--- trunk/src/primitives/GhostTorsion.cpp 2008/01/23 16:38:22 1211 +++ trunk/src/primitives/GhostTorsion.cpp 2013/06/16 15:15:42 1879 @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,17 +28,30 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). + * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). + * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). */ +#include "config.h" +#include + #include "primitives/GhostTorsion.hpp" -namespace oopse { +namespace OpenMD { GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, DirectionalAtom* ghostAtom, TorsionType *tt) : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} - void GhostTorsion::calcForce(RealType& angle) { + void GhostTorsion::calcForce(RealType& angle, bool doParticlePot) { DirectionalAtom* ghostAtom = static_cast(atom3_); Vector3d pos1 = atom1_->getPos(); @@ -56,19 +60,24 @@ namespace oopse { Vector3d r21 = pos1 - pos2; Vector3d r32 = pos2 - pos3; - Vector3d r43 = ghostAtom->getElectroFrame().getColumn(2); + Vector3d r43 = ghostAtom->getA().transpose().getColumn(2); // Calculate the cross products and distances Vector3d A = cross(r21, r32); RealType rA = A.length(); Vector3d B = cross(r32, r43); RealType rB = B.length(); - Vector3d C = cross(r32, A); - RealType rC = C.length(); + + /* + If either of the two cross product vectors is tiny, that means + the three atoms involved are colinear, and the torsion angle is + going to be undefined. The easiest check for this problem is + to use the product of the two lengths. + */ + if (rA * rB < OpenMD::epsilon) return; A.normalize(); B.normalize(); - C.normalize(); // Calculate the sin and cos RealType cos_phi = dot(A, B) ; @@ -91,6 +100,12 @@ namespace oopse { f3.negate(); ghostAtom->addTrq(cross(r43, f3)); + if (doParticlePot) { + atom1_->addParticlePot(potential_); + atom2_->addParticlePot(potential_); + ghostAtom->addParticlePot(potential_); + } + angle = acos(cos_phi) /M_PI * 180.0; } }