1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
#include <algorithm> |
42 |
#include <math.h> |
43 |
#include "primitives/RigidBody.hpp" |
44 |
#include "utils/simError.h" |
45 |
#include "utils/NumericConstant.hpp" |
46 |
namespace oopse { |
47 |
|
48 |
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), |
49 |
inertiaTensor_(0.0){ |
50 |
} |
51 |
|
52 |
void RigidBody::setPrevA(const RotMat3x3d& a) { |
53 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
54 |
|
55 |
for (int i =0 ; i < atoms_.size(); ++i){ |
56 |
if (atoms_[i]->isDirectional()) { |
57 |
atoms_[i]->setPrevA(refOrients_[i].transpose() * a); |
58 |
} |
59 |
} |
60 |
|
61 |
} |
62 |
|
63 |
|
64 |
void RigidBody::setA(const RotMat3x3d& a) { |
65 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
66 |
|
67 |
for (int i =0 ; i < atoms_.size(); ++i){ |
68 |
if (atoms_[i]->isDirectional()) { |
69 |
atoms_[i]->setA(refOrients_[i].transpose() * a); |
70 |
} |
71 |
} |
72 |
} |
73 |
|
74 |
void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { |
75 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
76 |
|
77 |
//((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
78 |
|
79 |
for (int i =0 ; i < atoms_.size(); ++i){ |
80 |
if (atoms_[i]->isDirectional()) { |
81 |
atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); |
82 |
} |
83 |
} |
84 |
|
85 |
} |
86 |
|
87 |
Mat3x3d RigidBody::getI() { |
88 |
return inertiaTensor_; |
89 |
} |
90 |
|
91 |
std::vector<RealType> RigidBody::getGrad() { |
92 |
std::vector<RealType> grad(6, 0.0); |
93 |
Vector3d force; |
94 |
Vector3d torque; |
95 |
Vector3d myEuler; |
96 |
RealType phi, theta, psi; |
97 |
RealType cphi, sphi, ctheta, stheta; |
98 |
Vector3d ephi; |
99 |
Vector3d etheta; |
100 |
Vector3d epsi; |
101 |
|
102 |
force = getFrc(); |
103 |
torque =getTrq(); |
104 |
myEuler = getA().toEulerAngles(); |
105 |
|
106 |
phi = myEuler[0]; |
107 |
theta = myEuler[1]; |
108 |
psi = myEuler[2]; |
109 |
|
110 |
cphi = cos(phi); |
111 |
sphi = sin(phi); |
112 |
ctheta = cos(theta); |
113 |
stheta = sin(theta); |
114 |
|
115 |
// get unit vectors along the phi, theta and psi rotation axes |
116 |
|
117 |
ephi[0] = 0.0; |
118 |
ephi[1] = 0.0; |
119 |
ephi[2] = 1.0; |
120 |
|
121 |
etheta[0] = cphi; |
122 |
etheta[1] = sphi; |
123 |
etheta[2] = 0.0; |
124 |
|
125 |
epsi[0] = stheta * cphi; |
126 |
epsi[1] = stheta * sphi; |
127 |
epsi[2] = ctheta; |
128 |
|
129 |
//gradient is equal to -force |
130 |
for (int j = 0 ; j<3; j++) |
131 |
grad[j] = -force[j]; |
132 |
|
133 |
for (int j = 0; j < 3; j++ ) { |
134 |
|
135 |
grad[3] += torque[j]*ephi[j]; |
136 |
grad[4] += torque[j]*etheta[j]; |
137 |
grad[5] += torque[j]*epsi[j]; |
138 |
|
139 |
} |
140 |
|
141 |
return grad; |
142 |
} |
143 |
|
144 |
void RigidBody::accept(BaseVisitor* v) { |
145 |
v->visit(this); |
146 |
} |
147 |
|
148 |
/**@todo need modification */ |
149 |
void RigidBody::calcRefCoords() { |
150 |
RealType mtmp; |
151 |
Vector3d refCOM(0.0); |
152 |
mass_ = 0.0; |
153 |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
154 |
mtmp = atoms_[i]->getMass(); |
155 |
mass_ += mtmp; |
156 |
refCOM += refCoords_[i]*mtmp; |
157 |
} |
158 |
refCOM /= mass_; |
159 |
|
160 |
// Next, move the origin of the reference coordinate system to the COM: |
161 |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
162 |
refCoords_[i] -= refCOM; |
163 |
} |
164 |
|
165 |
// Moment of Inertia calculation |
166 |
Mat3x3d Itmp(0.0); |
167 |
for (std::size_t i = 0; i < atoms_.size(); i++) { |
168 |
Mat3x3d IAtom(0.0); |
169 |
mtmp = atoms_[i]->getMass(); |
170 |
IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; |
171 |
RealType r2 = refCoords_[i].lengthSquare(); |
172 |
IAtom(0, 0) += mtmp * r2; |
173 |
IAtom(1, 1) += mtmp * r2; |
174 |
IAtom(2, 2) += mtmp * r2; |
175 |
Itmp += IAtom; |
176 |
|
177 |
//project the inertial moment of directional atoms into this rigid body |
178 |
if (atoms_[i]->isDirectional()) { |
179 |
Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; |
180 |
} |
181 |
} |
182 |
|
183 |
// std::cout << Itmp << std::endl; |
184 |
|
185 |
//diagonalize |
186 |
Vector3d evals; |
187 |
Mat3x3d::diagonalize(Itmp, evals, sU_); |
188 |
|
189 |
// zero out I and then fill the diagonals with the moments of inertia: |
190 |
inertiaTensor_(0, 0) = evals[0]; |
191 |
inertiaTensor_(1, 1) = evals[1]; |
192 |
inertiaTensor_(2, 2) = evals[2]; |
193 |
|
194 |
int nLinearAxis = 0; |
195 |
for (int i = 0; i < 3; i++) { |
196 |
if (fabs(evals[i]) < oopse::epsilon) { |
197 |
linear_ = true; |
198 |
linearAxis_ = i; |
199 |
++ nLinearAxis; |
200 |
} |
201 |
} |
202 |
|
203 |
if (nLinearAxis > 1) { |
204 |
sprintf( painCave.errMsg, |
205 |
"RigidBody error.\n" |
206 |
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
207 |
"\tmoment of inertia. This can happen in one of three ways:\n" |
208 |
"\t 1) Only one atom was specified, or \n" |
209 |
"\t 2) All atoms were specified at the same location, or\n" |
210 |
"\t 3) The programmers did something stupid.\n" |
211 |
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
212 |
); |
213 |
painCave.isFatal = 1; |
214 |
simError(); |
215 |
} |
216 |
|
217 |
} |
218 |
|
219 |
void RigidBody::calcForcesAndTorques() { |
220 |
Vector3d afrc; |
221 |
Vector3d atrq; |
222 |
Vector3d apos; |
223 |
Vector3d rpos; |
224 |
Vector3d frc(0.0); |
225 |
Vector3d trq(0.0); |
226 |
Vector3d pos = this->getPos(); |
227 |
for (int i = 0; i < atoms_.size(); i++) { |
228 |
|
229 |
afrc = atoms_[i]->getFrc(); |
230 |
apos = atoms_[i]->getPos(); |
231 |
rpos = apos - pos; |
232 |
|
233 |
frc += afrc; |
234 |
|
235 |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
236 |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
237 |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
238 |
|
239 |
// If the atom has a torque associated with it, then we also need to |
240 |
// migrate the torques onto the center of mass: |
241 |
|
242 |
if (atoms_[i]->isDirectional()) { |
243 |
atrq = atoms_[i]->getTrq(); |
244 |
trq += atrq; |
245 |
} |
246 |
} |
247 |
addFrc(frc); |
248 |
addTrq(trq); |
249 |
} |
250 |
|
251 |
Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { |
252 |
Vector3d afrc; |
253 |
Vector3d atrq; |
254 |
Vector3d apos; |
255 |
Vector3d rpos; |
256 |
Vector3d dfrc; |
257 |
Vector3d frc(0.0); |
258 |
Vector3d trq(0.0); |
259 |
Vector3d pos = this->getPos(); |
260 |
Mat3x3d tau_(0.0); |
261 |
|
262 |
for (int i = 0; i < atoms_.size(); i++) { |
263 |
|
264 |
afrc = atoms_[i]->getFrc(); |
265 |
apos = atoms_[i]->getPos(); |
266 |
rpos = apos - pos; |
267 |
|
268 |
frc += afrc; |
269 |
|
270 |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
271 |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
272 |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
273 |
|
274 |
// If the atom has a torque associated with it, then we also need to |
275 |
// migrate the torques onto the center of mass: |
276 |
|
277 |
if (atoms_[i]->isDirectional()) { |
278 |
atrq = atoms_[i]->getTrq(); |
279 |
trq += atrq; |
280 |
} |
281 |
|
282 |
tau_(0,0) -= rpos[0]*afrc[0]; |
283 |
tau_(0,1) -= rpos[0]*afrc[1]; |
284 |
tau_(0,2) -= rpos[0]*afrc[2]; |
285 |
tau_(1,0) -= rpos[1]*afrc[0]; |
286 |
tau_(1,1) -= rpos[1]*afrc[1]; |
287 |
tau_(1,2) -= rpos[1]*afrc[2]; |
288 |
tau_(2,0) -= rpos[2]*afrc[0]; |
289 |
tau_(2,1) -= rpos[2]*afrc[1]; |
290 |
tau_(2,2) -= rpos[2]*afrc[2]; |
291 |
|
292 |
} |
293 |
addFrc(frc); |
294 |
addTrq(trq); |
295 |
return tau_; |
296 |
} |
297 |
|
298 |
void RigidBody::updateAtoms() { |
299 |
unsigned int i; |
300 |
Vector3d ref; |
301 |
Vector3d apos; |
302 |
DirectionalAtom* dAtom; |
303 |
Vector3d pos = getPos(); |
304 |
RotMat3x3d a = getA(); |
305 |
|
306 |
for (i = 0; i < atoms_.size(); i++) { |
307 |
|
308 |
ref = body2Lab(refCoords_[i]); |
309 |
|
310 |
apos = pos + ref; |
311 |
|
312 |
atoms_[i]->setPos(apos); |
313 |
|
314 |
if (atoms_[i]->isDirectional()) { |
315 |
|
316 |
dAtom = (DirectionalAtom *) atoms_[i]; |
317 |
dAtom->setA(refOrients_[i].transpose() * a); |
318 |
} |
319 |
|
320 |
} |
321 |
|
322 |
} |
323 |
|
324 |
|
325 |
void RigidBody::updateAtoms(int frame) { |
326 |
unsigned int i; |
327 |
Vector3d ref; |
328 |
Vector3d apos; |
329 |
DirectionalAtom* dAtom; |
330 |
Vector3d pos = getPos(frame); |
331 |
RotMat3x3d a = getA(frame); |
332 |
|
333 |
for (i = 0; i < atoms_.size(); i++) { |
334 |
|
335 |
ref = body2Lab(refCoords_[i], frame); |
336 |
|
337 |
apos = pos + ref; |
338 |
|
339 |
atoms_[i]->setPos(apos, frame); |
340 |
|
341 |
if (atoms_[i]->isDirectional()) { |
342 |
|
343 |
dAtom = (DirectionalAtom *) atoms_[i]; |
344 |
dAtom->setA(refOrients_[i].transpose() * a, frame); |
345 |
} |
346 |
|
347 |
} |
348 |
|
349 |
} |
350 |
|
351 |
void RigidBody::updateAtomVel() { |
352 |
Mat3x3d skewMat;; |
353 |
|
354 |
Vector3d ji = getJ(); |
355 |
Mat3x3d I = getI(); |
356 |
|
357 |
skewMat(0, 0) =0; |
358 |
skewMat(0, 1) = ji[2] /I(2, 2); |
359 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
360 |
|
361 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
362 |
skewMat(1, 1) = 0; |
363 |
skewMat(1, 2) = ji[0]/I(0, 0); |
364 |
|
365 |
skewMat(2, 0) =ji[1] /I(1, 1); |
366 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
367 |
skewMat(2, 2) = 0; |
368 |
|
369 |
Mat3x3d mat = (getA() * skewMat).transpose(); |
370 |
Vector3d rbVel = getVel(); |
371 |
|
372 |
|
373 |
Vector3d velRot; |
374 |
for (int i =0 ; i < refCoords_.size(); ++i) { |
375 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i]); |
376 |
} |
377 |
|
378 |
} |
379 |
|
380 |
void RigidBody::updateAtomVel(int frame) { |
381 |
Mat3x3d skewMat;; |
382 |
|
383 |
Vector3d ji = getJ(frame); |
384 |
Mat3x3d I = getI(); |
385 |
|
386 |
skewMat(0, 0) =0; |
387 |
skewMat(0, 1) = ji[2] /I(2, 2); |
388 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
389 |
|
390 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
391 |
skewMat(1, 1) = 0; |
392 |
skewMat(1, 2) = ji[0]/I(0, 0); |
393 |
|
394 |
skewMat(2, 0) =ji[1] /I(1, 1); |
395 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
396 |
skewMat(2, 2) = 0; |
397 |
|
398 |
Mat3x3d mat = (getA(frame) * skewMat).transpose(); |
399 |
Vector3d rbVel = getVel(frame); |
400 |
|
401 |
|
402 |
Vector3d velRot; |
403 |
for (int i =0 ; i < refCoords_.size(); ++i) { |
404 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); |
405 |
} |
406 |
|
407 |
} |
408 |
|
409 |
|
410 |
|
411 |
bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { |
412 |
if (index < atoms_.size()) { |
413 |
|
414 |
Vector3d ref = body2Lab(refCoords_[index]); |
415 |
pos = getPos() + ref; |
416 |
return true; |
417 |
} else { |
418 |
std::cerr << index << " is an invalid index, current rigid body contains " |
419 |
<< atoms_.size() << "atoms" << std::endl; |
420 |
return false; |
421 |
} |
422 |
} |
423 |
|
424 |
bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { |
425 |
std::vector<Atom*>::iterator i; |
426 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
427 |
if (i != atoms_.end()) { |
428 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
429 |
Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); |
430 |
pos = getPos() + ref; |
431 |
return true; |
432 |
} else { |
433 |
std::cerr << "Atom " << atom->getGlobalIndex() |
434 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
435 |
return false; |
436 |
} |
437 |
} |
438 |
bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { |
439 |
|
440 |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
441 |
|
442 |
if (index < atoms_.size()) { |
443 |
|
444 |
Vector3d velRot; |
445 |
Mat3x3d skewMat;; |
446 |
Vector3d ref = refCoords_[index]; |
447 |
Vector3d ji = getJ(); |
448 |
Mat3x3d I = getI(); |
449 |
|
450 |
skewMat(0, 0) =0; |
451 |
skewMat(0, 1) = ji[2] /I(2, 2); |
452 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
453 |
|
454 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
455 |
skewMat(1, 1) = 0; |
456 |
skewMat(1, 2) = ji[0]/I(0, 0); |
457 |
|
458 |
skewMat(2, 0) =ji[1] /I(1, 1); |
459 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
460 |
skewMat(2, 2) = 0; |
461 |
|
462 |
velRot = (getA() * skewMat).transpose() * ref; |
463 |
|
464 |
vel =getVel() + velRot; |
465 |
return true; |
466 |
|
467 |
} else { |
468 |
std::cerr << index << " is an invalid index, current rigid body contains " |
469 |
<< atoms_.size() << "atoms" << std::endl; |
470 |
return false; |
471 |
} |
472 |
} |
473 |
|
474 |
bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { |
475 |
|
476 |
std::vector<Atom*>::iterator i; |
477 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
478 |
if (i != atoms_.end()) { |
479 |
return getAtomVel(vel, i - atoms_.begin()); |
480 |
} else { |
481 |
std::cerr << "Atom " << atom->getGlobalIndex() |
482 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
483 |
return false; |
484 |
} |
485 |
} |
486 |
|
487 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { |
488 |
if (index < atoms_.size()) { |
489 |
|
490 |
coor = refCoords_[index]; |
491 |
return true; |
492 |
} else { |
493 |
std::cerr << index << " is an invalid index, current rigid body contains " |
494 |
<< atoms_.size() << "atoms" << std::endl; |
495 |
return false; |
496 |
} |
497 |
|
498 |
} |
499 |
|
500 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { |
501 |
std::vector<Atom*>::iterator i; |
502 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
503 |
if (i != atoms_.end()) { |
504 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
505 |
coor = refCoords_[i - atoms_.begin()]; |
506 |
return true; |
507 |
} else { |
508 |
std::cerr << "Atom " << atom->getGlobalIndex() |
509 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
510 |
return false; |
511 |
} |
512 |
|
513 |
} |
514 |
|
515 |
|
516 |
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { |
517 |
|
518 |
Vector3d coords; |
519 |
Vector3d euler; |
520 |
|
521 |
|
522 |
atoms_.push_back(at); |
523 |
|
524 |
if( !ats->havePosition() ){ |
525 |
sprintf( painCave.errMsg, |
526 |
"RigidBody error.\n" |
527 |
"\tAtom %s does not have a position specified.\n" |
528 |
"\tThis means RigidBody cannot set up reference coordinates.\n", |
529 |
ats->getType().c_str() ); |
530 |
painCave.isFatal = 1; |
531 |
simError(); |
532 |
} |
533 |
|
534 |
coords[0] = ats->getPosX(); |
535 |
coords[1] = ats->getPosY(); |
536 |
coords[2] = ats->getPosZ(); |
537 |
|
538 |
refCoords_.push_back(coords); |
539 |
|
540 |
RotMat3x3d identMat = RotMat3x3d::identity(); |
541 |
|
542 |
if (at->isDirectional()) { |
543 |
|
544 |
if( !ats->haveOrientation() ){ |
545 |
sprintf( painCave.errMsg, |
546 |
"RigidBody error.\n" |
547 |
"\tAtom %s does not have an orientation specified.\n" |
548 |
"\tThis means RigidBody cannot set up reference orientations.\n", |
549 |
ats->getType().c_str() ); |
550 |
painCave.isFatal = 1; |
551 |
simError(); |
552 |
} |
553 |
|
554 |
euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; |
555 |
euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; |
556 |
euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; |
557 |
|
558 |
RotMat3x3d Atmp(euler); |
559 |
refOrients_.push_back(Atmp); |
560 |
|
561 |
}else { |
562 |
refOrients_.push_back(identMat); |
563 |
} |
564 |
|
565 |
|
566 |
} |
567 |
|
568 |
} |
569 |
|