35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
+ |
#include "config.h" |
44 |
+ |
#include <cmath> |
45 |
+ |
|
46 |
|
#include "primitives/Inversion.hpp" |
47 |
|
|
48 |
|
namespace OpenMD { |
49 |
|
|
50 |
|
Inversion::Inversion(Atom *atom1, Atom *atom2, Atom *atom3, |
51 |
< |
Atom *atom4, InversionType *it) : |
52 |
< |
atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), |
53 |
< |
inversionType_(it) { } |
51 |
> |
Atom *atom4, InversionType *it) : |
52 |
> |
ShortRangeInteraction(), inversionType_(it) { |
53 |
> |
|
54 |
> |
atoms_.resize(4); |
55 |
> |
atoms_[0] = atom1; |
56 |
> |
atoms_[1] = atom2; |
57 |
> |
atoms_[2] = atom3; |
58 |
> |
atoms_[3] = atom4; |
59 |
> |
|
60 |
> |
inversionKey_ = inversionType_->getKey(); |
61 |
> |
} |
62 |
|
|
63 |
< |
void Inversion::calcForce(RealType& angle) { |
63 |
> |
void Inversion::calcForce(RealType& angle, bool doParticlePot) { |
64 |
|
|
65 |
|
// In OpenMD's version of an inversion, the central atom |
66 |
|
// comes first. However, to get the planarity in a typical cosine |
67 |
|
// version of this potential (i.e. Amber-style), the central atom |
68 |
|
// is treated as atom *3* in a standard torsion form: |
69 |
|
|
70 |
< |
Vector3d pos1 = atom2_->getPos(); |
71 |
< |
Vector3d pos2 = atom3_->getPos(); |
72 |
< |
Vector3d pos3 = atom1_->getPos(); |
73 |
< |
Vector3d pos4 = atom4_->getPos(); |
70 |
> |
Vector3d pos1 = atoms_[1]->getPos(); |
71 |
> |
Vector3d pos2 = atoms_[2]->getPos(); |
72 |
> |
Vector3d pos3 = atoms_[0]->getPos(); |
73 |
> |
Vector3d pos4 = atoms_[3]->getPos(); |
74 |
|
|
75 |
|
Vector3d r31 = pos1 - pos3; |
76 |
|
Vector3d r23 = pos3 - pos2; |
81 |
|
RealType rA = A.length(); |
82 |
|
Vector3d B = cross(r43, r23); |
83 |
|
RealType rB = B.length(); |
72 |
– |
//Vector3d C = cross(r23, A); |
73 |
– |
//RealType rC = C.length(); |
84 |
|
|
85 |
|
A.normalize(); |
86 |
|
B.normalize(); |
77 |
– |
//C.normalize(); |
87 |
|
|
88 |
|
// Calculate the sin and cos |
89 |
|
RealType cos_phi = dot(A, B) ; |
91 |
|
if (cos_phi < -1.0) cos_phi = -1.0; |
92 |
|
|
93 |
|
RealType dVdcosPhi; |
94 |
< |
inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
94 |
> |
switch (inversionKey_) { |
95 |
> |
case itCosAngle: |
96 |
> |
inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
97 |
> |
break; |
98 |
> |
case itAngle: |
99 |
> |
RealType phi = acos(cos_phi); |
100 |
> |
RealType dVdPhi; |
101 |
> |
inversionType_->calcForce(phi, potential_, dVdPhi); |
102 |
> |
RealType sin_phi = sqrt(1.0 - cos_phi * cos_phi); |
103 |
> |
if (fabs(sin_phi) < 1.0E-6) { |
104 |
> |
sin_phi = 1.0E-6; |
105 |
> |
} |
106 |
> |
dVdcosPhi = dVdPhi / sin_phi; |
107 |
> |
break; |
108 |
> |
} |
109 |
> |
|
110 |
|
Vector3d f1 ; |
111 |
|
Vector3d f2 ; |
112 |
|
Vector3d f3 ; |
128 |
|
|
129 |
|
// Confusing enough? Good. |
130 |
|
|
131 |
< |
atom2_->addFrc(f1); |
132 |
< |
atom1_->addFrc(f2 - f1 + f3); |
133 |
< |
atom4_->addFrc(-f2); |
134 |
< |
atom3_->addFrc(-f3); |
131 |
> |
atoms_[1]->addFrc(f1); |
132 |
> |
atoms_[0]->addFrc(f2 - f1 + f3); |
133 |
> |
atoms_[3]->addFrc(-f2); |
134 |
> |
atoms_[2]->addFrc(-f3); |
135 |
|
|
136 |
< |
atom1_->addParticlePot(potential_); |
137 |
< |
atom2_->addParticlePot(potential_); |
138 |
< |
atom3_->addParticlePot(potential_); |
139 |
< |
atom4_->addParticlePot(potential_); |
140 |
< |
|
136 |
> |
if (doParticlePot) { |
137 |
> |
atoms_[0]->addParticlePot(potential_); |
138 |
> |
atoms_[1]->addParticlePot(potential_); |
139 |
> |
atoms_[2]->addParticlePot(potential_); |
140 |
> |
atoms_[3]->addParticlePot(potential_); |
141 |
> |
} |
142 |
> |
|
143 |
|
angle = acos(cos_phi) /M_PI * 180.0; |
144 |
|
} |
145 |
|
|