1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include "primitives/GhostTorsion.hpp" |
43 |
|
44 |
namespace OpenMD { |
45 |
|
46 |
GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, |
47 |
DirectionalAtom* ghostAtom, TorsionType *tt) |
48 |
: Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} |
49 |
|
50 |
void GhostTorsion::calcForce(RealType& angle) { |
51 |
DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom3_); |
52 |
|
53 |
Vector3d pos1 = atom1_->getPos(); |
54 |
Vector3d pos2 = atom2_->getPos(); |
55 |
Vector3d pos3 = ghostAtom->getPos(); |
56 |
|
57 |
Vector3d r21 = pos1 - pos2; |
58 |
Vector3d r32 = pos2 - pos3; |
59 |
Vector3d r43 = ghostAtom->getA().transpose().getColumn(2); |
60 |
|
61 |
// Calculate the cross products and distances |
62 |
Vector3d A = cross(r21, r32); |
63 |
RealType rA = A.length(); |
64 |
Vector3d B = cross(r32, r43); |
65 |
RealType rB = B.length(); |
66 |
|
67 |
/* |
68 |
If either of the two cross product vectors is tiny, that means |
69 |
the three atoms involved are colinear, and the torsion angle is |
70 |
going to be undefined. The easiest check for this problem is |
71 |
to use the product of the two lengths. |
72 |
*/ |
73 |
if (rA * rB < OpenMD::epsilon) return; |
74 |
|
75 |
A.normalize(); |
76 |
B.normalize(); |
77 |
|
78 |
// Calculate the sin and cos |
79 |
RealType cos_phi = dot(A, B) ; |
80 |
|
81 |
RealType dVdcosPhi; |
82 |
torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
83 |
|
84 |
Vector3d dcosdA = (cos_phi * A - B) /rA; |
85 |
Vector3d dcosdB = (cos_phi * B - A) /rB; |
86 |
|
87 |
Vector3d f1 = dVdcosPhi * cross(r32, dcosdA); |
88 |
Vector3d f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
89 |
Vector3d f3 = dVdcosPhi * cross(dcosdB, r32); |
90 |
|
91 |
atom1_->addFrc(f1); |
92 |
atom2_->addFrc(f2 - f1); |
93 |
|
94 |
ghostAtom->addFrc(-f2); |
95 |
|
96 |
f3.negate(); |
97 |
ghostAtom->addTrq(cross(r43, f3)); |
98 |
|
99 |
atom1_->addParticlePot(potential_); |
100 |
atom2_->addParticlePot(potential_); |
101 |
ghostAtom->addParticlePot(potential_); |
102 |
|
103 |
angle = acos(cos_phi) /M_PI * 180.0; |
104 |
} |
105 |
} |
106 |
|