ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/perturbations/UniformGradient.hpp
Revision: 2034
Committed: Mon Nov 3 16:49:03 2014 UTC (10 years, 6 months ago) by gezelter
File size: 5716 byte(s)
Log Message:
Updating UniformGradient to the new parameter structure (two unit vectors
and a gradient strength).

File Contents

# Content
1 /*
2 * Copyright (c) 2014 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43
44 /*! \file perturbations/UniformGradient.hpp
45 \brief Uniform Electric Field Gradient perturbation
46 */
47
48 #ifndef PERTURBATIONS_UNIFORMGRADIENT_HPP
49 #define PERTURBATIONS_UNIFORMGRADIENT_HPP
50
51 #include "perturbations/Perturbation.hpp"
52 #include "brains/SimInfo.hpp"
53
54 namespace OpenMD {
55
56 //! Applies a uniform electric field gradient to the system
57 /*! The gradient is applied as an external perturbation. The user specifies
58
59 \code{.unparsed}
60 uniformGradientStrength = c;
61 uniformGradientDirection1 = (a1, a2, a3)
62 uniformGradientDirection2 = (b1, b2, b3);
63 \endcode
64
65 in the .md file where the two direction vectors, \f$ \mathbf{a} \f$
66 and \f$ \mathbf{b} \f$ are unit vectors, and the value of \f$ g \f$
67 is in units of \f$ V / \AA^2 \f$
68
69 The electrostatic potential corresponding to this uniform gradient is
70
71 \f$ \phi(\mathbf{r}) = - \frac{g}{2} \left[
72 \left(a_1 b_1 - \frac{\cos\psi}{3}\right) x^2
73 + (a_1 b_2 + a_2 b_1) x y + (a_1 b_3 + a_3 b_1) x z +
74 + (a_2 b_1 + a_1 b_2) y x
75 + \left(a_2 b_2 - \frac{\cos\psi}{3}\right) y^2
76 + (a_2 b_3 + a_3 b_2) y z + (a_3 b_1 + a_1 b_3) z x
77 + (a_3 b_2 + a_2 b_3) z y
78 + \left(a_3 b_3 - \frac{\cos\psi}{3}\right) z^2 \right] \f$
79
80 where \f$ \cos \psi = \mathbf{a} \cdot \mathbf{b} \f$. Note that
81 this potential grows unbounded and is not periodic. For these reasons,
82 care should be taken in using a Uniform Gradient with point charges.
83
84 The corresponding field is:
85
86 \f$ \mathbf{E} = \frac{g}{2} \left(
87 2\left(a_1 b_1 - \frac{\cos\psi}{3}\right) x + (a_1 b_2 + a_2 b_1) y
88 + (a_1 b_3 + a_3 b_1) z \\
89 (a_2 b_1 + a_1 b_2) x + 2 \left(a_2 b_2 - \frac{\cos\psi}{3}\right) y
90 + (a_2 b_3 + a_3 b_2) z \\
91 (a_3 b_1 + a_1 b_3) x + (a_3 b_2 + a_2 b_3) y
92 + 2 \left(a_3 b_3 - \frac{\cos\psi}{3}\right) z \end{array} \right) \f$
93
94 The field also grows unbounded and is not periodic. For these reasons,
95 care should be taken in using a Uniform Gradient with point dipoles.
96
97 The corresponding field gradient is:
98
99 \f$ \nabla \mathbf{E} = \frac{g}{2} \left( \array{ccc}
100 2\left(a_1 b_1 - \frac{\cos\psi}{3}\right) &
101 (a_1 b_2 + a_2 b_1) & (a_1 b_3 + a_3 b_1) \\
102 (a_2 b_1 + a_1 b_2) & 2 \left(a_2 b_2 - \frac{\cos\psi}{3}\right) &
103 (a_2 b_3 + a_3 b_2) \\
104 (a_3 b_1 + a_1 b_3) & (a_3 b_2 + a_2 b_3) &
105 2 \left(a_3 b_3 - \frac{\cos\psi}{3}\right) \end{array} \right) \f$
106
107 which is uniform everywhere.
108
109 The uniform field gradient applies a force on charged atoms,
110 \f$ \mathbf{F} = C \mathbf{E}(\mathbf{r}) \f$.
111 For dipolar atoms, the gradient applies both a potential,
112 \f$ U = -\mathbf{D} \cdot \mathbf{E}(\mathbf{r}) \f$, a force,
113 \f$ \mathbf{F} = \mathbf{D} \cdot \nabla \mathbf{E} \f$, and a torque,
114 \f$ \mathbf{\tau} = \mathbf{D} \times \mathbf{E}(\mathbf{r}) \f$.
115
116 For quadrupolar atoms, the uniform field gradient exerts a potential,
117 \f$ U = - \mathsf{Q}:\nabla \mathbf{E} $\f, and a torque
118 \f$ \mathbf{F} = 2 \mathsf{Q} \times \nabla \mathbf{E} \f$
119
120 */
121 class UniformGradient : public Perturbation {
122
123
124 public:
125 UniformGradient(SimInfo* info);
126
127 protected:
128 virtual void initialize();
129 virtual void applyPerturbation();
130
131 private:
132 bool initialized;
133 bool doUniformGradient;
134 bool doParticlePot;
135 Globals* simParams;
136 SimInfo* info_;
137 Mat3x3d Grad_;
138 Vector3d a_, b_;
139 RealType g_, cpsi_;
140 };
141
142
143 } //end namespace OpenMD
144 #endif
145

Properties

Name Value
svn:executable *