1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include "primitives/GhostTorsion.hpp" |
43 |
|
|
44 |
< |
namespace oopse { |
45 |
< |
|
46 |
< |
GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, DirectionalAtom* ghostAtom, |
47 |
< |
TorsionType *tt) : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} |
48 |
< |
|
49 |
< |
void GhostTorsion::calcForce() { |
44 |
> |
namespace OpenMD { |
45 |
> |
|
46 |
> |
GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, |
47 |
> |
DirectionalAtom* ghostAtom, TorsionType *tt) |
48 |
> |
: Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} |
49 |
> |
|
50 |
> |
void GhostTorsion::calcForce(RealType& angle) { |
51 |
|
DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom3_); |
52 |
< |
|
52 |
> |
|
53 |
|
Vector3d pos1 = atom1_->getPos(); |
54 |
|
Vector3d pos2 = atom2_->getPos(); |
55 |
|
Vector3d pos3 = ghostAtom->getPos(); |
56 |
< |
|
56 |
> |
|
57 |
|
Vector3d r21 = pos1 - pos2; |
58 |
|
Vector3d r32 = pos2 - pos3; |
59 |
|
Vector3d r43 = ghostAtom->getElectroFrame().getColumn(2); |
60 |
< |
|
60 |
> |
|
61 |
|
// Calculate the cross products and distances |
62 |
|
Vector3d A = cross(r21, r32); |
63 |
< |
double rA = A.length(); |
63 |
> |
RealType rA = A.length(); |
64 |
|
Vector3d B = cross(r32, r43); |
65 |
< |
double rB = B.length(); |
65 |
> |
RealType rB = B.length(); |
66 |
|
Vector3d C = cross(r32, A); |
67 |
< |
double rC = C.length(); |
68 |
< |
|
67 |
> |
RealType rC = C.length(); |
68 |
> |
|
69 |
|
A.normalize(); |
70 |
|
B.normalize(); |
71 |
|
C.normalize(); |
72 |
|
|
73 |
|
// Calculate the sin and cos |
74 |
< |
double cos_phi = dot(A, B) ; |
75 |
< |
double sin_phi = dot(C, B); |
76 |
< |
|
77 |
< |
double dVdPhi; |
78 |
< |
torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); |
78 |
< |
|
74 |
> |
RealType cos_phi = dot(A, B) ; |
75 |
> |
|
76 |
> |
RealType dVdcosPhi; |
77 |
> |
torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
78 |
> |
|
79 |
|
Vector3d dcosdA = (cos_phi * A - B) /rA; |
80 |
|
Vector3d dcosdB = (cos_phi * B - A) /rB; |
81 |
< |
|
82 |
< |
double dVdcosPhi = -dVdPhi / sin_phi; |
83 |
< |
|
81 |
> |
|
82 |
|
Vector3d f1 = dVdcosPhi * cross(r32, dcosdA); |
83 |
|
Vector3d f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
84 |
|
Vector3d f3 = dVdcosPhi * cross(dcosdB, r32); |
85 |
< |
|
85 |
> |
|
86 |
|
atom1_->addFrc(f1); |
87 |
|
atom2_->addFrc(f2 - f1); |
88 |
< |
|
88 |
> |
|
89 |
|
ghostAtom->addFrc(-f2); |
90 |
< |
|
90 |
> |
|
91 |
|
f3.negate(); |
92 |
|
ghostAtom->addTrq(cross(r43, f3)); |
93 |
< |
} |
93 |
> |
|
94 |
> |
atom1_->addParticlePot(potential_); |
95 |
> |
atom2_->addParticlePot(potential_); |
96 |
> |
ghostAtom->addParticlePot(potential_); |
97 |
|
|
98 |
+ |
angle = acos(cos_phi) /M_PI * 180.0; |
99 |
+ |
} |
100 |
|
} |
101 |
|
|