ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/primitives/Inversion.cpp
Revision: 1890
Committed: Tue Jun 18 21:06:25 2013 UTC (11 years, 10 months ago) by gezelter
File size: 5139 byte(s)
Log Message:
Adding HarmonicInversionType for GROMOS and CHARMM style force fields.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "config.h"
44 #include <cmath>
45
46 #include "primitives/Inversion.hpp"
47
48 namespace OpenMD {
49
50 Inversion::Inversion(Atom *atom1, Atom *atom2, Atom *atom3,
51 Atom *atom4, InversionType *it) :
52 atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4),
53 inversionType_(it) {
54 inversionKey_ = inversionType_->getKey();
55 }
56
57 void Inversion::calcForce(RealType& angle, bool doParticlePot) {
58
59 // In OpenMD's version of an inversion, the central atom
60 // comes first. However, to get the planarity in a typical cosine
61 // version of this potential (i.e. Amber-style), the central atom
62 // is treated as atom *3* in a standard torsion form:
63
64 Vector3d pos1 = atom2_->getPos();
65 Vector3d pos2 = atom3_->getPos();
66 Vector3d pos3 = atom1_->getPos();
67 Vector3d pos4 = atom4_->getPos();
68
69 Vector3d r31 = pos1 - pos3;
70 Vector3d r23 = pos3 - pos2;
71 Vector3d r43 = pos3 - pos4;
72
73 // Calculate the cross products and distances
74 Vector3d A = cross(r31, r43);
75 RealType rA = A.length();
76 Vector3d B = cross(r43, r23);
77 RealType rB = B.length();
78 //Vector3d C = cross(r23, A);
79 //RealType rC = C.length();
80
81 A.normalize();
82 B.normalize();
83 //C.normalize();
84
85 // Calculate the sin and cos
86 RealType cos_phi = dot(A, B) ;
87 if (cos_phi > 1.0) cos_phi = 1.0;
88 if (cos_phi < -1.0) cos_phi = -1.0;
89
90 RealType dVdcosPhi;
91 switch (inversionKey_) {
92 case itCosAngle:
93 inversionType_->calcForce(cos_phi, potential_, dVdcosPhi);
94 break;
95 case itAngle:
96 RealType phi = acos(cos_phi);
97 RealType dVdPhi;
98 inversionType_->calcForce(phi, potential_, dVdPhi);
99 RealType sin_phi = sqrt(1.0 - cos_phi * cos_phi);
100 if (fabs(sin_phi) < 1.0E-6) {
101 sin_phi = 1.0E-6;
102 }
103 dVdcosPhi = dVdPhi / sin_phi;
104 break;
105 }
106
107 Vector3d f1 ;
108 Vector3d f2 ;
109 Vector3d f3 ;
110
111 Vector3d dcosdA = (cos_phi * A - B) /rA;
112 Vector3d dcosdB = (cos_phi * B - A) /rB;
113
114 f1 = dVdcosPhi * cross(r43, dcosdA);
115 f2 = dVdcosPhi * ( cross(r23, dcosdB) - cross(r31, dcosdA));
116 f3 = dVdcosPhi * cross(dcosdB, r43);
117
118 // In OpenMD's version of an improper torsion, the central atom
119 // comes first. However, to get the planarity in a typical cosine
120 // version of this potential (i.e. Amber-style), the central atom
121 // is treated as atom *3* in a standard torsion form:
122
123 // AMBER: I - J - K - L (e.g. K is sp2 hybridized carbon)
124 // OpenMD: I - (J - K - L) (e.g. I is sp2 hybridized carbon)
125
126 // Confusing enough? Good.
127
128 atom2_->addFrc(f1);
129 atom1_->addFrc(f2 - f1 + f3);
130 atom4_->addFrc(-f2);
131 atom3_->addFrc(-f3);
132
133 if (doParticlePot) {
134 atom1_->addParticlePot(potential_);
135 atom2_->addParticlePot(potential_);
136 atom3_->addParticlePot(potential_);
137 atom4_->addParticlePot(potential_);
138 }
139
140 angle = acos(cos_phi) /M_PI * 180.0;
141 }
142
143 }

Properties

Name Value
svn:keywords Author Id Revision Date