ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/primitives/GhostTorsion.cpp
(Generate patch)

Comparing trunk/src/primitives/GhostTorsion.cpp (file contents):
Revision 275 by tim, Wed Jan 26 15:15:09 2005 UTC vs.
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include "primitives/GhostTorsion.hpp"
43  
44 < namespace oopse {
45 <
46 < GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2,  DirectionalAtom* ghostAtom,
47 <                 TorsionType *tt) : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {}
48 <
49 < void GhostTorsion::calcForce() {
44 > namespace OpenMD {
45 >  
46 >  GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2,  
47 >                             DirectionalAtom* ghostAtom, TorsionType *tt)
48 >    : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {}
49 >  
50 >  void GhostTorsion::calcForce(RealType& angle) {
51      DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom3_);    
52 <
52 >    
53      Vector3d pos1 = atom1_->getPos();
54      Vector3d pos2 = atom2_->getPos();
55      Vector3d pos3 = ghostAtom->getPos();
56 <
56 >    
57      Vector3d r21 = pos1 - pos2;
58      Vector3d r32 = pos2 - pos3;
59      Vector3d r43 = ghostAtom->getElectroFrame().getColumn(2);
60 <
60 >    
61      //  Calculate the cross products and distances
62      Vector3d A = cross(r21, r32);
63 <    double rA = A.length();
63 >    RealType rA = A.length();
64      Vector3d B = cross(r32, r43);
65 <    double rB = B.length();
65 >    RealType rB = B.length();
66      Vector3d C = cross(r32, A);
67 <    double rC = C.length();
68 <
67 >    RealType rC = C.length();
68 >    
69      A.normalize();
70      B.normalize();
71      C.normalize();
72      
73      //  Calculate the sin and cos
74 <    double cos_phi = dot(A, B) ;
75 <    double sin_phi = dot(C, B);
76 <
77 <    double dVdPhi;
78 <    torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi);
78 <
74 >    RealType cos_phi = dot(A, B) ;
75 >    
76 >    RealType dVdcosPhi;
77 >    torsionType_->calcForce(cos_phi, potential_, dVdcosPhi);
78 >    
79      Vector3d dcosdA = (cos_phi * A - B) /rA;
80      Vector3d dcosdB = (cos_phi * B - A) /rB;
81 <
82 <    double dVdcosPhi = -dVdPhi / sin_phi;
83 <
81 >    
82      Vector3d f1 = dVdcosPhi * cross(r32, dcosdA);
83      Vector3d f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA));
84      Vector3d f3 = dVdcosPhi * cross(dcosdB, r32);
85 <
85 >    
86      atom1_->addFrc(f1);
87      atom2_->addFrc(f2 - f1);
88 <
88 >    
89      ghostAtom->addFrc(-f2);
90 <
90 >    
91      f3.negate();
92      ghostAtom->addTrq(cross(r43, f3));    
93 < }
93 >    
94 >    atom1_->addParticlePot(potential_);
95 >    atom2_->addParticlePot(potential_);
96 >    ghostAtom->addParticlePot(potential_);
97  
98 +    angle = acos(cos_phi) /M_PI * 180.0;
99 +  }
100   }
101  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines