ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/perturbations/UniformField.cpp
Revision: 2020
Committed: Mon Sep 22 19:18:35 2014 UTC (10 years, 7 months ago) by gezelter
File size: 5666 byte(s)
Log Message:
Fixes for restraints, renaming of UniformField

File Contents

# User Rev Content
1 jmarr 1780 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 jmarr 1780 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41     */
42 gezelter 2020
43     #include "perturbations/UniformField.hpp"
44 jmarr 1780 #include "types/FixedChargeAdapter.hpp"
45     #include "types/FluctuatingChargeAdapter.hpp"
46     #include "types/MultipoleAdapter.hpp"
47     #include "primitives/Molecule.hpp"
48     #include "nonbonded/NonBondedInteraction.hpp"
49 gezelter 2020 #include "utils/PhysicalConstants.hpp"
50 jmarr 1780
51     namespace OpenMD {
52 gezelter 2020
53     UniformField::UniformField(SimInfo* info) : info_(info),
54     doUniformField(false),
55     doParticlePot(false),
56     initialized(false) {
57 jmarr 1780 simParams = info_->getSimParams();
58     }
59 gezelter 2020
60     void UniformField::initialize() {
61 jmarr 1780 if (simParams->haveElectricField()) {
62 gezelter 2020 doUniformField = true;
63 jmarr 1780 EF = simParams->getElectricField();
64     }
65 gezelter 2020 if (simParams->haveUniformField()) {
66     doUniformField = true;
67     EF = simParams->getUniformField();
68     }
69 jmarr 1780 int storageLayout_ = info_->getSnapshotManager()->getStorageLayout();
70     if (storageLayout_ & DataStorage::dslParticlePot) doParticlePot = true;
71     initialized = true;
72     }
73 gezelter 2020
74     void UniformField::applyPerturbation() {
75 jmarr 1780
76     if (!initialized) initialize();
77    
78     SimInfo::MoleculeIterator i;
79     Molecule::AtomIterator j;
80     Molecule* mol;
81     Atom* atom;
82 gezelter 2020 AtomType* atype;
83 jmarr 1780 potVec longRangePotential(0.0);
84    
85 gezelter 2020 RealType C;
86     Vector3d D;
87     RealType U;
88     RealType fPot;
89     Vector3d t;
90     Vector3d f;
91     Vector3d r;
92 jmarr 1780
93 gezelter 2020 bool isCharge;
94    
95     if (doUniformField) {
96    
97     U = 0.0;
98     fPot = 0.0;
99    
100 gezelter 1879 for (mol = info_->beginMolecule(i); mol != NULL;
101     mol = info_->nextMolecule(i)) {
102    
103 jmarr 1780 for (atom = mol->beginAtom(j); atom != NULL;
104     atom = mol->nextAtom(j)) {
105    
106 gezelter 2020 isCharge = false;
107     C = 0.0;
108 gezelter 1879
109 gezelter 2020 atype = atom->getAtomType();
110 gezelter 1908
111     // ad-hoc choice of the origin for potential calculation and
112     // fluctuating charge force:
113 gezelter 2020
114     r = atom->getPos();
115 gezelter 1879
116     if (atype->isElectrostatic()) {
117 gezelter 2020 atom->addElectricField(EF * PhysicalConstants::chargeFieldConvert);
118 gezelter 1879 }
119    
120     FixedChargeAdapter fca = FixedChargeAdapter(atype);
121 jmarr 1780 if ( fca.isFixedCharge() ) {
122     isCharge = true;
123 gezelter 2020 C = fca.getCharge();
124 jmarr 1780 }
125    
126 gezelter 1879 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype);
127 jmarr 1780 if ( fqa.isFluctuatingCharge() ) {
128     isCharge = true;
129 gezelter 2020 C += atom->getFlucQPos();
130     atom->addFlucQFrc( dot(r, EF)
131     * PhysicalConstants::chargeFieldConvert );
132 jmarr 1780 }
133    
134     if (isCharge) {
135 gezelter 2020 f = EF * C * PhysicalConstants::chargeFieldConvert;
136     atom->addFrc(f);
137     U = -dot(r, f);
138    
139 jmarr 1780 if (doParticlePot) {
140 gezelter 2020 atom->addParticlePot(U);
141 jmarr 1780 }
142 gezelter 2020 fPot += U;
143 jmarr 1780 }
144    
145 gezelter 2020 MultipoleAdapter ma = MultipoleAdapter(atype);
146 jmarr 1780 if (ma.isDipole() ) {
147 gezelter 1879
148 gezelter 2020 D = atom->getDipole() * PhysicalConstants::dipoleFieldConvert;
149    
150     t = cross(D, EF);
151     atom->addTrq(t);
152 gezelter 1879
153 gezelter 2020 U = -dot(D, EF);
154    
155 jmarr 1780 if (doParticlePot) {
156 gezelter 2020 atom->addParticlePot(U);
157 jmarr 1780 }
158 gezelter 2020 fPot += U;
159 jmarr 1780 }
160     }
161     }
162 gezelter 2020
163 jmarr 1780 #ifdef IS_MPI
164 gezelter 2020 MPI_Allreduce(MPI_IN_PLACE, &fPot, 1, MPI_REALTYPE,
165 gezelter 1987 MPI_SUM, MPI_COMM_WORLD);
166 jmarr 1780 #endif
167 gezelter 2020
168 jmarr 1780 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
169     longRangePotential = snap->getLongRangePotentials();
170 gezelter 2020 longRangePotential[ELECTROSTATIC_FAMILY] += fPot;
171 jmarr 1780 snap->setLongRangePotential(longRangePotential);
172     }
173     }
174     }

Properties

Name Value
svn:executable *