--- trunk/src/primitives/GhostTorsion.cpp 2005/04/15 22:04:00 507 +++ trunk/src/primitives/GhostTorsion.cpp 2010/06/17 14:48:02 1446 @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,62 +28,79 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). + * [4] Vardeman & Gezelter, in progress (2009). */ #include "primitives/GhostTorsion.hpp" -namespace oopse { - - GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, DirectionalAtom* ghostAtom, - TorsionType *tt) : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} - - void GhostTorsion::calcForce() { +namespace OpenMD { + + GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, + DirectionalAtom* ghostAtom, TorsionType *tt) + : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} + + void GhostTorsion::calcForce(RealType& angle) { DirectionalAtom* ghostAtom = static_cast(atom3_); - + Vector3d pos1 = atom1_->getPos(); Vector3d pos2 = atom2_->getPos(); Vector3d pos3 = ghostAtom->getPos(); - + Vector3d r21 = pos1 - pos2; Vector3d r32 = pos2 - pos3; - Vector3d r43 = ghostAtom->getElectroFrame().getColumn(2); - + Vector3d r43 = ghostAtom->getA().getColumn(2); + // Calculate the cross products and distances Vector3d A = cross(r21, r32); - double rA = A.length(); + RealType rA = A.length(); Vector3d B = cross(r32, r43); - double rB = B.length(); - Vector3d C = cross(r32, A); - double rC = C.length(); + RealType rB = B.length(); + /* + If either of the two cross product vectors is tiny, that means + the three atoms involved are colinear, and the torsion angle is + going to be undefined. The easiest check for this problem is + to use the product of the two lengths. + */ + if (rA * rB < OpenMD::epsilon) return; + A.normalize(); B.normalize(); - C.normalize(); // Calculate the sin and cos - double cos_phi = dot(A, B) ; - double sin_phi = dot(C, B); - - double dVdPhi; - torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); - + RealType cos_phi = dot(A, B) ; + + RealType dVdcosPhi; + torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); + Vector3d dcosdA = (cos_phi * A - B) /rA; Vector3d dcosdB = (cos_phi * B - A) /rB; - - double dVdcosPhi = -dVdPhi / sin_phi; - + Vector3d f1 = dVdcosPhi * cross(r32, dcosdA); Vector3d f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); Vector3d f3 = dVdcosPhi * cross(dcosdB, r32); - + atom1_->addFrc(f1); atom2_->addFrc(f2 - f1); - + ghostAtom->addFrc(-f2); - + f3.negate(); ghostAtom->addTrq(cross(r43, f3)); - } + + atom1_->addParticlePot(potential_); + atom2_->addParticlePot(potential_); + ghostAtom->addParticlePot(potential_); + angle = acos(cos_phi) /M_PI * 180.0; + } }