(int frame) {
332      unsigned int i;
333      Vector3d ref;
334      Vector3d apos;
# Line 291 | Line 338 | void  RigidBody::updateAtoms(int frame) {
338      
339      for (i = 0; i < atoms_.size(); i++) {
340      
341 <        ref = body2Lab(refCoords_[i], frame);
341 >      ref = body2Lab(refCoords_[i], frame);
342  
343 <        apos = pos + ref;
343 >      apos = pos + ref;
344  
345 <        atoms_[i]->setPos(apos, frame);
345 >      atoms_[i]->setPos(apos, frame);
346  
347 <        if (atoms_[i]->isDirectional()) {
347 >      if (atoms_[i]->isDirectional()) {
348            
349 <          dAtom = (DirectionalAtom *) atoms_[i];
350 <          dAtom->setA(a * refOrients_[i], frame);
351 <        }
349 >        dAtom = (DirectionalAtom *) atoms_[i];
350 >        dAtom->setA(refOrients_[i].transpose() * a, frame);
351 >      }
352  
353      }
354    
355 < }
355 >  }
356  
357 < void RigidBody::updateAtomVel() {
357 >  void RigidBody::updateAtomVel() {
358      Mat3x3d skewMat;;
359  
360      Vector3d ji = getJ();
# Line 330 | Line 377 | void RigidBody::updateAtomVel() {
377  
378  
379      Vector3d velRot;        
380 <    for (int i =0 ; i < refCoords_.size(); ++i) {
381 <        atoms_[i]->setVel(rbVel + mat * refCoords_[i]);
380 >    for (unsigned int i = 0 ; i < refCoords_.size(); ++i) {
381 >      atoms_[i]->setVel(rbVel + mat * refCoords_[i]);
382      }
383  
384 < }
384 >  }
385  
386 < void RigidBody::updateAtomVel(int frame) {
386 >  void RigidBody::updateAtomVel(int frame) {
387      Mat3x3d skewMat;;
388  
389      Vector3d ji = getJ(frame);
# Line 359 | Line 406 | void RigidBody::updateAtomVel(int frame) {
406  
407  
408      Vector3d velRot;        
409 <    for (int i =0 ; i < refCoords_.size(); ++i) {
410 <        atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame);
409 >    for (unsigned int i = 0 ; i < refCoords_.size(); ++i) {
410 >      atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame);
411      }
412  
413 < }
413 >  }
414  
415          
416  
417 < bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) {
417 >  bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) {
418      if (index < atoms_.size()) {
419  
420 <        Vector3d ref = body2Lab(refCoords_[index]);
421 <        pos = getPos() + ref;
422 <        return true;
420 >      Vector3d ref = body2Lab(refCoords_[index]);
421 >      pos = getPos() + ref;
422 >      return true;
423      } else {
424 <        std::cerr << index << " is an invalid index, current rigid body contains "
425 <                      << atoms_.size() << "atoms" << std::endl;
426 <        return false;
424 >      std::cerr << index << " is an invalid index, current rigid body contains "
425 >                << atoms_.size() << "atoms" << std::endl;
426 >      return false;
427      }    
428 < }
428 >  }
429  
430 < bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) {
430 >  bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) {
431      std::vector<Atom*>::iterator i;
432      i = std::find(atoms_.begin(), atoms_.end(), atom);
433      if (i != atoms_.end()) {
434 <        //RigidBody class makes sure refCoords_ and atoms_ match each other
435 <        Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]);
436 <        pos = getPos() + ref;
437 <        return true;
434 >      //RigidBody class makes sure refCoords_ and atoms_ match each other
435 >      Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]);
436 >      pos = getPos() + ref;
437 >      return true;
438      } else {
439 <        std::cerr << "Atom " << atom->getGlobalIndex()
440 <                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
441 <        return false;
439 >      std::cerr << "Atom " << atom->getGlobalIndex()
440 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
441 >      return false;
442      }
443 < }
444 < bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) {
443 >  }
444 >  bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) {
445  
446      //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$
447  
448      if (index < atoms_.size()) {
449  
450 <        Vector3d velRot;
451 <        Mat3x3d skewMat;;
452 <        Vector3d ref = refCoords_[index];
453 <        Vector3d ji = getJ();
454 <        Mat3x3d I =  getI();
450 >      Vector3d velRot;
451 >      Mat3x3d skewMat;;
452 >      Vector3d ref = refCoords_[index];
453 >      Vector3d ji = getJ();
454 >      Mat3x3d I =  getI();
455  
456 <        skewMat(0, 0) =0;
457 <        skewMat(0, 1) = ji[2] /I(2, 2);
458 <        skewMat(0, 2) = -ji[1] /I(1, 1);
456 >      skewMat(0, 0) =0;
457 >      skewMat(0, 1) = ji[2] /I(2, 2);
458 >      skewMat(0, 2) = -ji[1] /I(1, 1);
459  
460 <        skewMat(1, 0) = -ji[2] /I(2, 2);
461 <        skewMat(1, 1) = 0;
462 <        skewMat(1, 2) = ji[0]/I(0, 0);
460 >      skewMat(1, 0) = -ji[2] /I(2, 2);
461 >      skewMat(1, 1) = 0;
462 >      skewMat(1, 2) = ji[0]/I(0, 0);
463  
464 <        skewMat(2, 0) =ji[1] /I(1, 1);
465 <        skewMat(2, 1) = -ji[0]/I(0, 0);
466 <        skewMat(2, 2) = 0;
464 >      skewMat(2, 0) =ji[1] /I(1, 1);
465 >      skewMat(2, 1) = -ji[0]/I(0, 0);
466 >      skewMat(2, 2) = 0;
467  
468 <        velRot = (getA() * skewMat).transpose() * ref;
468 >      velRot = (getA() * skewMat).transpose() * ref;
469  
470 <        vel =getVel() + velRot;
471 <        return true;
470 >      vel =getVel() + velRot;
471 >      return true;
472          
473      } else {
474 <        std::cerr << index << " is an invalid index, current rigid body contains "
475 <                      << atoms_.size() << "atoms" << std::endl;
476 <        return false;
474 >      std::cerr << index << " is an invalid index, current rigid body contains "
475 >                << atoms_.size() << "atoms" << std::endl;
476 >      return false;
477      }
478 < }
478 >  }
479  
480 < bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) {
480 >  bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) {
481  
482      std::vector<Atom*>::iterator i;
483      i = std::find(atoms_.begin(), atoms_.end(), atom);
484      if (i != atoms_.end()) {
485 <        return getAtomVel(vel, i - atoms_.begin());
485 >      return getAtomVel(vel, i - atoms_.begin());
486      } else {
487 <        std::cerr << "Atom " << atom->getGlobalIndex()
488 <                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
489 <        return false;
487 >      std::cerr << "Atom " << atom->getGlobalIndex()
488 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
489 >      return false;
490      }    
491 < }
491 >  }
492  
493 < bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) {
493 >  bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) {
494      if (index < atoms_.size()) {
495  
496 <        coor = refCoords_[index];
497 <        return true;
496 >      coor = refCoords_[index];
497 >      return true;
498      } else {
499 <        std::cerr << index << " is an invalid index, current rigid body contains "
500 <                      << atoms_.size() << "atoms" << std::endl;
501 <        return false;
499 >      std::cerr << index << " is an invalid index, current rigid body contains "
500 >                << atoms_.size() << "atoms" << std::endl;
501 >      return false;
502      }
503  
504 < }
504 >  }
505  
506 < bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) {
506 >  bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) {
507      std::vector<Atom*>::iterator i;
508      i = std::find(atoms_.begin(), atoms_.end(), atom);
509      if (i != atoms_.end()) {
510 <        //RigidBody class makes sure refCoords_ and atoms_ match each other
511 <        coor = refCoords_[i - atoms_.begin()];
512 <        return true;
510 >      //RigidBody class makes sure refCoords_ and atoms_ match each other
511 >      coor = refCoords_[i - atoms_.begin()];
512 >      return true;
513      } else {
514 <        std::cerr << "Atom " << atom->getGlobalIndex()
515 <                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
516 <        return false;
514 >      std::cerr << "Atom " << atom->getGlobalIndex()
515 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
516 >      return false;
517      }
518  
519 < }
519 >  }
520  
521  
522 < void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
522 >  void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
523  
524 <  Vector3d coords;
525 <  Vector3d euler;
524 >    Vector3d coords;
525 >    Vector3d euler;
526    
527  
528 <  atoms_.push_back(at);
528 >    atoms_.push_back(at);
529  
530 <  if( !ats->havePosition() ){
531 <    sprintf( painCave.errMsg,
532 <             "RigidBody error.\n"
533 <             "\tAtom %s does not have a position specified.\n"
534 <             "\tThis means RigidBody cannot set up reference coordinates.\n",
535 <             ats->getType() );
536 <    painCave.isFatal = 1;
537 <    simError();
538 <  }
530 >    if( !ats->havePosition() ){
531 >      sprintf( painCave.errMsg,
532 >               "RigidBody error.\n"
533 >               "\tAtom %s does not have a position specified.\n"
534 >               "\tThis means RigidBody cannot set up reference coordinates.\n",
535 >               ats->getType().c_str() );
536 >      painCave.isFatal = 1;
537 >      simError();
538 >    }
539    
540 <  coords[0] = ats->getPosX();
541 <  coords[1] = ats->getPosY();
542 <  coords[2] = ats->getPosZ();
540 >    coords[0] = ats->getPosX();
541 >    coords[1] = ats->getPosY();
542 >    coords[2] = ats->getPosZ();
543  
544 <  refCoords_.push_back(coords);
544 >    refCoords_.push_back(coords);
545  
546 <  RotMat3x3d identMat = RotMat3x3d::identity();
546 >    RotMat3x3d identMat = RotMat3x3d::identity();
547    
548 <  if (at->isDirectional()) {  
548 >    if (at->isDirectional()) {  
549  
550 <    if( !ats->haveOrientation() ){
551 <      sprintf( painCave.errMsg,
552 <               "RigidBody error.\n"
553 <               "\tAtom %s does not have an orientation specified.\n"
554 <               "\tThis means RigidBody cannot set up reference orientations.\n",
555 <               ats->getType() );
556 <      painCave.isFatal = 1;
557 <      simError();
558 <    }    
550 >      if( !ats->haveOrientation() ){
551 >        sprintf( painCave.errMsg,
552 >                 "RigidBody error.\n"
553 >                 "\tAtom %s does not have an orientation specified.\n"
554 >                 "\tThis means RigidBody cannot set up reference orientations.\n",
555 >                 ats->getType().c_str() );
556 >        painCave.isFatal = 1;
557 >        simError();
558 >      }    
559      
560 <    euler[0] = ats->getEulerPhi();
561 <    euler[1] = ats->getEulerTheta();
562 <    euler[2] = ats->getEulerPsi();
560 >      euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0;
561 >      euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0;
562 >      euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0;
563  
564 <    RotMat3x3d Atmp(euler);
565 <    refOrients_.push_back(Atmp);
564 >      RotMat3x3d Atmp(euler);
565 >      refOrients_.push_back(Atmp);
566      
567 <  }else {
568 <    refOrients_.push_back(identMat);
569 <  }
567 >    }else {
568 >      refOrients_.push_back(identMat);
569 >    }
570    
571    
572 < }
572 >  }
573  
574   }
575  

Comparing trunk/src/primitives/RigidBody.cpp (property svn:keywords):
Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
Revision 1797 by gezelter, Mon Sep 10 20:58:00 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines