48 |
|
namespace OpenMD { |
49 |
|
|
50 |
|
Inversion::Inversion(Atom *atom1, Atom *atom2, Atom *atom3, |
51 |
< |
Atom *atom4, InversionType *it) : |
52 |
< |
atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4), |
53 |
< |
inversionType_(it) { } |
51 |
> |
Atom *atom4, InversionType *it) : |
52 |
> |
ShortRangeInteraction(), inversionType_(it) { |
53 |
> |
|
54 |
> |
atoms_.resize(4); |
55 |
> |
atoms_[0] = atom1; |
56 |
> |
atoms_[1] = atom2; |
57 |
> |
atoms_[2] = atom3; |
58 |
> |
atoms_[3] = atom4; |
59 |
> |
|
60 |
> |
inversionKey_ = inversionType_->getKey(); |
61 |
> |
} |
62 |
|
|
63 |
|
void Inversion::calcForce(RealType& angle, bool doParticlePot) { |
64 |
|
|
67 |
|
// version of this potential (i.e. Amber-style), the central atom |
68 |
|
// is treated as atom *3* in a standard torsion form: |
69 |
|
|
70 |
< |
Vector3d pos1 = atom2_->getPos(); |
71 |
< |
Vector3d pos2 = atom3_->getPos(); |
72 |
< |
Vector3d pos3 = atom1_->getPos(); |
73 |
< |
Vector3d pos4 = atom4_->getPos(); |
70 |
> |
Vector3d pos1 = atoms_[1]->getPos(); |
71 |
> |
Vector3d pos2 = atoms_[2]->getPos(); |
72 |
> |
Vector3d pos3 = atoms_[0]->getPos(); |
73 |
> |
Vector3d pos4 = atoms_[3]->getPos(); |
74 |
|
|
75 |
|
Vector3d r31 = pos1 - pos3; |
76 |
|
Vector3d r23 = pos3 - pos2; |
94 |
|
if (cos_phi < -1.0) cos_phi = -1.0; |
95 |
|
|
96 |
|
RealType dVdcosPhi; |
97 |
< |
inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
97 |
> |
switch (inversionKey_) { |
98 |
> |
case itCosAngle: |
99 |
> |
inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
100 |
> |
break; |
101 |
> |
case itAngle: |
102 |
> |
RealType phi = acos(cos_phi); |
103 |
> |
RealType dVdPhi; |
104 |
> |
inversionType_->calcForce(phi, potential_, dVdPhi); |
105 |
> |
RealType sin_phi = sqrt(1.0 - cos_phi * cos_phi); |
106 |
> |
if (fabs(sin_phi) < 1.0E-6) { |
107 |
> |
sin_phi = 1.0E-6; |
108 |
> |
} |
109 |
> |
dVdcosPhi = dVdPhi / sin_phi; |
110 |
> |
break; |
111 |
> |
} |
112 |
> |
|
113 |
|
Vector3d f1 ; |
114 |
|
Vector3d f2 ; |
115 |
|
Vector3d f3 ; |
131 |
|
|
132 |
|
// Confusing enough? Good. |
133 |
|
|
134 |
< |
atom2_->addFrc(f1); |
135 |
< |
atom1_->addFrc(f2 - f1 + f3); |
136 |
< |
atom4_->addFrc(-f2); |
137 |
< |
atom3_->addFrc(-f3); |
134 |
> |
atoms_[1]->addFrc(f1); |
135 |
> |
atoms_[0]->addFrc(f2 - f1 + f3); |
136 |
> |
atoms_[3]->addFrc(-f2); |
137 |
> |
atoms_[2]->addFrc(-f3); |
138 |
|
|
139 |
|
if (doParticlePot) { |
140 |
< |
atom1_->addParticlePot(potential_); |
141 |
< |
atom2_->addParticlePot(potential_); |
142 |
< |
atom3_->addParticlePot(potential_); |
143 |
< |
atom4_->addParticlePot(potential_); |
140 |
> |
atoms_[0]->addParticlePot(potential_); |
141 |
> |
atoms_[1]->addParticlePot(potential_); |
142 |
> |
atoms_[2]->addParticlePot(potential_); |
143 |
> |
atoms_[3]->addParticlePot(potential_); |
144 |
|
} |
145 |
|
|
146 |
|
angle = acos(cos_phi) /M_PI * 180.0; |