1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
#include <algorithm> |
42 |
#include <math.h> |
43 |
#include "primitives/RigidBody.hpp" |
44 |
#include "utils/simError.h" |
45 |
#include "utils/NumericConstant.hpp" |
46 |
namespace oopse { |
47 |
|
48 |
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){ |
49 |
|
50 |
} |
51 |
|
52 |
void RigidBody::setPrevA(const RotMat3x3d& a) { |
53 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
54 |
|
55 |
for (int i =0 ; i < atoms_.size(); ++i){ |
56 |
if (atoms_[i]->isDirectional()) { |
57 |
atoms_[i]->setPrevA(refOrients_[i].transpose() * a); |
58 |
} |
59 |
} |
60 |
|
61 |
} |
62 |
|
63 |
|
64 |
void RigidBody::setA(const RotMat3x3d& a) { |
65 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
66 |
|
67 |
for (int i =0 ; i < atoms_.size(); ++i){ |
68 |
if (atoms_[i]->isDirectional()) { |
69 |
atoms_[i]->setA(refOrients_[i].transpose() * a); |
70 |
} |
71 |
} |
72 |
} |
73 |
|
74 |
void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { |
75 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
76 |
//((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
77 |
|
78 |
for (int i =0 ; i < atoms_.size(); ++i){ |
79 |
if (atoms_[i]->isDirectional()) { |
80 |
atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); |
81 |
} |
82 |
} |
83 |
|
84 |
} |
85 |
|
86 |
Mat3x3d RigidBody::getI() { |
87 |
return inertiaTensor_; |
88 |
} |
89 |
|
90 |
std::vector<RealType> RigidBody::getGrad() { |
91 |
std::vector<RealType> grad(6, 0.0); |
92 |
Vector3d force; |
93 |
Vector3d torque; |
94 |
Vector3d myEuler; |
95 |
RealType phi, theta, psi; |
96 |
RealType cphi, sphi, ctheta, stheta; |
97 |
Vector3d ephi; |
98 |
Vector3d etheta; |
99 |
Vector3d epsi; |
100 |
|
101 |
force = getFrc(); |
102 |
torque =getTrq(); |
103 |
myEuler = getA().toEulerAngles(); |
104 |
|
105 |
phi = myEuler[0]; |
106 |
theta = myEuler[1]; |
107 |
psi = myEuler[2]; |
108 |
|
109 |
cphi = cos(phi); |
110 |
sphi = sin(phi); |
111 |
ctheta = cos(theta); |
112 |
stheta = sin(theta); |
113 |
|
114 |
// get unit vectors along the phi, theta and psi rotation axes |
115 |
|
116 |
ephi[0] = 0.0; |
117 |
ephi[1] = 0.0; |
118 |
ephi[2] = 1.0; |
119 |
|
120 |
etheta[0] = cphi; |
121 |
etheta[1] = sphi; |
122 |
etheta[2] = 0.0; |
123 |
|
124 |
epsi[0] = stheta * cphi; |
125 |
epsi[1] = stheta * sphi; |
126 |
epsi[2] = ctheta; |
127 |
|
128 |
//gradient is equal to -force |
129 |
for (int j = 0 ; j<3; j++) |
130 |
grad[j] = -force[j]; |
131 |
|
132 |
for (int j = 0; j < 3; j++ ) { |
133 |
|
134 |
grad[3] += torque[j]*ephi[j]; |
135 |
grad[4] += torque[j]*etheta[j]; |
136 |
grad[5] += torque[j]*epsi[j]; |
137 |
|
138 |
} |
139 |
|
140 |
return grad; |
141 |
} |
142 |
|
143 |
void RigidBody::accept(BaseVisitor* v) { |
144 |
v->visit(this); |
145 |
} |
146 |
|
147 |
/**@todo need modification */ |
148 |
void RigidBody::calcRefCoords() { |
149 |
RealType mtmp; |
150 |
Vector3d refCOM(0.0); |
151 |
mass_ = 0.0; |
152 |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
153 |
mtmp = atoms_[i]->getMass(); |
154 |
mass_ += mtmp; |
155 |
refCOM += refCoords_[i]*mtmp; |
156 |
} |
157 |
refCOM /= mass_; |
158 |
|
159 |
// Next, move the origin of the reference coordinate system to the COM: |
160 |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
161 |
refCoords_[i] -= refCOM; |
162 |
} |
163 |
|
164 |
// Moment of Inertia calculation |
165 |
Mat3x3d Itmp(0.0); |
166 |
for (std::size_t i = 0; i < atoms_.size(); i++) { |
167 |
Mat3x3d IAtom(0.0); |
168 |
mtmp = atoms_[i]->getMass(); |
169 |
IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; |
170 |
RealType r2 = refCoords_[i].lengthSquare(); |
171 |
IAtom(0, 0) += mtmp * r2; |
172 |
IAtom(1, 1) += mtmp * r2; |
173 |
IAtom(2, 2) += mtmp * r2; |
174 |
Itmp += IAtom; |
175 |
|
176 |
//project the inertial moment of directional atoms into this rigid body |
177 |
if (atoms_[i]->isDirectional()) { |
178 |
Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; |
179 |
} |
180 |
} |
181 |
|
182 |
// std::cout << Itmp << std::endl; |
183 |
|
184 |
//diagonalize |
185 |
Vector3d evals; |
186 |
Mat3x3d::diagonalize(Itmp, evals, sU_); |
187 |
|
188 |
// zero out I and then fill the diagonals with the moments of inertia: |
189 |
inertiaTensor_(0, 0) = evals[0]; |
190 |
inertiaTensor_(1, 1) = evals[1]; |
191 |
inertiaTensor_(2, 2) = evals[2]; |
192 |
|
193 |
int nLinearAxis = 0; |
194 |
for (int i = 0; i < 3; i++) { |
195 |
if (fabs(evals[i]) < oopse::epsilon) { |
196 |
linear_ = true; |
197 |
linearAxis_ = i; |
198 |
++ nLinearAxis; |
199 |
} |
200 |
} |
201 |
|
202 |
if (nLinearAxis > 1) { |
203 |
sprintf( painCave.errMsg, |
204 |
"RigidBody error.\n" |
205 |
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
206 |
"\tmoment of inertia. This can happen in one of three ways:\n" |
207 |
"\t 1) Only one atom was specified, or \n" |
208 |
"\t 2) All atoms were specified at the same location, or\n" |
209 |
"\t 3) The programmers did something stupid.\n" |
210 |
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
211 |
); |
212 |
painCave.isFatal = 1; |
213 |
simError(); |
214 |
} |
215 |
|
216 |
} |
217 |
|
218 |
void RigidBody::calcForcesAndTorques() { |
219 |
Vector3d afrc; |
220 |
Vector3d atrq; |
221 |
Vector3d apos; |
222 |
Vector3d rpos; |
223 |
Vector3d frc(0.0); |
224 |
Vector3d trq(0.0); |
225 |
Vector3d pos = this->getPos(); |
226 |
for (int i = 0; i < atoms_.size(); i++) { |
227 |
|
228 |
afrc = atoms_[i]->getFrc(); |
229 |
apos = atoms_[i]->getPos(); |
230 |
rpos = apos - pos; |
231 |
|
232 |
frc += afrc; |
233 |
|
234 |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
235 |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
236 |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
237 |
|
238 |
// If the atom has a torque associated with it, then we also need to |
239 |
// migrate the torques onto the center of mass: |
240 |
|
241 |
if (atoms_[i]->isDirectional()) { |
242 |
atrq = atoms_[i]->getTrq(); |
243 |
trq += atrq; |
244 |
} |
245 |
} |
246 |
addFrc(frc); |
247 |
addTrq(trq); |
248 |
} |
249 |
|
250 |
Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { |
251 |
Vector3d afrc; |
252 |
Vector3d atrq; |
253 |
Vector3d apos; |
254 |
Vector3d rpos; |
255 |
Vector3d frc(0.0); |
256 |
Vector3d trq(0.0); |
257 |
Vector3d pos = this->getPos(); |
258 |
Mat3x3d tau_(0.0); |
259 |
|
260 |
for (int i = 0; i < atoms_.size(); i++) { |
261 |
|
262 |
afrc = atoms_[i]->getFrc(); |
263 |
apos = atoms_[i]->getPos(); |
264 |
rpos = apos - pos; |
265 |
|
266 |
frc += afrc; |
267 |
|
268 |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
269 |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
270 |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
271 |
|
272 |
// If the atom has a torque associated with it, then we also need to |
273 |
// migrate the torques onto the center of mass: |
274 |
|
275 |
if (atoms_[i]->isDirectional()) { |
276 |
atrq = atoms_[i]->getTrq(); |
277 |
trq += atrq; |
278 |
} |
279 |
|
280 |
tau_(0,0) -= rpos[0]*afrc[0]; |
281 |
tau_(0,1) -= rpos[0]*afrc[1]; |
282 |
tau_(0,2) -= rpos[0]*afrc[2]; |
283 |
tau_(1,0) -= rpos[1]*afrc[0]; |
284 |
tau_(1,1) -= rpos[1]*afrc[1]; |
285 |
tau_(1,2) -= rpos[1]*afrc[2]; |
286 |
tau_(2,0) -= rpos[2]*afrc[0]; |
287 |
tau_(2,1) -= rpos[2]*afrc[1]; |
288 |
tau_(2,2) -= rpos[2]*afrc[2]; |
289 |
|
290 |
} |
291 |
addFrc(frc); |
292 |
addTrq(trq); |
293 |
return tau_; |
294 |
} |
295 |
|
296 |
void RigidBody::updateAtoms() { |
297 |
unsigned int i; |
298 |
Vector3d ref; |
299 |
Vector3d apos; |
300 |
DirectionalAtom* dAtom; |
301 |
Vector3d pos = getPos(); |
302 |
RotMat3x3d a = getA(); |
303 |
|
304 |
for (i = 0; i < atoms_.size(); i++) { |
305 |
|
306 |
ref = body2Lab(refCoords_[i]); |
307 |
|
308 |
apos = pos + ref; |
309 |
|
310 |
atoms_[i]->setPos(apos); |
311 |
|
312 |
if (atoms_[i]->isDirectional()) { |
313 |
|
314 |
dAtom = (DirectionalAtom *) atoms_[i]; |
315 |
dAtom->setA(refOrients_[i].transpose() * a); |
316 |
} |
317 |
|
318 |
} |
319 |
|
320 |
} |
321 |
|
322 |
|
323 |
void RigidBody::updateAtoms(int frame) { |
324 |
unsigned int i; |
325 |
Vector3d ref; |
326 |
Vector3d apos; |
327 |
DirectionalAtom* dAtom; |
328 |
Vector3d pos = getPos(frame); |
329 |
RotMat3x3d a = getA(frame); |
330 |
|
331 |
for (i = 0; i < atoms_.size(); i++) { |
332 |
|
333 |
ref = body2Lab(refCoords_[i], frame); |
334 |
|
335 |
apos = pos + ref; |
336 |
|
337 |
atoms_[i]->setPos(apos, frame); |
338 |
|
339 |
if (atoms_[i]->isDirectional()) { |
340 |
|
341 |
dAtom = (DirectionalAtom *) atoms_[i]; |
342 |
dAtom->setA(refOrients_[i].transpose() * a, frame); |
343 |
} |
344 |
|
345 |
} |
346 |
|
347 |
} |
348 |
|
349 |
void RigidBody::updateAtomVel() { |
350 |
Mat3x3d skewMat;; |
351 |
|
352 |
Vector3d ji = getJ(); |
353 |
Mat3x3d I = getI(); |
354 |
|
355 |
skewMat(0, 0) =0; |
356 |
skewMat(0, 1) = ji[2] /I(2, 2); |
357 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
358 |
|
359 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
360 |
skewMat(1, 1) = 0; |
361 |
skewMat(1, 2) = ji[0]/I(0, 0); |
362 |
|
363 |
skewMat(2, 0) =ji[1] /I(1, 1); |
364 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
365 |
skewMat(2, 2) = 0; |
366 |
|
367 |
Mat3x3d mat = (getA() * skewMat).transpose(); |
368 |
Vector3d rbVel = getVel(); |
369 |
|
370 |
|
371 |
Vector3d velRot; |
372 |
for (int i =0 ; i < refCoords_.size(); ++i) { |
373 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i]); |
374 |
} |
375 |
|
376 |
} |
377 |
|
378 |
void RigidBody::updateAtomVel(int frame) { |
379 |
Mat3x3d skewMat;; |
380 |
|
381 |
Vector3d ji = getJ(frame); |
382 |
Mat3x3d I = getI(); |
383 |
|
384 |
skewMat(0, 0) =0; |
385 |
skewMat(0, 1) = ji[2] /I(2, 2); |
386 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
387 |
|
388 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
389 |
skewMat(1, 1) = 0; |
390 |
skewMat(1, 2) = ji[0]/I(0, 0); |
391 |
|
392 |
skewMat(2, 0) =ji[1] /I(1, 1); |
393 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
394 |
skewMat(2, 2) = 0; |
395 |
|
396 |
Mat3x3d mat = (getA(frame) * skewMat).transpose(); |
397 |
Vector3d rbVel = getVel(frame); |
398 |
|
399 |
|
400 |
Vector3d velRot; |
401 |
for (int i =0 ; i < refCoords_.size(); ++i) { |
402 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); |
403 |
} |
404 |
|
405 |
} |
406 |
|
407 |
|
408 |
|
409 |
bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { |
410 |
if (index < atoms_.size()) { |
411 |
|
412 |
Vector3d ref = body2Lab(refCoords_[index]); |
413 |
pos = getPos() + ref; |
414 |
return true; |
415 |
} else { |
416 |
std::cerr << index << " is an invalid index, current rigid body contains " |
417 |
<< atoms_.size() << "atoms" << std::endl; |
418 |
return false; |
419 |
} |
420 |
} |
421 |
|
422 |
bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { |
423 |
std::vector<Atom*>::iterator i; |
424 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
425 |
if (i != atoms_.end()) { |
426 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
427 |
Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); |
428 |
pos = getPos() + ref; |
429 |
return true; |
430 |
} else { |
431 |
std::cerr << "Atom " << atom->getGlobalIndex() |
432 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
433 |
return false; |
434 |
} |
435 |
} |
436 |
bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { |
437 |
|
438 |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
439 |
|
440 |
if (index < atoms_.size()) { |
441 |
|
442 |
Vector3d velRot; |
443 |
Mat3x3d skewMat;; |
444 |
Vector3d ref = refCoords_[index]; |
445 |
Vector3d ji = getJ(); |
446 |
Mat3x3d I = getI(); |
447 |
|
448 |
skewMat(0, 0) =0; |
449 |
skewMat(0, 1) = ji[2] /I(2, 2); |
450 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
451 |
|
452 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
453 |
skewMat(1, 1) = 0; |
454 |
skewMat(1, 2) = ji[0]/I(0, 0); |
455 |
|
456 |
skewMat(2, 0) =ji[1] /I(1, 1); |
457 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
458 |
skewMat(2, 2) = 0; |
459 |
|
460 |
velRot = (getA() * skewMat).transpose() * ref; |
461 |
|
462 |
vel =getVel() + velRot; |
463 |
return true; |
464 |
|
465 |
} else { |
466 |
std::cerr << index << " is an invalid index, current rigid body contains " |
467 |
<< atoms_.size() << "atoms" << std::endl; |
468 |
return false; |
469 |
} |
470 |
} |
471 |
|
472 |
bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { |
473 |
|
474 |
std::vector<Atom*>::iterator i; |
475 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
476 |
if (i != atoms_.end()) { |
477 |
return getAtomVel(vel, i - atoms_.begin()); |
478 |
} else { |
479 |
std::cerr << "Atom " << atom->getGlobalIndex() |
480 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
481 |
return false; |
482 |
} |
483 |
} |
484 |
|
485 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { |
486 |
if (index < atoms_.size()) { |
487 |
|
488 |
coor = refCoords_[index]; |
489 |
return true; |
490 |
} else { |
491 |
std::cerr << index << " is an invalid index, current rigid body contains " |
492 |
<< atoms_.size() << "atoms" << std::endl; |
493 |
return false; |
494 |
} |
495 |
|
496 |
} |
497 |
|
498 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { |
499 |
std::vector<Atom*>::iterator i; |
500 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
501 |
if (i != atoms_.end()) { |
502 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
503 |
coor = refCoords_[i - atoms_.begin()]; |
504 |
return true; |
505 |
} else { |
506 |
std::cerr << "Atom " << atom->getGlobalIndex() |
507 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
508 |
return false; |
509 |
} |
510 |
|
511 |
} |
512 |
|
513 |
|
514 |
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { |
515 |
|
516 |
Vector3d coords; |
517 |
Vector3d euler; |
518 |
|
519 |
|
520 |
atoms_.push_back(at); |
521 |
|
522 |
if( !ats->havePosition() ){ |
523 |
sprintf( painCave.errMsg, |
524 |
"RigidBody error.\n" |
525 |
"\tAtom %s does not have a position specified.\n" |
526 |
"\tThis means RigidBody cannot set up reference coordinates.\n", |
527 |
ats->getType().c_str() ); |
528 |
painCave.isFatal = 1; |
529 |
simError(); |
530 |
} |
531 |
|
532 |
coords[0] = ats->getPosX(); |
533 |
coords[1] = ats->getPosY(); |
534 |
coords[2] = ats->getPosZ(); |
535 |
|
536 |
refCoords_.push_back(coords); |
537 |
|
538 |
RotMat3x3d identMat = RotMat3x3d::identity(); |
539 |
|
540 |
if (at->isDirectional()) { |
541 |
|
542 |
if( !ats->haveOrientation() ){ |
543 |
sprintf( painCave.errMsg, |
544 |
"RigidBody error.\n" |
545 |
"\tAtom %s does not have an orientation specified.\n" |
546 |
"\tThis means RigidBody cannot set up reference orientations.\n", |
547 |
ats->getType().c_str() ); |
548 |
painCave.isFatal = 1; |
549 |
simError(); |
550 |
} |
551 |
|
552 |
euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; |
553 |
euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; |
554 |
euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; |
555 |
|
556 |
RotMat3x3d Atmp(euler); |
557 |
refOrients_.push_back(Atmp); |
558 |
|
559 |
}else { |
560 |
refOrients_.push_back(identMat); |
561 |
} |
562 |
|
563 |
|
564 |
} |
565 |
|
566 |
} |
567 |
|