1 |
jmarr |
1780 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
|
|
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
gezelter |
1879 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
jmarr |
1780 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
|
*/ |
42 |
gezelter |
2020 |
|
43 |
|
|
#include "perturbations/UniformField.hpp" |
44 |
jmarr |
1780 |
#include "types/FixedChargeAdapter.hpp" |
45 |
|
|
#include "types/FluctuatingChargeAdapter.hpp" |
46 |
|
|
#include "types/MultipoleAdapter.hpp" |
47 |
|
|
#include "primitives/Molecule.hpp" |
48 |
|
|
#include "nonbonded/NonBondedInteraction.hpp" |
49 |
gezelter |
2020 |
#include "utils/PhysicalConstants.hpp" |
50 |
jmarr |
1780 |
|
51 |
|
|
namespace OpenMD { |
52 |
gezelter |
2020 |
|
53 |
|
|
UniformField::UniformField(SimInfo* info) : info_(info), |
54 |
|
|
doUniformField(false), |
55 |
|
|
doParticlePot(false), |
56 |
|
|
initialized(false) { |
57 |
jmarr |
1780 |
simParams = info_->getSimParams(); |
58 |
|
|
} |
59 |
gezelter |
2020 |
|
60 |
|
|
void UniformField::initialize() { |
61 |
jmarr |
1780 |
if (simParams->haveElectricField()) { |
62 |
gezelter |
2020 |
doUniformField = true; |
63 |
jmarr |
1780 |
EF = simParams->getElectricField(); |
64 |
|
|
} |
65 |
gezelter |
2020 |
if (simParams->haveUniformField()) { |
66 |
|
|
doUniformField = true; |
67 |
|
|
EF = simParams->getUniformField(); |
68 |
|
|
} |
69 |
jmarr |
1780 |
int storageLayout_ = info_->getSnapshotManager()->getStorageLayout(); |
70 |
|
|
if (storageLayout_ & DataStorage::dslParticlePot) doParticlePot = true; |
71 |
|
|
initialized = true; |
72 |
|
|
} |
73 |
gezelter |
2020 |
|
74 |
|
|
void UniformField::applyPerturbation() { |
75 |
jmarr |
1780 |
|
76 |
|
|
if (!initialized) initialize(); |
77 |
|
|
|
78 |
|
|
SimInfo::MoleculeIterator i; |
79 |
|
|
Molecule::AtomIterator j; |
80 |
|
|
Molecule* mol; |
81 |
|
|
Atom* atom; |
82 |
gezelter |
2020 |
AtomType* atype; |
83 |
jmarr |
1780 |
potVec longRangePotential(0.0); |
84 |
|
|
|
85 |
gezelter |
2020 |
RealType C; |
86 |
|
|
Vector3d D; |
87 |
|
|
RealType U; |
88 |
|
|
RealType fPot; |
89 |
|
|
Vector3d t; |
90 |
|
|
Vector3d f; |
91 |
|
|
Vector3d r; |
92 |
jmarr |
1780 |
|
93 |
gezelter |
2020 |
bool isCharge; |
94 |
|
|
|
95 |
|
|
if (doUniformField) { |
96 |
|
|
|
97 |
|
|
U = 0.0; |
98 |
|
|
fPot = 0.0; |
99 |
|
|
|
100 |
gezelter |
1879 |
for (mol = info_->beginMolecule(i); mol != NULL; |
101 |
|
|
mol = info_->nextMolecule(i)) { |
102 |
|
|
|
103 |
jmarr |
1780 |
for (atom = mol->beginAtom(j); atom != NULL; |
104 |
|
|
atom = mol->nextAtom(j)) { |
105 |
|
|
|
106 |
gezelter |
2020 |
isCharge = false; |
107 |
|
|
C = 0.0; |
108 |
gezelter |
1879 |
|
109 |
gezelter |
2020 |
atype = atom->getAtomType(); |
110 |
gezelter |
1908 |
|
111 |
|
|
// ad-hoc choice of the origin for potential calculation and |
112 |
|
|
// fluctuating charge force: |
113 |
gezelter |
2020 |
|
114 |
|
|
r = atom->getPos(); |
115 |
gezelter |
1879 |
|
116 |
|
|
if (atype->isElectrostatic()) { |
117 |
gezelter |
2020 |
atom->addElectricField(EF * PhysicalConstants::chargeFieldConvert); |
118 |
gezelter |
1879 |
} |
119 |
|
|
|
120 |
|
|
FixedChargeAdapter fca = FixedChargeAdapter(atype); |
121 |
jmarr |
1780 |
if ( fca.isFixedCharge() ) { |
122 |
|
|
isCharge = true; |
123 |
gezelter |
2020 |
C = fca.getCharge(); |
124 |
jmarr |
1780 |
} |
125 |
|
|
|
126 |
gezelter |
1879 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype); |
127 |
jmarr |
1780 |
if ( fqa.isFluctuatingCharge() ) { |
128 |
|
|
isCharge = true; |
129 |
gezelter |
2020 |
C += atom->getFlucQPos(); |
130 |
|
|
atom->addFlucQFrc( dot(r, EF) |
131 |
|
|
* PhysicalConstants::chargeFieldConvert ); |
132 |
jmarr |
1780 |
} |
133 |
|
|
|
134 |
|
|
if (isCharge) { |
135 |
gezelter |
2020 |
f = EF * C * PhysicalConstants::chargeFieldConvert; |
136 |
|
|
atom->addFrc(f); |
137 |
|
|
U = -dot(r, f); |
138 |
|
|
|
139 |
jmarr |
1780 |
if (doParticlePot) { |
140 |
gezelter |
2020 |
atom->addParticlePot(U); |
141 |
jmarr |
1780 |
} |
142 |
gezelter |
2020 |
fPot += U; |
143 |
jmarr |
1780 |
} |
144 |
|
|
|
145 |
gezelter |
2020 |
MultipoleAdapter ma = MultipoleAdapter(atype); |
146 |
jmarr |
1780 |
if (ma.isDipole() ) { |
147 |
gezelter |
1879 |
|
148 |
gezelter |
2020 |
D = atom->getDipole() * PhysicalConstants::dipoleFieldConvert; |
149 |
|
|
|
150 |
|
|
t = cross(D, EF); |
151 |
|
|
atom->addTrq(t); |
152 |
gezelter |
1879 |
|
153 |
gezelter |
2020 |
U = -dot(D, EF); |
154 |
|
|
|
155 |
jmarr |
1780 |
if (doParticlePot) { |
156 |
gezelter |
2020 |
atom->addParticlePot(U); |
157 |
jmarr |
1780 |
} |
158 |
gezelter |
2020 |
fPot += U; |
159 |
jmarr |
1780 |
} |
160 |
|
|
} |
161 |
|
|
} |
162 |
gezelter |
2020 |
|
163 |
jmarr |
1780 |
#ifdef IS_MPI |
164 |
gezelter |
2020 |
MPI_Allreduce(MPI_IN_PLACE, &fPot, 1, MPI_REALTYPE, |
165 |
gezelter |
1987 |
MPI_SUM, MPI_COMM_WORLD); |
166 |
jmarr |
1780 |
#endif |
167 |
gezelter |
2020 |
|
168 |
jmarr |
1780 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
169 |
|
|
longRangePotential = snap->getLongRangePotentials(); |
170 |
gezelter |
2020 |
longRangePotential[ELECTROSTATIC_FAMILY] += fPot; |
171 |
jmarr |
1780 |
snap->setLongRangePotential(longRangePotential); |
172 |
|
|
} |
173 |
|
|
} |
174 |
|
|
} |