ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/perturbations/UniformGradient.hpp
Revision: 2034
Committed: Mon Nov 3 16:49:03 2014 UTC (10 years, 6 months ago) by gezelter
File size: 5716 byte(s)
Log Message:
Updating UniformGradient to the new parameter structure (two unit vectors
and a gradient strength).

File Contents

# User Rev Content
1 gezelter 2026 /*
2     * Copyright (c) 2014 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39     * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41     */
42    
43    
44     /*! \file perturbations/UniformGradient.hpp
45     \brief Uniform Electric Field Gradient perturbation
46     */
47    
48     #ifndef PERTURBATIONS_UNIFORMGRADIENT_HPP
49     #define PERTURBATIONS_UNIFORMGRADIENT_HPP
50    
51     #include "perturbations/Perturbation.hpp"
52     #include "brains/SimInfo.hpp"
53    
54     namespace OpenMD {
55    
56     //! Applies a uniform electric field gradient to the system
57     /*! The gradient is applied as an external perturbation. The user specifies
58    
59     \code{.unparsed}
60 gezelter 2034 uniformGradientStrength = c;
61     uniformGradientDirection1 = (a1, a2, a3)
62     uniformGradientDirection2 = (b1, b2, b3);
63 gezelter 2026 \endcode
64    
65 gezelter 2034 in the .md file where the two direction vectors, \f$ \mathbf{a} \f$
66     and \f$ \mathbf{b} \f$ are unit vectors, and the value of \f$ g \f$
67     is in units of \f$ V / \AA^2 \f$
68 gezelter 2026
69     The electrostatic potential corresponding to this uniform gradient is
70    
71 gezelter 2034 \f$ \phi(\mathbf{r}) = - \frac{g}{2} \left[
72     \left(a_1 b_1 - \frac{\cos\psi}{3}\right) x^2
73     + (a_1 b_2 + a_2 b_1) x y + (a_1 b_3 + a_3 b_1) x z +
74     + (a_2 b_1 + a_1 b_2) y x
75     + \left(a_2 b_2 - \frac{\cos\psi}{3}\right) y^2
76     + (a_2 b_3 + a_3 b_2) y z + (a_3 b_1 + a_1 b_3) z x
77     + (a_3 b_2 + a_2 b_3) z y
78     + \left(a_3 b_3 - \frac{\cos\psi}{3}\right) z^2 \right] \f$
79 gezelter 2026
80 gezelter 2034 where \f$ \cos \psi = \mathbf{a} \cdot \mathbf{b} \f$. Note that
81     this potential grows unbounded and is not periodic. For these reasons,
82 gezelter 2026 care should be taken in using a Uniform Gradient with point charges.
83    
84     The corresponding field is:
85    
86 gezelter 2034 \f$ \mathbf{E} = \frac{g}{2} \left(
87     2\left(a_1 b_1 - \frac{\cos\psi}{3}\right) x + (a_1 b_2 + a_2 b_1) y
88     + (a_1 b_3 + a_3 b_1) z \\
89     (a_2 b_1 + a_1 b_2) x + 2 \left(a_2 b_2 - \frac{\cos\psi}{3}\right) y
90     + (a_2 b_3 + a_3 b_2) z \\
91     (a_3 b_1 + a_1 b_3) x + (a_3 b_2 + a_2 b_3) y
92     + 2 \left(a_3 b_3 - \frac{\cos\psi}{3}\right) z \end{array} \right) \f$
93 gezelter 2026
94     The field also grows unbounded and is not periodic. For these reasons,
95     care should be taken in using a Uniform Gradient with point dipoles.
96    
97     The corresponding field gradient is:
98    
99 gezelter 2034 \f$ \nabla \mathbf{E} = \frac{g}{2} \left( \array{ccc}
100     2\left(a_1 b_1 - \frac{\cos\psi}{3}\right) &
101     (a_1 b_2 + a_2 b_1) & (a_1 b_3 + a_3 b_1) \\
102     (a_2 b_1 + a_1 b_2) & 2 \left(a_2 b_2 - \frac{\cos\psi}{3}\right) &
103     (a_2 b_3 + a_3 b_2) \\
104     (a_3 b_1 + a_1 b_3) & (a_3 b_2 + a_2 b_3) &
105     2 \left(a_3 b_3 - \frac{\cos\psi}{3}\right) \end{array} \right) \f$
106 gezelter 2026
107     which is uniform everywhere.
108    
109     The uniform field gradient applies a force on charged atoms,
110     \f$ \mathbf{F} = C \mathbf{E}(\mathbf{r}) \f$.
111     For dipolar atoms, the gradient applies both a potential,
112     \f$ U = -\mathbf{D} \cdot \mathbf{E}(\mathbf{r}) \f$, a force,
113     \f$ \mathbf{F} = \mathbf{D} \cdot \nabla \mathbf{E} \f$, and a torque,
114     \f$ \mathbf{\tau} = \mathbf{D} \times \mathbf{E}(\mathbf{r}) \f$.
115    
116     For quadrupolar atoms, the uniform field gradient exerts a potential,
117     \f$ U = - \mathsf{Q}:\nabla \mathbf{E} $\f, and a torque
118     \f$ \mathbf{F} = 2 \mathsf{Q} \times \nabla \mathbf{E} \f$
119    
120     */
121     class UniformGradient : public Perturbation {
122    
123    
124     public:
125     UniformGradient(SimInfo* info);
126    
127     protected:
128     virtual void initialize();
129     virtual void applyPerturbation();
130    
131     private:
132     bool initialized;
133     bool doUniformGradient;
134     bool doParticlePot;
135     Globals* simParams;
136     SimInfo* info_;
137     Mat3x3d Grad_;
138 gezelter 2034 Vector3d a_, b_;
139     RealType g_, cpsi_;
140 gezelter 2026 };
141    
142    
143     } //end namespace OpenMD
144     #endif
145    

Properties

Name Value
svn:executable *