ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1796
Committed: Mon Sep 10 18:38:44 2012 UTC (12 years, 7 months ago) by gezelter
File size: 52196 byte(s)
Log Message:
Updating MPI calls to C++, fixing a DumpWriter bug, cleaning cruft

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 if (needVelocities_)
114 snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 DataStorage::dslVelocity);
116 else
117 snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118
119 #ifdef IS_MPI
120
121 MPI::Intracomm row = rowComm.getComm();
122 MPI::Intracomm col = colComm.getComm();
123
124 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129
130 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135
136 cgPlanIntRow = new Plan<int>(row, nGroups_);
137 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140
141 nAtomsInRow_ = AtomPlanIntRow->getSize();
142 nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 nGroupsInRow_ = cgPlanIntRow->getSize();
144 nGroupsInCol_ = cgPlanIntColumn->getSize();
145
146 // Modify the data storage objects with the correct layouts and sizes:
147 atomRowData.resize(nAtomsInRow_);
148 atomRowData.setStorageLayout(storageLayout_);
149 atomColData.resize(nAtomsInCol_);
150 atomColData.setStorageLayout(storageLayout_);
151 cgRowData.resize(nGroupsInRow_);
152 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 cgColData.resize(nGroupsInCol_);
154 if (needVelocities_)
155 // we only need column velocities if we need them.
156 cgColData.setStorageLayout(DataStorage::dslPosition |
157 DataStorage::dslVelocity);
158 else
159 cgColData.setStorageLayout(DataStorage::dslPosition);
160
161 identsRow.resize(nAtomsInRow_);
162 identsCol.resize(nAtomsInCol_);
163
164 AtomPlanIntRow->gather(idents, identsRow);
165 AtomPlanIntColumn->gather(idents, identsCol);
166
167 // allocate memory for the parallel objects
168 atypesRow.resize(nAtomsInRow_);
169 atypesCol.resize(nAtomsInCol_);
170
171 for (int i = 0; i < nAtomsInRow_; i++)
172 atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 for (int i = 0; i < nAtomsInCol_; i++)
174 atypesCol[i] = ff_->getAtomType(identsCol[i]);
175
176 pot_row.resize(nAtomsInRow_);
177 pot_col.resize(nAtomsInCol_);
178
179 expot_row.resize(nAtomsInRow_);
180 expot_col.resize(nAtomsInCol_);
181
182 AtomRowToGlobal.resize(nAtomsInRow_);
183 AtomColToGlobal.resize(nAtomsInCol_);
184 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186
187 cgRowToGlobal.resize(nGroupsInRow_);
188 cgColToGlobal.resize(nGroupsInCol_);
189 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191
192 massFactorsRow.resize(nAtomsInRow_);
193 massFactorsCol.resize(nAtomsInCol_);
194 AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196
197 groupListRow_.clear();
198 groupListRow_.resize(nGroupsInRow_);
199 for (int i = 0; i < nGroupsInRow_; i++) {
200 int gid = cgRowToGlobal[i];
201 for (int j = 0; j < nAtomsInRow_; j++) {
202 int aid = AtomRowToGlobal[j];
203 if (globalGroupMembership[aid] == gid)
204 groupListRow_[i].push_back(j);
205 }
206 }
207
208 groupListCol_.clear();
209 groupListCol_.resize(nGroupsInCol_);
210 for (int i = 0; i < nGroupsInCol_; i++) {
211 int gid = cgColToGlobal[i];
212 for (int j = 0; j < nAtomsInCol_; j++) {
213 int aid = AtomColToGlobal[j];
214 if (globalGroupMembership[aid] == gid)
215 groupListCol_[i].push_back(j);
216 }
217 }
218
219 excludesForAtom.clear();
220 excludesForAtom.resize(nAtomsInRow_);
221 toposForAtom.clear();
222 toposForAtom.resize(nAtomsInRow_);
223 topoDist.clear();
224 topoDist.resize(nAtomsInRow_);
225 for (int i = 0; i < nAtomsInRow_; i++) {
226 int iglob = AtomRowToGlobal[i];
227
228 for (int j = 0; j < nAtomsInCol_; j++) {
229 int jglob = AtomColToGlobal[j];
230
231 if (excludes->hasPair(iglob, jglob))
232 excludesForAtom[i].push_back(j);
233
234 if (oneTwo->hasPair(iglob, jglob)) {
235 toposForAtom[i].push_back(j);
236 topoDist[i].push_back(1);
237 } else {
238 if (oneThree->hasPair(iglob, jglob)) {
239 toposForAtom[i].push_back(j);
240 topoDist[i].push_back(2);
241 } else {
242 if (oneFour->hasPair(iglob, jglob)) {
243 toposForAtom[i].push_back(j);
244 topoDist[i].push_back(3);
245 }
246 }
247 }
248 }
249 }
250
251 #else
252 excludesForAtom.clear();
253 excludesForAtom.resize(nLocal_);
254 toposForAtom.clear();
255 toposForAtom.resize(nLocal_);
256 topoDist.clear();
257 topoDist.resize(nLocal_);
258
259 for (int i = 0; i < nLocal_; i++) {
260 int iglob = AtomLocalToGlobal[i];
261
262 for (int j = 0; j < nLocal_; j++) {
263 int jglob = AtomLocalToGlobal[j];
264
265 if (excludes->hasPair(iglob, jglob))
266 excludesForAtom[i].push_back(j);
267
268 if (oneTwo->hasPair(iglob, jglob)) {
269 toposForAtom[i].push_back(j);
270 topoDist[i].push_back(1);
271 } else {
272 if (oneThree->hasPair(iglob, jglob)) {
273 toposForAtom[i].push_back(j);
274 topoDist[i].push_back(2);
275 } else {
276 if (oneFour->hasPair(iglob, jglob)) {
277 toposForAtom[i].push_back(j);
278 topoDist[i].push_back(3);
279 }
280 }
281 }
282 }
283 }
284 #endif
285
286 // allocate memory for the parallel objects
287 atypesLocal.resize(nLocal_);
288
289 for (int i = 0; i < nLocal_; i++)
290 atypesLocal[i] = ff_->getAtomType(idents[i]);
291
292 groupList_.clear();
293 groupList_.resize(nGroups_);
294 for (int i = 0; i < nGroups_; i++) {
295 int gid = cgLocalToGlobal[i];
296 for (int j = 0; j < nLocal_; j++) {
297 int aid = AtomLocalToGlobal[j];
298 if (globalGroupMembership[aid] == gid) {
299 groupList_[i].push_back(j);
300 }
301 }
302 }
303
304
305 createGtypeCutoffMap();
306
307 }
308
309 void ForceMatrixDecomposition::createGtypeCutoffMap() {
310
311 RealType tol = 1e-6;
312 largestRcut_ = 0.0;
313 int atid;
314 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315
316 map<int, RealType> atypeCutoff;
317
318 for (set<AtomType*>::iterator at = atypes.begin();
319 at != atypes.end(); ++at){
320 atid = (*at)->getIdent();
321 if (userChoseCutoff_)
322 atypeCutoff[atid] = userCutoff_;
323 else
324 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 }
326
327 vector<RealType> gTypeCutoffs;
328 // first we do a single loop over the cutoff groups to find the
329 // largest cutoff for any atypes present in this group.
330 #ifdef IS_MPI
331 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 groupRowToGtype.resize(nGroupsInRow_);
333 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 for (vector<int>::iterator ia = atomListRow.begin();
336 ia != atomListRow.end(); ++ia) {
337 int atom1 = (*ia);
338 atid = identsRow[atom1];
339 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 groupCutoffRow[cg1] = atypeCutoff[atid];
341 }
342 }
343
344 bool gTypeFound = false;
345 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 groupRowToGtype[cg1] = gt;
348 gTypeFound = true;
349 }
350 }
351 if (!gTypeFound) {
352 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 }
355
356 }
357 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 groupColToGtype.resize(nGroupsInCol_);
359 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 for (vector<int>::iterator jb = atomListCol.begin();
362 jb != atomListCol.end(); ++jb) {
363 int atom2 = (*jb);
364 atid = identsCol[atom2];
365 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 groupCutoffCol[cg2] = atypeCutoff[atid];
367 }
368 }
369 bool gTypeFound = false;
370 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 groupColToGtype[cg2] = gt;
373 gTypeFound = true;
374 }
375 }
376 if (!gTypeFound) {
377 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 }
380 }
381 #else
382
383 vector<RealType> groupCutoff(nGroups_, 0.0);
384 groupToGtype.resize(nGroups_);
385 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 groupCutoff[cg1] = 0.0;
387 vector<int> atomList = getAtomsInGroupRow(cg1);
388 for (vector<int>::iterator ia = atomList.begin();
389 ia != atomList.end(); ++ia) {
390 int atom1 = (*ia);
391 atid = idents[atom1];
392 if (atypeCutoff[atid] > groupCutoff[cg1])
393 groupCutoff[cg1] = atypeCutoff[atid];
394 }
395
396 bool gTypeFound = false;
397 for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 groupToGtype[cg1] = gt;
400 gTypeFound = true;
401 }
402 }
403 if (!gTypeFound) {
404 gTypeCutoffs.push_back( groupCutoff[cg1] );
405 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 }
407 }
408 #endif
409
410 // Now we find the maximum group cutoff value present in the simulation
411
412 RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 gTypeCutoffs.end());
414
415 #ifdef IS_MPI
416 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 MPI::MAX);
418 #endif
419
420 RealType tradRcut = groupMax;
421
422 for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) {
423 for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) {
424 RealType thisRcut;
425 switch(cutoffPolicy_) {
426 case TRADITIONAL:
427 thisRcut = tradRcut;
428 break;
429 case MIX:
430 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 break;
432 case MAX:
433 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 break;
435 default:
436 sprintf(painCave.errMsg,
437 "ForceMatrixDecomposition::createGtypeCutoffMap "
438 "hit an unknown cutoff policy!\n");
439 painCave.severity = OPENMD_ERROR;
440 painCave.isFatal = 1;
441 simError();
442 break;
443 }
444
445 pair<int,int> key = make_pair(i,j);
446 gTypeCutoffMap[key].first = thisRcut;
447 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 // sanity check
451
452 if (userChoseCutoff_) {
453 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 sprintf(painCave.errMsg,
455 "ForceMatrixDecomposition::createGtypeCutoffMap "
456 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 painCave.severity = OPENMD_ERROR;
458 painCave.isFatal = 1;
459 simError();
460 }
461 }
462 }
463 }
464 }
465
466 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 int i, j;
468 #ifdef IS_MPI
469 i = groupRowToGtype[cg1];
470 j = groupColToGtype[cg2];
471 #else
472 i = groupToGtype[cg1];
473 j = groupToGtype[cg2];
474 #endif
475 return gTypeCutoffMap[make_pair(i,j)];
476 }
477
478 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 if (toposForAtom[atom1][j] == atom2)
481 return topoDist[atom1][j];
482 }
483 return 0;
484 }
485
486 void ForceMatrixDecomposition::zeroWorkArrays() {
487 pairwisePot = 0.0;
488 embeddingPot = 0.0;
489 excludedPot = 0.0;
490 excludedSelfPot = 0.0;
491
492 #ifdef IS_MPI
493 if (storageLayout_ & DataStorage::dslForce) {
494 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 }
497
498 if (storageLayout_ & DataStorage::dslTorque) {
499 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 }
502
503 fill(pot_row.begin(), pot_row.end(),
504 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505
506 fill(pot_col.begin(), pot_col.end(),
507 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
508
509 fill(expot_row.begin(), expot_row.end(),
510 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511
512 fill(expot_col.begin(), expot_col.end(),
513 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
514
515 if (storageLayout_ & DataStorage::dslParticlePot) {
516 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 0.0);
518 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 0.0);
520 }
521
522 if (storageLayout_ & DataStorage::dslDensity) {
523 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 }
526
527 if (storageLayout_ & DataStorage::dslFunctional) {
528 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 0.0);
530 fill(atomColData.functional.begin(), atomColData.functional.end(),
531 0.0);
532 }
533
534 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
535 fill(atomRowData.functionalDerivative.begin(),
536 atomRowData.functionalDerivative.end(), 0.0);
537 fill(atomColData.functionalDerivative.begin(),
538 atomColData.functionalDerivative.end(), 0.0);
539 }
540
541 if (storageLayout_ & DataStorage::dslSkippedCharge) {
542 fill(atomRowData.skippedCharge.begin(),
543 atomRowData.skippedCharge.end(), 0.0);
544 fill(atomColData.skippedCharge.begin(),
545 atomColData.skippedCharge.end(), 0.0);
546 }
547
548 if (storageLayout_ & DataStorage::dslFlucQForce) {
549 fill(atomRowData.flucQFrc.begin(),
550 atomRowData.flucQFrc.end(), 0.0);
551 fill(atomColData.flucQFrc.begin(),
552 atomColData.flucQFrc.end(), 0.0);
553 }
554
555 if (storageLayout_ & DataStorage::dslElectricField) {
556 fill(atomRowData.electricField.begin(),
557 atomRowData.electricField.end(), V3Zero);
558 fill(atomColData.electricField.begin(),
559 atomColData.electricField.end(), V3Zero);
560 }
561
562 if (storageLayout_ & DataStorage::dslFlucQForce) {
563 fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
564 0.0);
565 fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
566 0.0);
567 }
568
569 #endif
570 // even in parallel, we need to zero out the local arrays:
571
572 if (storageLayout_ & DataStorage::dslParticlePot) {
573 fill(snap_->atomData.particlePot.begin(),
574 snap_->atomData.particlePot.end(), 0.0);
575 }
576
577 if (storageLayout_ & DataStorage::dslDensity) {
578 fill(snap_->atomData.density.begin(),
579 snap_->atomData.density.end(), 0.0);
580 }
581
582 if (storageLayout_ & DataStorage::dslFunctional) {
583 fill(snap_->atomData.functional.begin(),
584 snap_->atomData.functional.end(), 0.0);
585 }
586
587 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
588 fill(snap_->atomData.functionalDerivative.begin(),
589 snap_->atomData.functionalDerivative.end(), 0.0);
590 }
591
592 if (storageLayout_ & DataStorage::dslSkippedCharge) {
593 fill(snap_->atomData.skippedCharge.begin(),
594 snap_->atomData.skippedCharge.end(), 0.0);
595 }
596
597 if (storageLayout_ & DataStorage::dslElectricField) {
598 fill(snap_->atomData.electricField.begin(),
599 snap_->atomData.electricField.end(), V3Zero);
600 }
601 }
602
603
604 void ForceMatrixDecomposition::distributeData() {
605 snap_ = sman_->getCurrentSnapshot();
606 storageLayout_ = sman_->getStorageLayout();
607 #ifdef IS_MPI
608
609 // gather up the atomic positions
610 AtomPlanVectorRow->gather(snap_->atomData.position,
611 atomRowData.position);
612 AtomPlanVectorColumn->gather(snap_->atomData.position,
613 atomColData.position);
614
615 // gather up the cutoff group positions
616
617 cgPlanVectorRow->gather(snap_->cgData.position,
618 cgRowData.position);
619
620 cgPlanVectorColumn->gather(snap_->cgData.position,
621 cgColData.position);
622
623
624
625 if (needVelocities_) {
626 // gather up the atomic velocities
627 AtomPlanVectorColumn->gather(snap_->atomData.velocity,
628 atomColData.velocity);
629
630 cgPlanVectorColumn->gather(snap_->cgData.velocity,
631 cgColData.velocity);
632 }
633
634
635 // if needed, gather the atomic rotation matrices
636 if (storageLayout_ & DataStorage::dslAmat) {
637 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
638 atomRowData.aMat);
639 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
640 atomColData.aMat);
641 }
642
643 // if needed, gather the atomic eletrostatic frames
644 if (storageLayout_ & DataStorage::dslElectroFrame) {
645 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
646 atomRowData.electroFrame);
647 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
648 atomColData.electroFrame);
649 }
650
651 // if needed, gather the atomic fluctuating charge values
652 if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 atomRowData.flucQPos);
655 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 atomColData.flucQPos);
657 }
658
659 #endif
660 }
661
662 /* collects information obtained during the pre-pair loop onto local
663 * data structures.
664 */
665 void ForceMatrixDecomposition::collectIntermediateData() {
666 snap_ = sman_->getCurrentSnapshot();
667 storageLayout_ = sman_->getStorageLayout();
668 #ifdef IS_MPI
669
670 if (storageLayout_ & DataStorage::dslDensity) {
671
672 AtomPlanRealRow->scatter(atomRowData.density,
673 snap_->atomData.density);
674
675 int n = snap_->atomData.density.size();
676 vector<RealType> rho_tmp(n, 0.0);
677 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 for (int i = 0; i < n; i++)
679 snap_->atomData.density[i] += rho_tmp[i];
680 }
681
682 if (storageLayout_ & DataStorage::dslElectricField) {
683
684 AtomPlanVectorRow->scatter(atomRowData.electricField,
685 snap_->atomData.electricField);
686
687 int n = snap_->atomData.electricField.size();
688 vector<Vector3d> field_tmp(n, V3Zero);
689 AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
690 for (int i = 0; i < n; i++)
691 snap_->atomData.electricField[i] += field_tmp[i];
692 }
693 #endif
694 }
695
696 /*
697 * redistributes information obtained during the pre-pair loop out to
698 * row and column-indexed data structures
699 */
700 void ForceMatrixDecomposition::distributeIntermediateData() {
701 snap_ = sman_->getCurrentSnapshot();
702 storageLayout_ = sman_->getStorageLayout();
703 #ifdef IS_MPI
704 if (storageLayout_ & DataStorage::dslFunctional) {
705 AtomPlanRealRow->gather(snap_->atomData.functional,
706 atomRowData.functional);
707 AtomPlanRealColumn->gather(snap_->atomData.functional,
708 atomColData.functional);
709 }
710
711 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
712 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
713 atomRowData.functionalDerivative);
714 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
715 atomColData.functionalDerivative);
716 }
717 #endif
718 }
719
720
721 void ForceMatrixDecomposition::collectData() {
722 snap_ = sman_->getCurrentSnapshot();
723 storageLayout_ = sman_->getStorageLayout();
724 #ifdef IS_MPI
725 int n = snap_->atomData.force.size();
726 vector<Vector3d> frc_tmp(n, V3Zero);
727
728 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
729 for (int i = 0; i < n; i++) {
730 snap_->atomData.force[i] += frc_tmp[i];
731 frc_tmp[i] = 0.0;
732 }
733
734 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
735 for (int i = 0; i < n; i++) {
736 snap_->atomData.force[i] += frc_tmp[i];
737 }
738
739 if (storageLayout_ & DataStorage::dslTorque) {
740
741 int nt = snap_->atomData.torque.size();
742 vector<Vector3d> trq_tmp(nt, V3Zero);
743
744 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
745 for (int i = 0; i < nt; i++) {
746 snap_->atomData.torque[i] += trq_tmp[i];
747 trq_tmp[i] = 0.0;
748 }
749
750 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
751 for (int i = 0; i < nt; i++)
752 snap_->atomData.torque[i] += trq_tmp[i];
753 }
754
755 if (storageLayout_ & DataStorage::dslSkippedCharge) {
756
757 int ns = snap_->atomData.skippedCharge.size();
758 vector<RealType> skch_tmp(ns, 0.0);
759
760 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
761 for (int i = 0; i < ns; i++) {
762 snap_->atomData.skippedCharge[i] += skch_tmp[i];
763 skch_tmp[i] = 0.0;
764 }
765
766 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
767 for (int i = 0; i < ns; i++)
768 snap_->atomData.skippedCharge[i] += skch_tmp[i];
769
770 }
771
772 if (storageLayout_ & DataStorage::dslFlucQForce) {
773
774 int nq = snap_->atomData.flucQFrc.size();
775 vector<RealType> fqfrc_tmp(nq, 0.0);
776
777 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
778 for (int i = 0; i < nq; i++) {
779 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
780 fqfrc_tmp[i] = 0.0;
781 }
782
783 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
784 for (int i = 0; i < nq; i++)
785 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
786
787 }
788
789 nLocal_ = snap_->getNumberOfAtoms();
790
791 vector<potVec> pot_temp(nLocal_,
792 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
793 vector<potVec> expot_temp(nLocal_,
794 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
795
796 // scatter/gather pot_row into the members of my column
797
798 AtomPlanPotRow->scatter(pot_row, pot_temp);
799 AtomPlanPotRow->scatter(expot_row, expot_temp);
800
801 for (int ii = 0; ii < pot_temp.size(); ii++ )
802 pairwisePot += pot_temp[ii];
803
804 for (int ii = 0; ii < expot_temp.size(); ii++ )
805 excludedPot += expot_temp[ii];
806
807 if (storageLayout_ & DataStorage::dslParticlePot) {
808 // This is the pairwise contribution to the particle pot. The
809 // embedding contribution is added in each of the low level
810 // non-bonded routines. In single processor, this is done in
811 // unpackInteractionData, not in collectData.
812 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
813 for (int i = 0; i < nLocal_; i++) {
814 // factor of two is because the total potential terms are divided
815 // by 2 in parallel due to row/ column scatter
816 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
817 }
818 }
819 }
820
821 fill(pot_temp.begin(), pot_temp.end(),
822 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
823 fill(expot_temp.begin(), expot_temp.end(),
824 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
825
826 AtomPlanPotColumn->scatter(pot_col, pot_temp);
827 AtomPlanPotColumn->scatter(expot_col, expot_temp);
828
829 for (int ii = 0; ii < pot_temp.size(); ii++ )
830 pairwisePot += pot_temp[ii];
831
832 for (int ii = 0; ii < expot_temp.size(); ii++ )
833 excludedPot += expot_temp[ii];
834
835 if (storageLayout_ & DataStorage::dslParticlePot) {
836 // This is the pairwise contribution to the particle pot. The
837 // embedding contribution is added in each of the low level
838 // non-bonded routines. In single processor, this is done in
839 // unpackInteractionData, not in collectData.
840 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
841 for (int i = 0; i < nLocal_; i++) {
842 // factor of two is because the total potential terms are divided
843 // by 2 in parallel due to row/ column scatter
844 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
845 }
846 }
847 }
848
849 if (storageLayout_ & DataStorage::dslParticlePot) {
850 int npp = snap_->atomData.particlePot.size();
851 vector<RealType> ppot_temp(npp, 0.0);
852
853 // This is the direct or embedding contribution to the particle
854 // pot.
855
856 AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
857 for (int i = 0; i < npp; i++) {
858 snap_->atomData.particlePot[i] += ppot_temp[i];
859 }
860
861 fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
862
863 AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
864 for (int i = 0; i < npp; i++) {
865 snap_->atomData.particlePot[i] += ppot_temp[i];
866 }
867 }
868
869 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
870 RealType ploc1 = pairwisePot[ii];
871 RealType ploc2 = 0.0;
872 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
873 pairwisePot[ii] = ploc2;
874 }
875
876 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
877 RealType ploc1 = excludedPot[ii];
878 RealType ploc2 = 0.0;
879 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
880 excludedPot[ii] = ploc2;
881 }
882
883 // Here be dragons.
884 MPI::Intracomm col = colComm.getComm();
885
886 col.Allreduce(MPI::IN_PLACE,
887 &snap_->frameData.conductiveHeatFlux[0], 3,
888 MPI::REALTYPE, MPI::SUM);
889
890
891 #endif
892
893 }
894
895 /**
896 * Collects information obtained during the post-pair (and embedding
897 * functional) loops onto local data structures.
898 */
899 void ForceMatrixDecomposition::collectSelfData() {
900 snap_ = sman_->getCurrentSnapshot();
901 storageLayout_ = sman_->getStorageLayout();
902
903 #ifdef IS_MPI
904 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
905 RealType ploc1 = embeddingPot[ii];
906 RealType ploc2 = 0.0;
907 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
908 embeddingPot[ii] = ploc2;
909 }
910 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
911 RealType ploc1 = excludedSelfPot[ii];
912 RealType ploc2 = 0.0;
913 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
914 excludedSelfPot[ii] = ploc2;
915 }
916 #endif
917
918 }
919
920
921
922 int ForceMatrixDecomposition::getNAtomsInRow() {
923 #ifdef IS_MPI
924 return nAtomsInRow_;
925 #else
926 return nLocal_;
927 #endif
928 }
929
930 /**
931 * returns the list of atoms belonging to this group.
932 */
933 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
934 #ifdef IS_MPI
935 return groupListRow_[cg1];
936 #else
937 return groupList_[cg1];
938 #endif
939 }
940
941 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
942 #ifdef IS_MPI
943 return groupListCol_[cg2];
944 #else
945 return groupList_[cg2];
946 #endif
947 }
948
949 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
950 Vector3d d;
951
952 #ifdef IS_MPI
953 d = cgColData.position[cg2] - cgRowData.position[cg1];
954 #else
955 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
956 #endif
957
958 snap_->wrapVector(d);
959 return d;
960 }
961
962 Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
963 #ifdef IS_MPI
964 return cgColData.velocity[cg2];
965 #else
966 return snap_->cgData.velocity[cg2];
967 #endif
968 }
969
970 Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
971 #ifdef IS_MPI
972 return atomColData.velocity[atom2];
973 #else
974 return snap_->atomData.velocity[atom2];
975 #endif
976 }
977
978
979 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
980
981 Vector3d d;
982
983 #ifdef IS_MPI
984 d = cgRowData.position[cg1] - atomRowData.position[atom1];
985 #else
986 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
987 #endif
988
989 snap_->wrapVector(d);
990 return d;
991 }
992
993 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
994 Vector3d d;
995
996 #ifdef IS_MPI
997 d = cgColData.position[cg2] - atomColData.position[atom2];
998 #else
999 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1000 #endif
1001
1002 snap_->wrapVector(d);
1003 return d;
1004 }
1005
1006 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1007 #ifdef IS_MPI
1008 return massFactorsRow[atom1];
1009 #else
1010 return massFactors[atom1];
1011 #endif
1012 }
1013
1014 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1015 #ifdef IS_MPI
1016 return massFactorsCol[atom2];
1017 #else
1018 return massFactors[atom2];
1019 #endif
1020
1021 }
1022
1023 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1024 Vector3d d;
1025
1026 #ifdef IS_MPI
1027 d = atomColData.position[atom2] - atomRowData.position[atom1];
1028 #else
1029 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1030 #endif
1031
1032 snap_->wrapVector(d);
1033 return d;
1034 }
1035
1036 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1037 return excludesForAtom[atom1];
1038 }
1039
1040 /**
1041 * We need to exclude some overcounted interactions that result from
1042 * the parallel decomposition.
1043 */
1044 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1045 int unique_id_1, unique_id_2;
1046
1047 #ifdef IS_MPI
1048 // in MPI, we have to look up the unique IDs for each atom
1049 unique_id_1 = AtomRowToGlobal[atom1];
1050 unique_id_2 = AtomColToGlobal[atom2];
1051 // group1 = cgRowToGlobal[cg1];
1052 // group2 = cgColToGlobal[cg2];
1053 #else
1054 unique_id_1 = AtomLocalToGlobal[atom1];
1055 unique_id_2 = AtomLocalToGlobal[atom2];
1056 int group1 = cgLocalToGlobal[cg1];
1057 int group2 = cgLocalToGlobal[cg2];
1058 #endif
1059
1060 if (unique_id_1 == unique_id_2) return true;
1061
1062 #ifdef IS_MPI
1063 // this prevents us from doing the pair on multiple processors
1064 if (unique_id_1 < unique_id_2) {
1065 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1066 } else {
1067 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1068 }
1069 #endif
1070
1071 #ifndef IS_MPI
1072 if (group1 == group2) {
1073 if (unique_id_1 < unique_id_2) return true;
1074 }
1075 #endif
1076
1077 return false;
1078 }
1079
1080 /**
1081 * We need to handle the interactions for atoms who are involved in
1082 * the same rigid body as well as some short range interactions
1083 * (bonds, bends, torsions) differently from other interactions.
1084 * We'll still visit the pairwise routines, but with a flag that
1085 * tells those routines to exclude the pair from direct long range
1086 * interactions. Some indirect interactions (notably reaction
1087 * field) must still be handled for these pairs.
1088 */
1089 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1090
1091 // excludesForAtom was constructed to use row/column indices in the MPI
1092 // version, and to use local IDs in the non-MPI version:
1093
1094 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1095 i != excludesForAtom[atom1].end(); ++i) {
1096 if ( (*i) == atom2 ) return true;
1097 }
1098
1099 return false;
1100 }
1101
1102
1103 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1104 #ifdef IS_MPI
1105 atomRowData.force[atom1] += fg;
1106 #else
1107 snap_->atomData.force[atom1] += fg;
1108 #endif
1109 }
1110
1111 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1112 #ifdef IS_MPI
1113 atomColData.force[atom2] += fg;
1114 #else
1115 snap_->atomData.force[atom2] += fg;
1116 #endif
1117 }
1118
1119 // filling interaction blocks with pointers
1120 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1121 int atom1, int atom2) {
1122
1123 idat.excluded = excludeAtomPair(atom1, atom2);
1124
1125 #ifdef IS_MPI
1126 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1127 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1128 // ff_->getAtomType(identsCol[atom2]) );
1129
1130 if (storageLayout_ & DataStorage::dslAmat) {
1131 idat.A1 = &(atomRowData.aMat[atom1]);
1132 idat.A2 = &(atomColData.aMat[atom2]);
1133 }
1134
1135 if (storageLayout_ & DataStorage::dslElectroFrame) {
1136 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1137 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1138 }
1139
1140 if (storageLayout_ & DataStorage::dslTorque) {
1141 idat.t1 = &(atomRowData.torque[atom1]);
1142 idat.t2 = &(atomColData.torque[atom2]);
1143 }
1144
1145 if (storageLayout_ & DataStorage::dslDensity) {
1146 idat.rho1 = &(atomRowData.density[atom1]);
1147 idat.rho2 = &(atomColData.density[atom2]);
1148 }
1149
1150 if (storageLayout_ & DataStorage::dslFunctional) {
1151 idat.frho1 = &(atomRowData.functional[atom1]);
1152 idat.frho2 = &(atomColData.functional[atom2]);
1153 }
1154
1155 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1156 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1157 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1158 }
1159
1160 if (storageLayout_ & DataStorage::dslParticlePot) {
1161 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1162 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1163 }
1164
1165 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1166 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1167 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1168 }
1169
1170 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1171 idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1172 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1173 }
1174
1175 #else
1176
1177 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1178
1179 if (storageLayout_ & DataStorage::dslAmat) {
1180 idat.A1 = &(snap_->atomData.aMat[atom1]);
1181 idat.A2 = &(snap_->atomData.aMat[atom2]);
1182 }
1183
1184 if (storageLayout_ & DataStorage::dslElectroFrame) {
1185 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1186 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1187 }
1188
1189 if (storageLayout_ & DataStorage::dslTorque) {
1190 idat.t1 = &(snap_->atomData.torque[atom1]);
1191 idat.t2 = &(snap_->atomData.torque[atom2]);
1192 }
1193
1194 if (storageLayout_ & DataStorage::dslDensity) {
1195 idat.rho1 = &(snap_->atomData.density[atom1]);
1196 idat.rho2 = &(snap_->atomData.density[atom2]);
1197 }
1198
1199 if (storageLayout_ & DataStorage::dslFunctional) {
1200 idat.frho1 = &(snap_->atomData.functional[atom1]);
1201 idat.frho2 = &(snap_->atomData.functional[atom2]);
1202 }
1203
1204 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1205 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1206 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1207 }
1208
1209 if (storageLayout_ & DataStorage::dslParticlePot) {
1210 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1211 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1212 }
1213
1214 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1215 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1216 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1217 }
1218
1219 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1220 idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1221 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1222 }
1223
1224 #endif
1225 }
1226
1227
1228 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1229 #ifdef IS_MPI
1230 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1231 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1232 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1233 expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1234
1235 atomRowData.force[atom1] += *(idat.f1);
1236 atomColData.force[atom2] -= *(idat.f1);
1237
1238 if (storageLayout_ & DataStorage::dslFlucQForce) {
1239 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1240 atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1241 }
1242
1243 if (storageLayout_ & DataStorage::dslElectricField) {
1244 atomRowData.electricField[atom1] += *(idat.eField1);
1245 atomColData.electricField[atom2] += *(idat.eField2);
1246 }
1247
1248 #else
1249 pairwisePot += *(idat.pot);
1250 excludedPot += *(idat.excludedPot);
1251
1252 snap_->atomData.force[atom1] += *(idat.f1);
1253 snap_->atomData.force[atom2] -= *(idat.f1);
1254
1255 if (idat.doParticlePot) {
1256 // This is the pairwise contribution to the particle pot. The
1257 // embedding contribution is added in each of the low level
1258 // non-bonded routines. In parallel, this calculation is done
1259 // in collectData, not in unpackInteractionData.
1260 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1261 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1262 }
1263
1264 if (storageLayout_ & DataStorage::dslFlucQForce) {
1265 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1266 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1267 }
1268
1269 if (storageLayout_ & DataStorage::dslElectricField) {
1270 snap_->atomData.electricField[atom1] += *(idat.eField1);
1271 snap_->atomData.electricField[atom2] += *(idat.eField2);
1272 }
1273
1274 #endif
1275
1276 }
1277
1278 /*
1279 * buildNeighborList
1280 *
1281 * first element of pair is row-indexed CutoffGroup
1282 * second element of pair is column-indexed CutoffGroup
1283 */
1284 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1285
1286 vector<pair<int, int> > neighborList;
1287 groupCutoffs cuts;
1288 bool doAllPairs = false;
1289
1290 #ifdef IS_MPI
1291 cellListRow_.clear();
1292 cellListCol_.clear();
1293 #else
1294 cellList_.clear();
1295 #endif
1296
1297 RealType rList_ = (largestRcut_ + skinThickness_);
1298 Snapshot* snap_ = sman_->getCurrentSnapshot();
1299 Mat3x3d Hmat = snap_->getHmat();
1300 Vector3d Hx = Hmat.getColumn(0);
1301 Vector3d Hy = Hmat.getColumn(1);
1302 Vector3d Hz = Hmat.getColumn(2);
1303
1304 nCells_.x() = (int) ( Hx.length() )/ rList_;
1305 nCells_.y() = (int) ( Hy.length() )/ rList_;
1306 nCells_.z() = (int) ( Hz.length() )/ rList_;
1307
1308 // handle small boxes where the cell offsets can end up repeating cells
1309
1310 if (nCells_.x() < 3) doAllPairs = true;
1311 if (nCells_.y() < 3) doAllPairs = true;
1312 if (nCells_.z() < 3) doAllPairs = true;
1313
1314 Mat3x3d invHmat = snap_->getInvHmat();
1315 Vector3d rs, scaled, dr;
1316 Vector3i whichCell;
1317 int cellIndex;
1318 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1319
1320 #ifdef IS_MPI
1321 cellListRow_.resize(nCtot);
1322 cellListCol_.resize(nCtot);
1323 #else
1324 cellList_.resize(nCtot);
1325 #endif
1326
1327 if (!doAllPairs) {
1328 #ifdef IS_MPI
1329
1330 for (int i = 0; i < nGroupsInRow_; i++) {
1331 rs = cgRowData.position[i];
1332
1333 // scaled positions relative to the box vectors
1334 scaled = invHmat * rs;
1335
1336 // wrap the vector back into the unit box by subtracting integer box
1337 // numbers
1338 for (int j = 0; j < 3; j++) {
1339 scaled[j] -= roundMe(scaled[j]);
1340 scaled[j] += 0.5;
1341 // Handle the special case when an object is exactly on the
1342 // boundary (a scaled coordinate of 1.0 is the same as
1343 // scaled coordinate of 0.0)
1344 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1345 }
1346
1347 // find xyz-indices of cell that cutoffGroup is in.
1348 whichCell.x() = nCells_.x() * scaled.x();
1349 whichCell.y() = nCells_.y() * scaled.y();
1350 whichCell.z() = nCells_.z() * scaled.z();
1351
1352 // find single index of this cell:
1353 cellIndex = Vlinear(whichCell, nCells_);
1354
1355 // add this cutoff group to the list of groups in this cell;
1356 cellListRow_[cellIndex].push_back(i);
1357 }
1358 for (int i = 0; i < nGroupsInCol_; i++) {
1359 rs = cgColData.position[i];
1360
1361 // scaled positions relative to the box vectors
1362 scaled = invHmat * rs;
1363
1364 // wrap the vector back into the unit box by subtracting integer box
1365 // numbers
1366 for (int j = 0; j < 3; j++) {
1367 scaled[j] -= roundMe(scaled[j]);
1368 scaled[j] += 0.5;
1369 // Handle the special case when an object is exactly on the
1370 // boundary (a scaled coordinate of 1.0 is the same as
1371 // scaled coordinate of 0.0)
1372 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1373 }
1374
1375 // find xyz-indices of cell that cutoffGroup is in.
1376 whichCell.x() = nCells_.x() * scaled.x();
1377 whichCell.y() = nCells_.y() * scaled.y();
1378 whichCell.z() = nCells_.z() * scaled.z();
1379
1380 // find single index of this cell:
1381 cellIndex = Vlinear(whichCell, nCells_);
1382
1383 // add this cutoff group to the list of groups in this cell;
1384 cellListCol_[cellIndex].push_back(i);
1385 }
1386
1387 #else
1388 for (int i = 0; i < nGroups_; i++) {
1389 rs = snap_->cgData.position[i];
1390
1391 // scaled positions relative to the box vectors
1392 scaled = invHmat * rs;
1393
1394 // wrap the vector back into the unit box by subtracting integer box
1395 // numbers
1396 for (int j = 0; j < 3; j++) {
1397 scaled[j] -= roundMe(scaled[j]);
1398 scaled[j] += 0.5;
1399 // Handle the special case when an object is exactly on the
1400 // boundary (a scaled coordinate of 1.0 is the same as
1401 // scaled coordinate of 0.0)
1402 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1403 }
1404
1405 // find xyz-indices of cell that cutoffGroup is in.
1406 whichCell.x() = nCells_.x() * scaled.x();
1407 whichCell.y() = nCells_.y() * scaled.y();
1408 whichCell.z() = nCells_.z() * scaled.z();
1409
1410 // find single index of this cell:
1411 cellIndex = Vlinear(whichCell, nCells_);
1412
1413 // add this cutoff group to the list of groups in this cell;
1414 cellList_[cellIndex].push_back(i);
1415 }
1416
1417 #endif
1418
1419 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1420 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1421 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1422 Vector3i m1v(m1x, m1y, m1z);
1423 int m1 = Vlinear(m1v, nCells_);
1424
1425 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1426 os != cellOffsets_.end(); ++os) {
1427
1428 Vector3i m2v = m1v + (*os);
1429
1430
1431 if (m2v.x() >= nCells_.x()) {
1432 m2v.x() = 0;
1433 } else if (m2v.x() < 0) {
1434 m2v.x() = nCells_.x() - 1;
1435 }
1436
1437 if (m2v.y() >= nCells_.y()) {
1438 m2v.y() = 0;
1439 } else if (m2v.y() < 0) {
1440 m2v.y() = nCells_.y() - 1;
1441 }
1442
1443 if (m2v.z() >= nCells_.z()) {
1444 m2v.z() = 0;
1445 } else if (m2v.z() < 0) {
1446 m2v.z() = nCells_.z() - 1;
1447 }
1448
1449 int m2 = Vlinear (m2v, nCells_);
1450
1451 #ifdef IS_MPI
1452 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1453 j1 != cellListRow_[m1].end(); ++j1) {
1454 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1455 j2 != cellListCol_[m2].end(); ++j2) {
1456
1457 // In parallel, we need to visit *all* pairs of row
1458 // & column indicies and will divide labor in the
1459 // force evaluation later.
1460 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1461 snap_->wrapVector(dr);
1462 cuts = getGroupCutoffs( (*j1), (*j2) );
1463 if (dr.lengthSquare() < cuts.third) {
1464 neighborList.push_back(make_pair((*j1), (*j2)));
1465 }
1466 }
1467 }
1468 #else
1469 for (vector<int>::iterator j1 = cellList_[m1].begin();
1470 j1 != cellList_[m1].end(); ++j1) {
1471 for (vector<int>::iterator j2 = cellList_[m2].begin();
1472 j2 != cellList_[m2].end(); ++j2) {
1473
1474 // Always do this if we're in different cells or if
1475 // we're in the same cell and the global index of
1476 // the j2 cutoff group is greater than or equal to
1477 // the j1 cutoff group. Note that Rappaport's code
1478 // has a "less than" conditional here, but that
1479 // deals with atom-by-atom computation. OpenMD
1480 // allows atoms within a single cutoff group to
1481 // interact with each other.
1482
1483
1484
1485 if (m2 != m1 || (*j2) >= (*j1) ) {
1486
1487 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1488 snap_->wrapVector(dr);
1489 cuts = getGroupCutoffs( (*j1), (*j2) );
1490 if (dr.lengthSquare() < cuts.third) {
1491 neighborList.push_back(make_pair((*j1), (*j2)));
1492 }
1493 }
1494 }
1495 }
1496 #endif
1497 }
1498 }
1499 }
1500 }
1501 } else {
1502 // branch to do all cutoff group pairs
1503 #ifdef IS_MPI
1504 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1505 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1506 dr = cgColData.position[j2] - cgRowData.position[j1];
1507 snap_->wrapVector(dr);
1508 cuts = getGroupCutoffs( j1, j2 );
1509 if (dr.lengthSquare() < cuts.third) {
1510 neighborList.push_back(make_pair(j1, j2));
1511 }
1512 }
1513 }
1514 #else
1515 // include all groups here.
1516 for (int j1 = 0; j1 < nGroups_; j1++) {
1517 // include self group interactions j2 == j1
1518 for (int j2 = j1; j2 < nGroups_; j2++) {
1519 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1520 snap_->wrapVector(dr);
1521 cuts = getGroupCutoffs( j1, j2 );
1522 if (dr.lengthSquare() < cuts.third) {
1523 neighborList.push_back(make_pair(j1, j2));
1524 }
1525 }
1526 }
1527 #endif
1528 }
1529
1530 // save the local cutoff group positions for the check that is
1531 // done on each loop:
1532 saved_CG_positions_.clear();
1533 for (int i = 0; i < nGroups_; i++)
1534 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1535
1536 return neighborList;
1537 }
1538 } //end namespace OpenMD