1 |
/* |
2 |
* Copyright (c) 2014 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "perturbations/UniformGradient.hpp" |
44 |
#include "types/FixedChargeAdapter.hpp" |
45 |
#include "types/FluctuatingChargeAdapter.hpp" |
46 |
#include "types/MultipoleAdapter.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "nonbonded/NonBondedInteraction.hpp" |
49 |
#include "utils/PhysicalConstants.hpp" |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
UniformGradient::UniformGradient(SimInfo* info) : initialized(false), |
54 |
doUniformGradient(false), |
55 |
doParticlePot(false), |
56 |
info_(info) { |
57 |
simParams = info_->getSimParams(); |
58 |
} |
59 |
|
60 |
void UniformGradient::initialize() { |
61 |
|
62 |
bool haveA = false; |
63 |
bool haveB = false; |
64 |
bool haveG = false; |
65 |
|
66 |
if (simParams->haveUniformGradientDirection1()) { |
67 |
std::vector<RealType> d1 = simParams->getUniformGradientDirection1(); |
68 |
if (d1.size() != 3) { |
69 |
sprintf(painCave.errMsg, |
70 |
"uniformGradientDirection1: Incorrect number of parameters\n" |
71 |
"\tspecified. There should be 3 parameters, but %lu were\n" |
72 |
"\tspecified.\n", d1.size()); |
73 |
painCave.isFatal = 1; |
74 |
simError(); |
75 |
} |
76 |
a_.x() = d1[0]; |
77 |
a_.y() = d1[1]; |
78 |
a_.z() = d1[2]; |
79 |
|
80 |
a_.normalize(); |
81 |
haveA = true; |
82 |
} |
83 |
|
84 |
if (simParams->haveUniformGradientDirection2()) { |
85 |
std::vector<RealType> d2 = simParams->getUniformGradientDirection2(); |
86 |
if (d2.size() != 3) { |
87 |
sprintf(painCave.errMsg, |
88 |
"uniformGradientDirection2: Incorrect number of parameters\n" |
89 |
"\tspecified. There should be 3 parameters, but %lu were\n" |
90 |
"\tspecified.\n", d2.size()); |
91 |
painCave.isFatal = 1; |
92 |
simError(); |
93 |
} |
94 |
b_.x() = d2[0]; |
95 |
b_.y() = d2[1]; |
96 |
b_.z() = d2[2]; |
97 |
|
98 |
b_.normalize(); |
99 |
haveB = true; |
100 |
} |
101 |
|
102 |
if (simParams->haveUniformGradientStrength()) { |
103 |
g_ = simParams->getUniformGradientStrength(); |
104 |
haveG = true; |
105 |
} |
106 |
|
107 |
if (haveA && haveB && haveG) { |
108 |
doUniformGradient = true; |
109 |
cpsi_ = dot(a_, b_); |
110 |
|
111 |
Grad_(0,0) = 2.0 * (a_.x()*b_.x() - cpsi_ / 3.0); |
112 |
Grad_(0,1) = a_.x()*b_.y() + a_.y()*b_.x(); |
113 |
Grad_(0,2) = a_.x()*b_.z() + a_.z()*b_.x(); |
114 |
Grad_(1,0) = Grad_(0,1); |
115 |
Grad_(1,1) = 2.0 * (a_.y()*b_.y() - cpsi_ / 3.0); |
116 |
Grad_(1,2) = a_.y()*b_.z() + a_.z()*b_.y(); |
117 |
Grad_(2,0) = Grad_(0,2); |
118 |
Grad_(2,1) = Grad_(1,2); |
119 |
Grad_(2,2) = 2.0 * (a_.z()*b_.z() - cpsi_ / 3.0); |
120 |
|
121 |
Grad_ *= g_ / 2.0; |
122 |
|
123 |
} else { |
124 |
if (!haveA) { |
125 |
sprintf(painCave.errMsg, |
126 |
"UniformGradient: uniformGradientDirection1 not specified.\n"); |
127 |
painCave.isFatal = 1; |
128 |
simError(); |
129 |
} |
130 |
if (!haveB) { |
131 |
sprintf(painCave.errMsg, |
132 |
"UniformGradient: uniformGradientDirection2 not specified.\n"); |
133 |
painCave.isFatal = 1; |
134 |
simError(); |
135 |
} |
136 |
if (!haveG) { |
137 |
sprintf(painCave.errMsg, |
138 |
"UniformGradient: uniformGradientStrength not specified.\n"); |
139 |
painCave.isFatal = 1; |
140 |
simError(); |
141 |
} |
142 |
} |
143 |
|
144 |
int storageLayout_ = info_->getSnapshotManager()->getStorageLayout(); |
145 |
if (storageLayout_ & DataStorage::dslParticlePot) doParticlePot = true; |
146 |
initialized = true; |
147 |
} |
148 |
|
149 |
void UniformGradient::applyPerturbation() { |
150 |
|
151 |
if (!initialized) initialize(); |
152 |
|
153 |
SimInfo::MoleculeIterator i; |
154 |
Molecule::AtomIterator j; |
155 |
Molecule* mol; |
156 |
Atom* atom; |
157 |
AtomType* atype; |
158 |
potVec longRangePotential(0.0); |
159 |
|
160 |
RealType C; |
161 |
Vector3d D; |
162 |
Mat3x3d Q; |
163 |
|
164 |
RealType U; |
165 |
RealType fPot; |
166 |
Vector3d t; |
167 |
Vector3d f; |
168 |
|
169 |
Vector3d r; |
170 |
Vector3d EF; |
171 |
|
172 |
bool isCharge; |
173 |
|
174 |
if (doUniformGradient) { |
175 |
|
176 |
U = 0.0; |
177 |
fPot = 0.0; |
178 |
|
179 |
for (mol = info_->beginMolecule(i); mol != NULL; |
180 |
mol = info_->nextMolecule(i)) { |
181 |
|
182 |
for (atom = mol->beginAtom(j); atom != NULL; |
183 |
atom = mol->nextAtom(j)) { |
184 |
|
185 |
isCharge = false; |
186 |
C = 0.0; |
187 |
|
188 |
atype = atom->getAtomType(); |
189 |
|
190 |
r = atom->getPos(); |
191 |
EF = Grad_ * r; |
192 |
|
193 |
if (atype->isElectrostatic()) { |
194 |
atom->addElectricField(EF * PhysicalConstants::chargeFieldConvert); |
195 |
} |
196 |
|
197 |
FixedChargeAdapter fca = FixedChargeAdapter(atype); |
198 |
if ( fca.isFixedCharge() ) { |
199 |
isCharge = true; |
200 |
C = fca.getCharge(); |
201 |
} |
202 |
|
203 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype); |
204 |
if ( fqa.isFluctuatingCharge() ) { |
205 |
isCharge = true; |
206 |
C += atom->getFlucQPos(); |
207 |
atom->addFlucQFrc( dot(r, EF) |
208 |
* PhysicalConstants::chargeFieldConvert ); |
209 |
} |
210 |
|
211 |
if (isCharge) { |
212 |
f = EF * C * PhysicalConstants::chargeFieldConvert; |
213 |
atom->addFrc(f); |
214 |
|
215 |
U = -dot(r, f); |
216 |
if (doParticlePot) { |
217 |
atom->addParticlePot(U); |
218 |
} |
219 |
fPot += U; |
220 |
} |
221 |
|
222 |
MultipoleAdapter ma = MultipoleAdapter(atype); |
223 |
if (ma.isDipole() ) { |
224 |
D = atom->getDipole() * PhysicalConstants::dipoleFieldConvert; |
225 |
|
226 |
f = D * Grad_; |
227 |
atom->addFrc(f); |
228 |
|
229 |
t = cross(D, EF); |
230 |
atom->addTrq(t); |
231 |
|
232 |
U = -dot(D, EF); |
233 |
if (doParticlePot) { |
234 |
atom->addParticlePot(U); |
235 |
} |
236 |
fPot += U; |
237 |
} |
238 |
|
239 |
if (ma.isQuadrupole() ) { |
240 |
Q = atom->getQuadrupole() * PhysicalConstants::dipoleFieldConvert; |
241 |
|
242 |
t = 2.0 * mCross(Q, Grad_); |
243 |
atom->addTrq(t); |
244 |
|
245 |
U = -doubleDot(Q, Grad_); |
246 |
if (doParticlePot) { |
247 |
atom->addParticlePot(U); |
248 |
} |
249 |
fPot += U; |
250 |
} |
251 |
} |
252 |
} |
253 |
|
254 |
#ifdef IS_MPI |
255 |
MPI_Allreduce(MPI_IN_PLACE, &fPot, 1, MPI_REALTYPE, |
256 |
MPI_SUM, MPI_COMM_WORLD); |
257 |
#endif |
258 |
|
259 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
260 |
longRangePotential = snap->getLongRangePotentials(); |
261 |
longRangePotential[ELECTROSTATIC_FAMILY] += fPot; |
262 |
snap->setLongRangePotential(longRangePotential); |
263 |
} |
264 |
} |
265 |
} |