39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
< |
#include "perturbations/ElectricField.hpp" |
42 |
> |
|
43 |
> |
#include "perturbations/UniformField.hpp" |
44 |
|
#include "types/FixedChargeAdapter.hpp" |
45 |
|
#include "types/FluctuatingChargeAdapter.hpp" |
46 |
|
#include "types/MultipoleAdapter.hpp" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
49 |
+ |
#include "utils/PhysicalConstants.hpp" |
50 |
|
|
51 |
|
namespace OpenMD { |
52 |
< |
|
53 |
< |
ElectricField::ElectricField(SimInfo* info) : info_(info), |
54 |
< |
doElectricField(false), |
55 |
< |
doParticlePot(false), |
56 |
< |
initialized(false) { |
52 |
> |
|
53 |
> |
UniformField::UniformField(SimInfo* info) : info_(info), |
54 |
> |
doUniformField(false), |
55 |
> |
doParticlePot(false), |
56 |
> |
initialized(false) { |
57 |
|
simParams = info_->getSimParams(); |
58 |
|
} |
59 |
< |
|
60 |
< |
void ElectricField::initialize() { |
59 |
> |
|
60 |
> |
void UniformField::initialize() { |
61 |
|
if (simParams->haveElectricField()) { |
62 |
< |
doElectricField = true; |
62 |
> |
doUniformField = true; |
63 |
|
EF = simParams->getElectricField(); |
64 |
|
} |
65 |
+ |
if (simParams->haveUniformField()) { |
66 |
+ |
doUniformField = true; |
67 |
+ |
EF = simParams->getUniformField(); |
68 |
+ |
} |
69 |
|
int storageLayout_ = info_->getSnapshotManager()->getStorageLayout(); |
70 |
|
if (storageLayout_ & DataStorage::dslParticlePot) doParticlePot = true; |
71 |
|
initialized = true; |
72 |
|
} |
73 |
+ |
|
74 |
+ |
void UniformField::applyPerturbation() { |
75 |
|
|
68 |
– |
void ElectricField::applyPerturbation() { |
76 |
|
if (!initialized) initialize(); |
77 |
|
|
78 |
|
SimInfo::MoleculeIterator i; |
79 |
|
Molecule::AtomIterator j; |
80 |
|
Molecule* mol; |
81 |
|
Atom* atom; |
82 |
+ |
AtomType* atype; |
83 |
|
potVec longRangePotential(0.0); |
76 |
– |
Vector3d dip; |
77 |
– |
Vector3d trq; |
78 |
– |
Vector3d EFfrc; |
79 |
– |
Vector3d pos; |
84 |
|
|
85 |
< |
if (doElectricField) { |
86 |
< |
const RealType chrgToKcal = 23.0609; |
87 |
< |
const RealType debyeToKcal = 4.8018969509; |
88 |
< |
RealType pot; |
89 |
< |
RealType fieldPot = 0.0; |
85 |
> |
RealType C; |
86 |
> |
Vector3d D; |
87 |
> |
RealType U; |
88 |
> |
RealType fPot; |
89 |
> |
Vector3d t; |
90 |
> |
Vector3d f; |
91 |
> |
Vector3d r; |
92 |
|
|
93 |
+ |
bool isCharge; |
94 |
+ |
|
95 |
+ |
if (doUniformField) { |
96 |
+ |
|
97 |
+ |
U = 0.0; |
98 |
+ |
fPot = 0.0; |
99 |
+ |
|
100 |
|
for (mol = info_->beginMolecule(i); mol != NULL; |
101 |
|
mol = info_->nextMolecule(i)) { |
102 |
|
|
103 |
|
for (atom = mol->beginAtom(j); atom != NULL; |
104 |
|
atom = mol->nextAtom(j)) { |
105 |
|
|
106 |
< |
bool isCharge = false; |
107 |
< |
RealType chrg = 0.0; |
106 |
> |
isCharge = false; |
107 |
> |
C = 0.0; |
108 |
|
|
109 |
< |
AtomType* atype = atom->getAtomType(); |
109 |
> |
atype = atom->getAtomType(); |
110 |
|
|
111 |
|
// ad-hoc choice of the origin for potential calculation and |
112 |
|
// fluctuating charge force: |
113 |
< |
pos = atom->getPos(); |
113 |
> |
|
114 |
> |
r = atom->getPos(); |
115 |
|
|
116 |
|
if (atype->isElectrostatic()) { |
117 |
< |
atom->addElectricField(EF * chrgToKcal); |
117 |
> |
atom->addElectricField(EF * PhysicalConstants::chargeFieldConvert); |
118 |
|
} |
119 |
|
|
120 |
|
FixedChargeAdapter fca = FixedChargeAdapter(atype); |
121 |
|
if ( fca.isFixedCharge() ) { |
122 |
|
isCharge = true; |
123 |
< |
chrg = fca.getCharge(); |
123 |
> |
C = fca.getCharge(); |
124 |
|
} |
125 |
|
|
126 |
|
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype); |
127 |
|
if ( fqa.isFluctuatingCharge() ) { |
128 |
|
isCharge = true; |
129 |
< |
chrg += atom->getFlucQPos(); |
130 |
< |
atom->addFlucQFrc( dot(pos,EF) * chrgToKcal ); |
129 |
> |
C += atom->getFlucQPos(); |
130 |
> |
atom->addFlucQFrc( dot(r, EF) |
131 |
> |
* PhysicalConstants::chargeFieldConvert ); |
132 |
|
} |
133 |
|
|
134 |
|
if (isCharge) { |
135 |
< |
EFfrc = EF*chrg; |
136 |
< |
EFfrc *= chrgToKcal; |
137 |
< |
atom->addFrc(EFfrc); |
138 |
< |
pot = -dot(pos, EFfrc); |
135 |
> |
f = EF * C * PhysicalConstants::chargeFieldConvert; |
136 |
> |
atom->addFrc(f); |
137 |
> |
U = -dot(r, f); |
138 |
> |
|
139 |
|
if (doParticlePot) { |
140 |
< |
atom->addParticlePot(pot); |
140 |
> |
atom->addParticlePot(U); |
141 |
|
} |
142 |
< |
fieldPot += pot; |
142 |
> |
fPot += U; |
143 |
|
} |
144 |
|
|
145 |
< |
MultipoleAdapter ma = MultipoleAdapter(atype); |
145 |
> |
MultipoleAdapter ma = MultipoleAdapter(atype); |
146 |
|
if (ma.isDipole() ) { |
132 |
– |
Vector3d dipole = atom->getDipole(); |
133 |
– |
dipole *= debyeToKcal; |
147 |
|
|
148 |
< |
trq = cross(dipole, EF); |
149 |
< |
atom->addTrq(trq); |
148 |
> |
D = atom->getDipole() * PhysicalConstants::dipoleFieldConvert; |
149 |
> |
|
150 |
> |
t = cross(D, EF); |
151 |
> |
atom->addTrq(t); |
152 |
|
|
153 |
< |
pot = -dot(dipole, EF); |
153 |
> |
U = -dot(D, EF); |
154 |
> |
|
155 |
|
if (doParticlePot) { |
156 |
< |
atom->addParticlePot(pot); |
156 |
> |
atom->addParticlePot(U); |
157 |
|
} |
158 |
< |
fieldPot += pot; |
158 |
> |
fPot += U; |
159 |
|
} |
160 |
|
} |
161 |
|
} |
162 |
+ |
|
163 |
|
#ifdef IS_MPI |
164 |
< |
MPI_Allreduce(MPI_IN_PLACE, &fieldPot, 1, MPI_REALTYPE, |
164 |
> |
MPI_Allreduce(MPI_IN_PLACE, &fPot, 1, MPI_REALTYPE, |
165 |
|
MPI_SUM, MPI_COMM_WORLD); |
166 |
|
#endif |
167 |
+ |
|
168 |
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
169 |
|
longRangePotential = snap->getLongRangePotentials(); |
170 |
< |
longRangePotential[ELECTROSTATIC_FAMILY] += fieldPot; |
170 |
> |
longRangePotential[ELECTROSTATIC_FAMILY] += fPot; |
171 |
|
snap->setLongRangePotential(longRangePotential); |
172 |
|
} |
173 |
|
} |